On convex structures in quasi-metric spaces

Mcedisi Sphiwe Zweni

Department of Mathematical Sciences
North-West University
REPUBLIC OF SOUTH AFRICA
Prague Symposia on General Topology and its Relations to Modern
Analysis and Algebra
(TOPOSYM 2022)
25 July 2022-29 July 2022
(1) Introduction
(2) Preliminaries
(3) Convex structures in quasi-metric spaces
(4) Fixed points in convex T_{0}-quasi-metric spaces
(5) W-convex function pairs and Isbell-hull

6 Conclusion
(7) Bibliography

Introduction

In 1970, Takahashi introduced the notion of convexity in metric spaces. A convex metric space is a generalized space. Recently Kunzi and Yildiz initiated the study on convex structures in the sense of Takahashi in T_{0}-quasi-metric spaces. They considered a T_{0}-quasi-metric space (X, q) equipped with a Takahashi convexity structure (briey TCS).
They defined a Takahashi convex structure W on a T_{0}-quasi-metric space (X, q) as a map from $X \times X \times[0,1]$ to X (that is, $W(x, y, \lambda)$ is defined for all $(x, y, \lambda) \in X \times X \times[0,1])$ satisfying the following conditions:

$$
q(v, W(x, y, \lambda)) \leq \lambda q(v, x)+(1-\lambda) q(v, y)
$$

and

$$
q^{t}(v, W(x, y, \lambda)) \leq \lambda q^{t}(v, x)+(1-\lambda) q^{t}(v, y)
$$

whenever $v \in X$

Preliminaries

Definition

Let X be a set and let $q: X \times X \rightarrow[0, \infty)$ be a function. Then q is called a quasi-metric on X if
(i) $q(x, x)=0$ for all $x \in X$
(ii) $q(x, y) \leq q(x, z)+q(z, y)$ for all $x, y, z \in X$

Furthermore, q is a T_{0}-quasi-metric if

$$
q(x, y)=0=q(y, x) \text { implies that } x=y
$$

for each $x, y \in X$.
We shall say that q is a T_{0}-quasi-metric provided that q satisfies the following condition: for each $x, y \in X, q(x, y)=0=q(y, x)$ implies that $x=y$.

Remark

If q is a quasi-metric on a set X, then $q^{-1}: X \times X \rightarrow[0, \infty)$ on X defined by $q^{-1}(x, y)=q(y, x)$ for every $x, y \in X$, is called the conjugate quasi-metric. A quasi-metric on a set X such that $q=q^{-1}$ is a metric. Note that if (X, q) is a T_{0}-quasi-metric space, then $q^{s}=\sup \left\{q, q^{-1}\right\}=q \vee q^{-1}$ is also a metric.

Example

For $a, b \in \mathbb{R}$ we shall put $a-b=\max \{a-b, 0\}$. If we equip \mathbb{R} with $u(a, b)=a-b$, then (\mathbb{R}, u) is a T_{0}-quasi-metric space that we call the standard T_{0}-quasi-metric of \mathbb{R}. Note that the symmetrize metric u^{s} of u is the usual metric on \mathbb{R} where $u^{s}(a, b)=|a-b|$ whenever $a, b \in \mathbb{R}$.

Definition

Let X be a real vector space. A function $\| \cdot \mid: X \rightarrow[0, \infty)$ is called an asymmetric seminorm on X if for any $x, y \in X$ and $t \in[0, \infty)$ we have:
(a) $\|t x|=t \| x|$ (homogeneity);
(b) $||x+y| \leq||x|+\| y|$ (triangle inequality).

If in addition
(c) $||x|=||-x|=0$ if and only if $x=0$ (definiteness),
holds then $\| \cdot \mid$ is called an asymmetric norm, and the pair $(X, \| \cdot \mid)$ is called an asymmetrically normed space.

Example

We mention the asymmetric norm $\| \cdot \mid$ on \mathbb{R} (regarded as a real vector space) defined for all $x \in \mathbb{R}$ by

$$
\| \cdot \mid=x^{+}
$$

where $x^{+}=x \vee 0=\max \{x, 0\}$ is the positive part of x. In this case

$$
\begin{aligned}
& \|\left. x\right|_{t}=\max \{-x, 0\}=x^{-1} \\
& \|\left. x\right|_{s}=\max \left\{x^{+}, x^{-}\right\}=|x|
\end{aligned}
$$

Convex structures in quasi-metric spaces

In this section, we generalize the notion of convexity structures in metric spaces studied by Takahashi and other authors into quasi-metric settings.

Definition

Let (X, q) be a quasi-metric space. A mapping $W: X \times X \times[0,1] \rightarrow X$ is said to be a convex structure on X if for all $x, y \in X$ and $\lambda \in[0,1]$,

$$
q(x, W(x, y, \lambda)) \leq \lambda q(z, x)+(1-\lambda) q(x, y)
$$

and

$$
q(W(x, z, \lambda), x) \leq \lambda q(x, z)+(1-t) q(y, z)
$$

whenever $z \in X$.
Then (X, q) equipped with a convex structure is said to be a conv*ex quasi-metric space denoted by (X, q, W).

Example

Let \mathbb{R} be the set of real numbers be equipped with the standard T_{0}-quasi-metric space $q(x, y)=x-y=\max \{0, x-y\}$, whenever $x, y \in \mathbb{R}$. If we define $W(x, y, \lambda)=\lambda x+(1-\lambda) y$ whenever $x, y \in \mathbb{R}$ and $\lambda \in[0,1]$, then (\mathbb{R}, q, W) is a convex quasi-metric space. Indeed, let $z, x, y \in \mathbb{R}$ and $\lambda \in[0,1]$, we have

$$
\begin{aligned}
q(z, W(x, y, \lambda)) & =\max \{0, z-(\lambda x+(1-\lambda) y)\} \\
& =\max \{0, z+\lambda z-\lambda z-\lambda x-(1-\lambda) y)\}
\end{aligned}
$$

which implies that

$$
q(z, W(x, y, \lambda)) \leq \max \{0, \lambda(z-x)\}+\max \{0,(1-\lambda)(z-y)\} .
$$

Moreover

$$
q(z, W(x, y, \lambda)) \leq \lambda q(z, x)+(1-\lambda) q(z, y)
$$

Proposition

Suppose that (X, q, W) is a convex T_{0}-quasi-metric space, then $\left(X, q^{s}, W\right)$ is a convex metric space.

Proposition

Suppose that (X, q, W) is a convex T_{0}-quasi-metric space. Then $W^{-1}(x, y, \lambda)=W(y, x, 1-\lambda)$ whenever $x, y \in X$ and $\lambda \in[0,1]$ is a convex structure on a T_{0}-quasi-metric space (X, q).

Remark

For any convex T_{0} - quasi-metric space (X, q, W), the following are true:
(1) For any $x \in X$ and $\lambda \in[0,1]$, we have $W(x, x, \lambda)=x$.
(2) For any $x, y \in X$, it follows that $W(y, x, 0)=x$ and $W(y, x, 1)=y$.

Definition

Let (X, q, W) be a convex quasi-metric space. For any $x, y \in X$, the set $\mathcal{S}[x, y]:=\{W(x, y, \lambda): \lambda \in[0,1]\}$ is called quasi-metric segment with endpoints x, y.

Remark

If (X, q, W) is a convex T_{0}-quasi-metric space, then for any $x, y \in X$ with $x \neq y$, the quasi-metric interval $<x, y>_{q}$ contains $\mathcal{S}[x, y]$. If $x=y$, then the quasi-metric interval which is a singleton coincides with the quasi-metric segment.

Proposition

If W is the unique convex structure on a T_{0}-quasi-metric space (X, q), then the map $\psi:(\mathcal{S}[x, y], q) \rightarrow\left([0, q(x, y)], u_{q(x, y)(y, x)}\right)$ defined by $\psi(W(x, y, \lambda))=\lambda q(x, y)$ whenever $x, y \in X$ with $x \neq y$ and $\lambda \in[0,1]$ is an isometry embedding of $\mathcal{S}[x, y]$ into $[0, q(x, y)]$.

Definition (Kunzi and Yildiz)

(a) The convex structure W is called translation-invariant if W satisfies the condition

$$
W(x+z, y+z, \lambda)=W(x, y, \lambda)+z
$$

for all $x, y, z \in X$ and $\lambda \in[0,1]$.
(b) We say that the convex structure satisfies the homogeneity condition if for any $\alpha \in \mathbb{R}$ we have

$$
W(\alpha x, \alpha y, \lambda)=\alpha W(x, y, \lambda)
$$

for any $x, y \in X$ and $\lambda \in[0,1]$.

Fixed points in convex T_{0}-quasi-metric spaces

We study some results on fixed point theorems in convex quasi-metric spaces. We extend the well-known results of Takahashi to the framework of quasi-metric spaces.

Definition

A convex T_{0}-quasi-metric space (X, q, W) is said to have property (H) if any decreasing family $\left\{D_{i}\right\}_{i \in I}$ of nonempty doubly closed convex bounded subsets of X such that $D_{j} \subset D_{i}$ with $i \leq j$, has nonempty intersection.

Theorem

Let W be the unique convex structure on a T_{0}-quasi metric space (X, q) with the property (H). If K is a nonempty doubly closed convex bounded subset of X with the normal structure, then any commuting family $\left\{T_{i}: i=1, \cdots, n\right\}$ of nonexpansive self-maps on (K, q) has a nonempty common fixed point set (i.e. $\left.\cap_{i=1}^{n} \operatorname{Fix}\left(T_{i}\right) \neq \emptyset\right)$.

Theorem

Let (X, q, W) be a convex T_{0}-quasi metric space and K be a nonempty doubly closed convex bounded subset of X with the normal structure. If $T:(K, q) \rightarrow(K, q)$ is a nonexpansive map, then T has fixed point.

W-convex function pairs and Isbell-hull

In this section, we need first to know some facts of algebraic operations on the Isbell-convex hull of an asymmetrically normed real vector space.

Let $(X, \| \cdot \mid)$ be an asymmetrically normed real vector space and let a pair of functions $f=\left(f_{1}, f_{2}\right)$, where $f_{j}: X \rightarrow[0,1)$ for $j=1,2$. The pair of functions $f=\left(f_{1}, f_{2}\right)$ is called ample on X if $\| x-y \mid \leq f_{2}(x)+f_{1}(y)$ for all $x, y \in X$.

Moreover, the pair of function $f=\left(f_{1}, f_{2}\right)$ is called minimal if for any ample pair of functions $g=\left(g_{1}, g_{2}\right)$ on X such that $g_{1}(x) \leq f_{1}(x)$ and $g_{2}(x) \leq f_{2}(x)$ for all $x \in X$, then $g_{1}=f_{1}$ and $g_{2}=f_{2}$.

The set of all minimal pairs of functions on X is denoted by $\varepsilon(X, \| \cdot \mid)$ and it is called the Isbell-hull of $(X, \| \cdot \mid)$. Note that the Isbell-hull of an asymmetrically normed real vector space is 1 -injective and Isbell-convex. If $f=\left(f_{1}, f_{2}\right) \in \varepsilon(X, \| \cdot \mid)$, then it is well-known that for any $x \in X$,
and

$$
f_{2}(x)=\sup _{z \in X} u\left[\| z-x \mid-f_{1}(z)\right] .
$$

For any $z \in X$, the pair of functions $f_{z}=(\|x-z|, \| z-x|)$ is minimal.

Definition

Let $(X, \| \cdot \mid)$ be an asymmetrically normed real vector space. We say that $(X, \| \cdot \mid)$ is convex asymmetrically normed real vector space, if W is convex structure on the quasi-metric space $\left(X, q_{\| \cdot \mid}\right)$, where $q_{\| \cdot \mid}$ is defined by $q_{\| \cdot \mid}(x, y)=\| x-y \mid$.

Definition

Let $(X, \| \cdot \mid, W)$ be a convex asymmetrically normed real vector space. We call a pair of functions $f=\left(f_{1}, f_{2}\right)$ on $X W$-convex if for any $x, y \in X$ and $\lambda \in[0,1]$, then

$$
f_{j}(W(x, y, \lambda)) \leq f_{j}(x)+(1-\lambda) f_{j}(y)
$$

for $j=1,2$.

Example

Let $(X, \| \cdot \mid, W)$ be a convex asymmetrically normed real vector space. For any $z \in X$, the pair of functions $f_{z}=(\|x-z|, \| z-x|)$ is W-convex. Indeed, for any $x, y \in X$ and $\lambda \in[0 ; 1]$, we have

$$
\begin{aligned}
\left(f_{z}\right)_{1}(W(x, y, \lambda)) & =\| W(x, y, \lambda)-z \mid \\
& \leq \lambda\|x-z|+(1-\lambda) \| y-z| \\
& =\lambda\left(f_{z}\right)_{1}(x)+(1-\lambda)\left(f_{z}\right)_{1}(y) .
\end{aligned}
$$

By similar arguments

$$
\left(f_{z}\right)_{2}(W(x, y, \lambda)) \leq \lambda\left(f_{z}\right)_{2}(x)+(1-\lambda)\left(f_{z}\right)_{2}(y)
$$

Thus f_{z} is W-convex.

Proposition

Suppose that $(X, \| \cdot \mid, W)$ is a convex asymmetrically normed real vector space. Then the pair of functions $f=\left(f_{1}, f_{2}\right)$ is W-convex whenever W is translation invariant.

Conclusion

In this talk, we have considered the notion of convex quasi-metric spaces. We explored various interesting conditions that convexity structures in the sense of Takahashi can fulfill. We studied some fixed point theorems in T_{0}-quasi-metric spaces. Moreover we introduced the concept of W-convexity for real-valued pair of functions defined on an asymmetrically normed real vector space. Isbell-convex hull of an asymmetrically normed real vector space was also considered.

Bibliography

围 W．Takahashi，A convexity in metric space and nonexpansive mappings，I，Kodai Math．Sem．Rep． 22 （1970）142－149．
T．Shimizu，W．Takahashi，Fixed point theorems in certain convex metric spaces．Math．Japon． 37 （1992）855－859．

回 F．E．Browder，Nonexpansive nonlinear operators in a Banach space．Proc．Natl．Acad．Sci．U．S．A． 54 （1965）1041－1044．
R．－P．A．Kunzi，F．Yildiz，Convexity structures in T_{0}－quasi－metric space，Topology Appl． 200 （2016）2－18．

囦 O．O．Otafudu，M．S．Zweni，W－convexity on the Isbell－convex hull of an asymmetrically normed real vector space．Filomat journal．（to appear）
囯 O．Olela Otafudu，Convexity in quasi－metric spaces，PhD thesis， University of Cape Town， 2012.

固 M．S．Zweni，Convexity structures in T_{0} quasi－metric spaces and fixed point theorems，MSc thesis，University of North－West， 2017.
國 T．Shimizu，W．Takahashi，Fixed point of multivalued mappings in certain convex metric spaces．Topol．Methods Nonlinear Anal． 8 （1996）197－203．

嗇 L．A．Talman，Fixed points for condensing multifunctions in metric spaces with convex structure，Kodai Math．Sem．Rep． 29 （1977） 62－70．

Thank you for your attention

