Big Ramsey degrees in the metric context

Noé de Rancourt¹ Joint work with Adam Bartoš², Tristan Bice², Jan Hubička¹, and Matěj Konečný¹

¹Charles University, Prague ²Institue of Mathematics of the Czech Academy of Sciences, Prague

TOPOSYM 2022

July 28, 2022

→ < ∃ →</p>

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$?

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$? Given $d \ge 1$, does it hold that for every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^d$ is monochromatic?

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$? Given $d \ge 1$, does it hold that for every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^d$ is monochromatic?

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$? Given $d \ge 1$, does it hold that for every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^d$ is monochromatic?

- For *d* = 1, yes.
- For *d* = 2, **no**.

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$? Given $d \ge 1$, does it hold that for every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^d$ is monochromatic?

- For *d* = 1, yes.
- For d = 2, no. Consider a well-ordering \prec of \mathbb{Q} .

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$? Given $d \ge 1$, does it hold that for every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^d$ is monochromatic?

- For *d* = 1, yes.
- For d = 2, no. Consider a well-ordering ≺ of Q. Define a colouring χ_S: [Q]² → 2 by χ_S({x, y}) = 0 iff the orderings < and ≺ coincide on the pair {x, y} (Sierpiński's colouring, 1933).

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Big Ramsey degrees are about extending the infinite Ramsey theorem to sets with an additional structure.

Infinite Ramsey theorem (1930)

For every $d \ge 1$ and every colouring of $[\omega]^d$ with finitely colours, there exists an infinite $M \subseteq \omega$ such that $[M]^d$ is monochromatic.

In the above result, can ω be replaced with $(\mathbb{Q}, <)$? Given $d \ge 1$, does it hold that for every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^d$ is monochromatic?

- For d = 1, yes.
- For d = 2, no. Consider a well-ordering ≺ of Q. Define a colouring χ_S: [Q]² → 2 by χ_S({x, y}) = 0 iff the orderings < and ≺ coincide on the pair {x, y} (Sierpiński's colouring, 1933). Then every copy of Q in itself meets both colours.

Theorem (Galvin)

For every colouring $\psi : [\mathbb{Q}]^2 \to k$, where $k \in \omega$, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^2$ meets at most two colours.

• = • • = •

Theorem (Galvin)

For every colouring $\psi : [\mathbb{Q}]^2 \to k$, where $k \in \omega$, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^2$ meets at most two colours. Moreover, M can be choosen in such a way that on $[M]^2$, ψ only depends on χ_S .

Theorem (Galvin)

For every colouring $\psi : [\mathbb{Q}]^2 \to k$, where $k \in \omega$, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^2$ meets at most two colours. Moreover, M can be choosen in such a way that on $[M]^2$, ψ only depends on χ_5 .

More generally, one can prove the existence of integers t_d such that for every $d \ge 1$, and every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy of \mathbb{Q} meeting at most t_d many colours (Laver).

Theorem (Galvin)

For every colouring $\psi : [\mathbb{Q}]^2 \to k$, where $k \in \omega$, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^2$ meets at most two colours. Moreover, M can be choosen in such a way that on $[M]^2$, ψ only depends on χ_S .

More generally, one can prove the existence of integers t_d such that for every $d \ge 1$, and every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy of \mathbb{Q} meeting at most t_d many colours (Laver). The minimal such t_d 's can even be computed (Devlin, 1979):

$$t_d = \tan^{(2d-1)}(0).$$

Theorem (Galvin)

For every colouring $\psi : [\mathbb{Q}]^2 \to k$, where $k \in \omega$, there exists an order-copy $M \subseteq \mathbb{Q}$ of \mathbb{Q} such that $[M]^2$ meets at most two colours. Moreover, M can be choosen in such a way that on $[M]^2$, ψ only depends on χ_S .

More generally, one can prove the existence of integers t_d such that for every $d \ge 1$, and every colouring of $[\mathbb{Q}]^d$ with finitely many colours, there exists an order-copy of \mathbb{Q} meeting at most t_d many colours (Laver). The minimal such t_d 's can even be computed (Devlin, 1979):

$$t_d = \tan^{(2d-1)}(0).$$

The numbers t_d are called big Ramsey degrees.

More generally, consider a class ${\mathcal C}$ of structures with notions of subobjects and of isomorphism.

글 🖌 🖌 글 🛌

э

More generally, consider a class C of structures with notions of subobjects and of isomorphism. For $A, B \in C$, denote by $\binom{B}{A}$ the set of copies of A in B (i.e. subobjects of B isomorphic to A).

э

More generally, consider a class C of structures with notions of subobjects and of isomorphism. For $A, B \in C$, denote by $\binom{B}{A}$ the set of copies of A in B (i.e. subobjects of B isomorphic to A).

For X an infinite/non-finitely generated structure, and A a finite/finitely generated one, say that A has finite big Ramsey degree in X if there exists an integer t_A such that for every colouring of $\binom{X}{A}$ with finitely many colours, there exists $Y \in \binom{X}{X}$ such that $\binom{Y}{A}$ meets at most t_A many colours.

More generally, consider a class C of structures with notions of subobjects and of isomorphism. For $A, B \in C$, denote by $\binom{B}{A}$ the set of copies of A in B (i.e. subobjects of B isomorphic to A).

For X an infinite/non-finitely generated structure, and A a finite/finitely generated one, say that A has finite big Ramsey degree in X if there exists an integer t_A such that for every colouring of $\binom{X}{A}$ with finitely many colours, there exists $Y \in \binom{X}{X}$ such that $\binom{Y}{A}$ meets at most t_A many colours. The smallest such t_A is called the big Ramsey degree of A in X.

More generally, consider a class C of structures with notions of subobjects and of isomorphism. For $A, B \in C$, denote by $\binom{B}{A}$ the set of copies of A in B (i.e. subobjects of B isomorphic to A).

For X an infinite/non-finitely generated structure, and A a finite/finitely generated one, say that A has finite big Ramsey degree in X if there exists an integer t_A such that for every colouring of $\binom{X}{A}$ with finitely many colours, there exists $Y \in \binom{X}{X}$ such that $\binom{Y}{A}$ meets at most t_A many colours. The smallest such t_A is called the big Ramsey degree of A in X.

Say that a structure X has finite big Ramsey degrees if every finite/finitely generated substructure of X has finite big Ramsey degree in X.

More generally, consider a class C of structures with notions of subobjects and of isomorphism. For $A, B \in C$, denote by $\binom{B}{A}$ the set of copies of A in B (i.e. subobjects of B isomorphic to A).

For X an infinite/non-finitely generated structure, and A a finite/finitely generated one, say that A has finite big Ramsey degree in X if there exists an integer t_A such that for every colouring of $\binom{X}{A}$ with finitely many colours, there exists $Y \in \binom{X}{X}$ such that $\binom{Y}{A}$ meets at most t_A many colours. The smallest such t_A is called the big Ramsey degree of A in X.

Say that a structure X has finite big Ramsey degrees if every finite/finitely generated substructure of X has finite big Ramsey degree in X.

Existence of big Ramsey degrees (sometimes with an explicit computation) has been proved for several classical discrete structures: the Rado graph (Sauer 2006, Laflamme–Sauer–Vuksanovic 2006), the universal homogeneous K_n -free graph (Dobrinen 2019+, Balko–Chodounský–Dobrinen–Hubička–Končený–Vena–Zucker 2021+)... Those results have dynamical consequences.

Suppose that A has big Ramsey degree t_A in X. As in the special case of Serpiński's colouring, one can easily prove the existence of a specific colouring χ : $\binom{X}{A} \to t_A$ satisfying the two following properties:

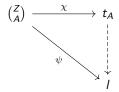
Suppose that A has big Ramsey degree t_A in X. As in the special case of Serpiński's colouring, one can easily prove the existence of a specific colouring χ : $\binom{X}{A} \to t_A$ satisfying the two following properties:

• χ is persistent: for every $Y \in {\binom{X}{X}}$, the restriction $\chi \upharpoonright_{\binom{Y}{A}} : {\binom{Y}{A}} \to t_A$ is surjective;

NACH E A EN A CO

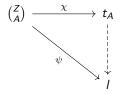
Suppose that A has big Ramsey degree t_A in X. As in the special case of Serpiński's colouring, one can easily prove the existence of a specific colouring χ : $\binom{X}{A} \to t_A$ satisfying the two following properties:

- χ is persistent: for every $Y \in {\binom{X}{X}}$, the restriction $\chi \upharpoonright_{\binom{Y}{A}} : {\binom{Y}{A}} \to t_A$ is surjective;
- χ is universal: for every *l* ∈ ω, every colouring ψ: ^(X)_A → *l*, and every *Y* ∈ ^(X)_X, there exists *Z* ∈ ^(Y)_X such that on ^(Z)_A, ψ only depends on χ.



Suppose that A has big Ramsey degree t_A in X. As in the special case of Serpiński's colouring, one can easily prove the existence of a specific colouring $\chi: {X \choose A} \to t_A$ satisfying the two following properties:

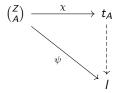
- χ is persistent: for every $Y \in {X \choose X}$, the restriction $\chi \upharpoonright_{{Y \choose A}} : {Y \choose A} \to t_A$ is surjective;
- χ is universal: for every *l* ∈ ω, every colouring ψ: ^(X)_A → *l*, and every *Y* ∈ ^(X)_X, there exists *Z* ∈ ^(Y)_X such that on ^(Z)_A, ψ only depends on χ.



It can also be shown that t_A is the only number of colours for which a colouring with such properties exists.

Suppose that A has big Ramsey degree t_A in X. As in the special case of Serpiński's colouring, one can easily prove the existence of a specific colouring $\chi: {X \choose A} \to t_A$ satisfying the two following properties:

- χ is persistent: for every $Y \in {X \choose X}$, the restriction $\chi \upharpoonright_{{Y \choose A}} : {Y \choose A} \to t_A$ is surjective;
- χ is universal: for every $l \in \omega$, every colouring $\psi : {\binom{X}{A}} \to l$, and every $Y \in {\binom{X}{X}}$, there exists $Z \in {\binom{Y}{X}}$ such that on ${\binom{Z}{A}}$, ψ only depends on χ .



It can also be shown that t_A is the only number of colours for which a colouring with such properties exists. Call such a colouring a big Ramsey colouring.

Metric analogues of the infinite Ramsey theorem are known.

ヨトメヨト

æ

Metric analogues

Metric analogues of the infinite Ramsey theorem are known. Fix a compact metric space K. If f is a mapping taking values into K, denote by osc(f) the diameter of its range.

글 🖌 🔺 글 🛌

э

Metric analogues of the infinite Ramsey theorem are known. Fix a compact metric space K. If f is a mapping taking values into K, denote by osc(f) the diameter of its range.

Theorem (Gowers, 1992)

Let $\varepsilon > 0$ and $\chi: S_{c_0} \to K$ be a Lipschitz map. Then there exists a linear isometric copy $X \subseteq c_0$ of c_0 such that $\operatorname{osc}(\chi \upharpoonright_{S_X}) \leq \varepsilon$.

< = > < = >

Metric analogues of the infinite Ramsey theorem are known. Fix a compact metric space K. If f is a mapping taking values into K, denote by osc(f) the diameter of its range.

Theorem (Gowers, 1992)

Let $\varepsilon > 0$ and $\chi: S_{c_0} \to K$ be a Lipschitz map. Then there exists a linear isometric copy $X \subseteq c_0$ of c_0 such that $\operatorname{osc}(\chi \upharpoonright_{S_X}) \leq \varepsilon$.

Theorem (Nguyen Van Thé–Sauer, 2009)

Let $\varepsilon > 0$ and $\chi \colon \mathbb{S} \to K$ be a Lipschitz map, where \mathbb{S} is the Urysohn sphere. Then there exists an isometric copy $X \subseteq \mathbb{S}$ of \mathbb{S} such that $osc(\chi \upharpoonright_X) \leq \varepsilon$.

The only thing you need to know on the Urysohn sphere is that it is a complete separable metric space of diameter 1, which is isometrically universal for the class of separable metric spaces of diameter ≤ 1 .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

In cases when no analogue of the two latter results holds, is there a good notion of big Ramsey degree that would take the metric into account?

э

In cases when no analogue of the two latter results holds, is there a good notion of big Ramsey degree that would take the metric into account?

The good way to define such a notion is to use big Ramsey colourings.

글 🖌 🔺 글 🛌

In cases when no analogue of the two latter results holds, is there a good notion of big Ramsey degree that would take the metric into account?

The good way to define such a notion is to use big Ramsey colourings.

From now on, assume that ${\cal C}$ is a class of metric structures such that all isomorphisms between elements of ${\cal C}$ are isometric.

글 🖌 🔺 글 🕨 👘

In cases when no analogue of the two latter results holds, is there a good notion of big Ramsey degree that would take the metric into account?

The good way to define such a notion is to use big Ramsey colourings.

From now on, assume that C is a class of metric structures such that all isomorphisms between elements of C are isometric. Sets of the form $\binom{X}{A}$ will be endowed with a suitable metric depending on cases (Hausdorff distance, Hausdorff distance between unit spheres...)

In cases when no analogue of the two latter results holds, is there a good notion of big Ramsey degree that would take the metric into account?

The good way to define such a notion is to use big Ramsey colourings.

From now on, assume that C is a class of metric structures such that all isomorphisms between elements of C are isometric. Sets of the form $\binom{X}{A}$ will be endowed with a suitable metric depending on cases (Hausdorff distance, Hausdorff distance between unit spheres...)

Given $X, A \in C$, a colouring of $\binom{X}{A}$ will be defined as a 1-Lipschitz map $\chi: \binom{X}{A} \to K$, where K is a compact metric space.

The colouring χ is said to be:

E > < E > ...

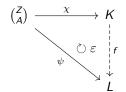
The colouring χ is said to be:

• persistent if for every $Y \in {\binom{X}{X}}$, the range of $\chi \upharpoonright_{\binom{Y}{A}}$ is dense in K;

< 문 > < 문 > · ·

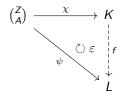
The colouring χ is said to be:

- persistent if for every $Y \in {\binom{X}{X}}$, the range of $\chi \upharpoonright_{\binom{Y}{A}}$ is dense in K;
- universal if for every other colouring $\psi : \binom{X}{A} \to L$, every $Y \in \binom{X}{X}$, and every $\varepsilon > 0$, there exists $Z \in \binom{Y}{X}$ and a 1-Lipschitz map $f : K \to L$ such that $d_{\infty}(\psi \upharpoonright \binom{Z}{A}, f \circ \chi \upharpoonright \binom{Z}{A}) \leqslant \varepsilon$.



The colouring χ is said to be:

- persistent if for every $Y \in {X \choose X}$, the range of $\chi \upharpoonright_{A}$ is dense in K;
- universal if for every other colouring $\psi : \binom{X}{A} \to L$, every $Y \in \binom{X}{X}$, and every $\varepsilon > 0$, there exists $Z \in \binom{Y}{X}$ and a 1-Lipschitz map $f : K \to L$ such that $d_{\infty}(\psi \upharpoonright \binom{Z}{A}, f \circ \chi \upharpoonright \binom{Z}{A}) \leqslant \varepsilon$.



• a big Ramsey colouring if it is both universal and persistent.

Proposition

X and A being fixed, there exists, up to isometry, at most one compact metric space K for which a big Ramsey colouring $\chi: \binom{X}{A} \to K$ exists.

э

Proposition

X and A being fixed, there exists, up to isometry, at most one compact metric space K for which a big Ramsey colouring $\chi: \binom{X}{A} \to K$ exists.

Definition

If such a compact metric space exists, it is called the big Ramsey degree of A in X.

Proposition

X and A being fixed, there exists, up to isometry, at most one compact metric space K for which a big Ramsey colouring $\chi: \binom{X}{A} \to K$ exists.

Definition

If such a compact metric space exists, it is called the big Ramsey degree of A in X.

Gowers' and Nguyen Van Thé–Sauer's results essentially say, respectively, that:

- the big Ramsey degree of 1-dimensional spaces in c_0 is a singleton;
- the big Ramsey degree of singletons in the Urysohn sphere is a singleton.

• For $d \ge 2$, ℓ_{∞}^d does not have a compact big Ramsey degree in c_0 .

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ 釣 � @

- For $d \ge 2$, ℓ_{∞}^d does not have a compact big Ramsey degree in c_0 .
- For 1 ≤ p < ∞, 1-dimensional spaces do not have a compact big Ramsey degree in ℓ_p.

< 注 → < 注 → □ 注

- For $d \ge 2$, ℓ_{∞}^{d} does not have a compact big Ramsey degree in c_{0} .
- For 1 ≤ p < ∞, 1-dimensional spaces do not have a compact big Ramsey degree in ℓ_p.
- Every finite-dimensional normed space has a compact big Ramsey degree in ℓ_{∞} .

A B M A B M

- 22

- For $d \ge 2$, ℓ_{∞}^d does not have a compact big Ramsey degree in c_0 .
- For 1 ≤ p < ∞, 1-dimensional spaces do not have a compact big Ramsey degree in ℓ_p.
- Every finite-dimensional normed space has a compact big Ramsey degree in ℓ_{∞} .
- Every finite metric space of diameter ≤ 1 has a compact big Ramsey degree in the Urysohn sphere.

白 ト イヨ ト イヨ ト

Thank you for your attention!