# The large-scale geometry of LCA groups

# Nicolò Zava



# **TOPOSYM 2022**

July 26, 2022

< □ ▶ < 同 ▶

Based on a joint work with Dmitri Shakhmatov and Takamitsu Yamauchi.

< □ > < 同 >

Large-scale geometry (also known as coarse geometry) studies the global, "asymptotic" properties of spaces, ignoring their small-scale, topological ones.

A map between  $f: (X, d_X) \to (Y, d_Y)$  is a:

• a bi-Lipschitz equivalence if

• there exists L>0 such that, for every  $x,y\in X$ ,

 $L^{-1} \cdot d_X(x,y) \le d_Y(f(x), f(y)) \le L \cdot d_X(x,y),$ 

- and it is surjective;
- a quasi-isometry if
  - there exist L>0 and  $C\geq 0$  such that, for every  $x,y\in X$ ,

 $L^{-1} \cdot d_X(x,y) - C \le d_Y(f(x), f(y)) \le L \cdot d_X(x,y) + C,$ 

- and it is large-scale surjective (i.e., B(f(X), R) = Y for some  $R \ge 0$ );
- a coarse equivalence if
  - there exist  $\rho_-, \rho_+ : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  with  $\rho_- \to \infty$  such that, for every  $x, y \in X$ ,

 $\rho_{-}(d_X(x,y)) \le d_Y(f(x), f(y)) \le \rho_{+}(d_X(x,y)),$ 

• and it is large-scale surjective.

< □ > < 同 > < 回 > .

Large-scale geometry (also known as coarse geometry) studies the global, "asymptotic" properties of spaces, ignoring their small-scale, topological ones.

A map between  $f: (X, d_X) \to (Y, d_Y)$  is a:

- a bi-Lipschitz equivalence if
  - there exists L>0 such that, for every  $x,y\in X$ ,

 $L^{-1} \cdot d_X(x,y) \le d_Y(f(x), f(y)) \le L \cdot d_X(x,y),$ 

- and it is surjective;
- a quasi-isometry if
  - there exist L > 0 and  $C \ge 0$  such that, for every  $x, y \in X$ ,

 $L^{-1} \cdot d_X(x,y) - C \le d_Y(f(x), f(y)) \le L \cdot d_X(x,y) + C,$ 

- and it is large-scale surjective (i.e., B(f(X), R) = Y for some  $R \ge 0$ );
- a coarse equivalence if
  - there exist  $\rho_-, \rho_+ \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  with  $\rho_- \to \infty$  such that, for every  $x, y \in X$ ,

 $\rho_{-}(d_X(x,y)) \le d_Y(f(x), f(y)) \le \rho_{+}(d_X(x,y))$ 

• and it is large-scale surjective.

(日)

Large-scale geometry (also known as coarse geometry) studies the global, "asymptotic" properties of spaces, ignoring their small-scale, topological ones.

A map between  $f \colon (X, d_X) \to (Y, d_Y)$  is a:

- a bi-Lipschitz equivalence if
  - there exists L>0 such that, for every  $x,y\in X$ ,

$$L^{-1} \cdot d_X(x,y) \le d_Y(f(x), f(y)) \le L \cdot d_X(x,y),$$

- and it is surjective;
- a quasi-isometry if
  - there exist L > 0 and  $C \ge 0$  such that, for every  $x, y \in X$ ,

 $L^{-1} \cdot d_X(x,y) - C \le d_Y(f(x), f(y)) \le L \cdot d_X(x,y) + C,$ 

- and it is large-scale surjective (i.e., B(f(X), R) = Y for some  $R \ge 0$ );
- a coarse equivalence if
  - there exist  $\rho_-, \rho_+ \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$  with  $\rho_- \to \infty$  such that, for every  $x, y \in X$ ,

$$\rho_{-}(d_X(x,y)) \le d_Y(f(x), f(y)) \le \rho_{+}(d_X(x,y)),$$

and it is large-scale surjective.

Let G be a finitely generated group. Every symmetric generating set  $\Sigma = \Sigma^{-1}$ induces a word metric  $d_{\Sigma}$  on G:





• Let G be a discrete finitely generated group.

- G can be endowed with a proper (i.e., closed bounded subsets are compact, or, equivalently, a subset is bounded if and only if it is relatively compact) left-invariant (i.e., d(gh, gk) = d(h, k) for every  $g, h, k \in G$ ) metric.
- Every two such metrics are quasi-isometric (via the identity map).



• Let G be a discrete finitely generated group.

- G can be endowed with a proper (i.e., closed bounded subsets are compact, or, equivalently, a subset is bounded if and only if it is relatively compact) left-invariant (i.e., d(gh, gk) = d(h, k) for every  $g, h, k \in G$ ) metric.
- Every two such metrics are quasi-isometric (via the identity map).

**Problem.** A subgroup of a finitely generated group needs not to be finitely generated.

- Let G be a discrete finitely generated group.
  - G can be endowed with a proper (i.e., closed bounded subsets are compact, or, equivalently, a subset is bounded if and only if it is relatively compact) left-invariant (i.e., d(gh, gk) = d(h, k) for every  $g, h, k \in G$ ) metric.
  - Every two such metrics are quasi-isometric (via the identity map).
- Let G be a discrete countable group (A. Dranishnikov, J. Smith, 2006, R. A. Struble, 1974).
  - G can be endowed with a proper left-invariant metric.
  - Every two such metrics are coarsely equivalent (via the identity map).

Image: 1 million of the second sec

**Problem.** A subgroup of a finitely generated group needs not to be finitely generated.

- Let G be a discrete finitely generated group.
  - G can be endowed with a proper (i.e., closed bounded subsets are compact, or, equivalently, a subset is bounded if and only if it is relatively compact) left-invariant (i.e., d(gh, gk) = d(h, k) for every  $g, h, k \in G$ ) metric.
  - Every two such metrics are quasi-isometric (via the identity map).
- Let G be a discrete countable group (A. Dranishnikov, J. Smith, 2006, R. A. Struble, 1974).
  - G can be endowed with a proper left-invariant metric.
  - Every two such metrics are coarsely equivalent (via the identity map).

**Problem.** What if we consider non-discrete topological groups?

- Let G be a discrete finitely generated group.
  - G can be endowed with a proper (i.e., closed bounded subsets are compact, or, equivalently, a subset is bounded if and only if it is relatively compact) left-invariant (i.e., d(gh, gk) = d(h, k) for every  $g, h, k \in G$ ) metric.
  - Every two such metrics are quasi-isometric (via the identity map).
- Let G be a discrete countable group (A. Dranishnikov, J. Smith, 2006, R. A. Struble, 1974).
  - G can be endowed with a proper left-invariant metric.
  - Every two such metrics are coarsely equivalent (via the identity map).
- Let G be a  $\sigma$ -compact locally compact group (Y. Cornoulier, P. de la Harpe, 2016).
  - G can be endowed with a left-invariant proper pseudo-metric that is locally bounded (i.e., every point has a neighbourhood of finite diameter).
  - Every two such metrics are coarsely equivalent (via the identity map).

・ロト ・ 同ト ・ ヨト

**Problem.** What if we consider non-discrete topological groups?

- Let G be a discrete finitely generated group.
  - G can be endowed with a proper (i.e., closed bounded subsets are compact, or, equivalently, a subset is bounded if and only if it is relatively compact) left-invariant (i.e., d(gh, gk) = d(h, k) for every  $g, h, k \in G$ ) metric.
  - Every two such metrics are quasi-isometric (via the identity map).
- Let G be a discrete countable group (A. Dranishnikov, J. Smith, 2006, R. A. Struble, 1974).
  - G can be endowed with a proper left-invariant metric.
  - Every two such metrics are coarsely equivalent (via the identity map).
- Let G be a  $\sigma$ -compact locally compact group (Y. Cornoulier, P. de la Harpe, 2016).
  - G can be endowed with a left-invariant proper pseudo-metric that is locally bounded (i.e., every point has a neighbourhood of finite diameter).
  - Every two such metrics are coarsely equivalent (via the identity map).

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

## Theorem (Y. Cornoulier, P. de la Harpe, 2016

Let G be a locally compact group. Tfae:

- G is σ-compact;
- $\bullet$  G has a left-invariant proper pseudo-metric that is locally bounded.

Outside the realm of  $\sigma\text{-compact}$  locally compact groups, we have to use coarse structures.

Definition (J. Roe, 2003, I. V. Protasov, O. I. Protasova, 2004, A. Nicas, D. Rosenthal, 2012)

A coarse group is given by a group G and a group-coarse structure  $\mathcal{E} \subseteq \mathcal{P}(G \times G)$  such that:

- $\Delta_G = \{(x, x) \mid x \in G\} \in \mathcal{E};$
- $\mathcal{E}$  is an ideal (i.e., closed under finite unions and subsets);
- for every  $E, F \in \mathcal{E}$ ,  $E \circ F = \{(x, z) \mid \exists y : (x, y) \in E, (y, z) \in F\} \in \mathcal{E};$
- for every  $E \in \mathcal{E}$ ,  $E^{-1} = \{(y, x) \mid (x, y) \in E\} \in \mathcal{E};$
- for every  $E \in \mathcal{E}$ ,  $G \cdot E = \{(gx, gy) \mid (x, y) \in E\} \in \mathcal{E}$ .

The elements of  $\mathcal E$  are called entourages.

# Definition (I. V. Protasov, O. I. Protasova, 2004, A. Nicas, D. Rosenthal, 2012)

- Let G be a group. A family  $\mathcal{I}(G) \subseteq \mathcal{P}(G)$  is a group ideal if:
  - $\{e\} \in \mathcal{I};$
  - *I* is an ideal;
  - for every  $F, K \in \mathcal{I}$ ,  $F \cdot K = \{xy \mid x \in F, y \in K\} \in \mathcal{I}$ ;
  - for every  $K \in \mathcal{I}$ ,  $K^{-1} = \{x^{-1} \mid x \in K\} \in \mathcal{I}$ .
  - Let d be a left-invariant pseudo-metric on G. Then  $\mathcal{D}_d(G) = \{X \subseteq G \mid \operatorname{diam} G < \infty\}$  is a group ideal.
  - If  $id_G: (G, d) \to (G, d')$  is a coarse equivalence, then  $\mathcal{D}_d(G) = \mathcal{D}_{d'}(G)$ .

◆□▶ ◆□▶ ◆□▶ ◆

# Definition (I. V. Protasov, O. I. Protasova, 2004, A. Nicas, D. Rosenthal, 2012)

Let G be a group. A non-empty family  $\mathcal{I}(G) \subseteq \mathcal{P}(G)$  is a group ideal if:

- *I* is an ideal;
- for every  $F, K \in \mathcal{I}$ ,  $F \cdot K = \{xy \mid x \in F, y \in K\} \in \mathcal{I}$ ;
- for every  $K \in \mathcal{I}$ ,  $K^{-1} = \{x^{-1} \mid x \in K\} \in \mathcal{I}$ .

#### Definition (D. Dikranjan, N. Z., 2020)

A functorial group ideal  $\mathcal{X}$  (group-coarse structure) associates to every  $G \in \mathbf{TopGrp}$  a group ideal  $\mathcal{X}(G)$  such that, if  $f: H \to L$  is a continuous homomorphism, then  $f(\mathcal{X}(H)) \subseteq \mathcal{X}(L)$ .

・ロト ・ 戸 ト ・ ヨ ト ・

# Definition (I. V. Protasov, O. I. Protasova, 2004, A. Nicas, D. Rosenthal, 2012)

Let G be a group. A non-empty family  $\mathcal{I}(G) \subseteq \mathcal{P}(G)$  is a group ideal if:

- *I* is an ideal;
- for every  $F, K \in \mathcal{I}$ ,  $F \cdot K = \{xy \mid x \in F, y \in K\} \in \mathcal{I}$ ;
- for every  $K \in \mathcal{I}$ ,  $K^{-1} = \{x^{-1} \mid x \in K\} \in \mathcal{I}$ .

#### Definition (D. Dikranjan, N. Z., 2020)

A functorial group ideal  $\mathcal{X}$  (group-coarse structure) associates to every  $G \in \mathbf{TopGrp}$  a group ideal  $\mathcal{X}(G)$  such that, if  $f \colon H \to L$  is a continuous homomorphism, then  $f(\mathcal{X}(H)) \subseteq \mathcal{X}(L)$ .

・ロト ・ 同ト ・ ヨト

## Functorial group ideals on TopGrp

For two group ideals  $\mathcal{X}$  and  $\mathcal{Y}$ ,  $\mathcal{X} \leq \mathcal{Y}$  if  $\mathcal{X}(G) \subseteq \mathcal{Y}(G)$  for every  $G \in \mathbf{TopGrp}$ .



## Functorial group ideals on TopGrp LCA



## Functorial group ideals on TopGrp LCA



## Definition (C. Rosendal, 2017)

Let G be a topological group. A subset A of G belongs to  $\mathcal{CB}(G)$  if, for every continuous left-invariant pseudo-metric d on G,  $\operatorname{diam}_d(A) < \infty$ .

The left-coarse structure is

 $\mathcal{E}_L = \mathcal{E}_{\mathcal{CB}(G)} = \bigcap \{ \mathcal{E}_d \mid d \text{ is a continuous left-invariant pseudo-metric} \}.$ 

It is the large-scale counterpart of the left-uniformity (G. Birkhoff, S. Kakutani, A. Weil)

 $\mathcal{U}_L = \bigcup \{ \mathcal{U}_d \mid d \text{ is a continuous left-invariant pseudo-metric} \}.$ 

#### Examples

- If G is  $\sigma$ -compact locally compact and d is a left-invariant, locally bounded and proper pseudo-metric, then  $C\mathcal{B}(G) = \mathcal{D}_d(G) = \mathcal{K}(G)$ .
- Let A be a Banach space. Then CB(A) coincides with the family of all norm-bounded subsets. If dim A = ∞, K(A) ⊊ CB(A).

Let G be a locally compact abelian group. Then

 $\widehat{G} = \{ \chi \colon G \to \mathbb{T} \mid \chi \text{ continuous homomorphism} \}$ 

with the compact-open topology is a LCA group, called dual group of G.

Pontryagin functor  $\hat{\cdot}$ : LCA  $\rightarrow$  LCA, which induces a duality in LCA, provides a bridge between scales.

| Small-scale    | Large-scale                    |
|----------------|--------------------------------|
| group topology | compact-group coarse structure |

(日)

| Small-scale                      |                                               | Large-scale                    |
|----------------------------------|-----------------------------------------------|--------------------------------|
| group topology                   |                                               | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\leftrightarrow}$ | Gromov asymptotic dimension    |

## Theorem (A. Nicas, D. Rosenthal, 2013)

For every LCA group G, asdim  $G = \dim \widehat{G}$ .

## Definition (M. Gromov, 1993)

The asymptotic dimension  $\operatorname{asdim} X$  of a metric space X is the least n such that for any uniformly bounded open cover  $\mathcal{U}$  of X there is a uniformly bounded open cover  $\mathcal{V}$  with order at most n+1 such that  $\mathcal{U}$  refines  $\mathcal{V}$ . If there is no such n, then  $\operatorname{asdim} X = \infty$ .

- If X and Y are coarsely equivalent, then  $\operatorname{asdim} X = \operatorname{asdim} Y$ .
- asdim  $\mathbb{R}^n = \dim \mathbb{R}^n = n$ , asdim  $\mathbb{Z}^n = \dim \mathbb{T}^n = n$ , asdim  $\mathbb{T}^n = \dim \mathbb{Z}^n = 0$ .

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

| Small-scale                      |                                               | Large-scale                    |
|----------------------------------|-----------------------------------------------|--------------------------------|
| group topology                   |                                               | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\leftrightarrow}$ | Gromov asymptotic dimension    |

## Theorem (A. Nicas, D. Rosenthal, 2013)

For every LCA group G, asdim  $G = \dim \widehat{G}$ .

## Definition (M. Gromov, 1993)

The asymptotic dimension  $\operatorname{asdim} X$  of a metric space X is the least n such that for any uniformly bounded open cover  $\mathcal{U}$  of X there is a uniformly bounded open cover  $\mathcal{V}$  with order at most n+1 such that  $\mathcal{U}$  refines  $\mathcal{V}$ . If there is no such n, then  $\operatorname{asdim} X = \infty$ .

- If X and Y are coarsely equivalent, then  $\operatorname{asdim} X = \operatorname{asdim} Y$ .
- asdim  $\mathbb{R}^n = \dim \mathbb{R}^n = n$ , asdim  $\mathbb{Z}^n = \dim \mathbb{T}^n = n$ , asdim  $\mathbb{T}^n = \dim \mathbb{Z}^n = 0$ .

・ロト ・ 同ト ・ ヨト

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | Gromov asymptotic dimension    |

Theorem (A. Nicas, D. Rosenthal, 2013)

For every LCA group G, asdim  $G = \dim \widehat{G}$ .

If G is discrete, then  $\widehat{G}$  is compact and

asdim  $G = r_0(G) = \dim \widehat{G}$ 

(A. Dranishnikov, J. Smith, 2006).

< □ > < / →

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | Gromov asymptotic dimension    |

Theorem (A. Nicas, D. Rosenthal, 2013)

For every LCA group G, asdim  $G = \dim \widehat{G}$ .

#### Corollary (Extension theorem)

Let G be a LCA group and  $H \leq G$  be a closed subgroup. Then  $\operatorname{asdim} G = \operatorname{asdim} H + \operatorname{asdim} G/H$ .

< □ ▶ < 同 ▶

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | Gromov asymptotic dimension    |

Theorem (A. Nicas, D. Rosenthal, 2013)

For every LCA group G, asdim  $G = \dim \widehat{G}$ .

## Theorem (D. Dikranjan, N. Z., 2020)

Let  $f: G \to H$  be a monomorphism of LCA (i.e., continuous injective homomorphism). Then  $\dim G \leq \dim H$ .

## Corollary (D. Dikranjan, N. Z., 2020)

Let  $f: G \to H$  be an epimorphism of LCA (i.e., continuous homomorphism with dense image). Then  $\operatorname{asdim} G \ge \operatorname{asdim} H$ .

< □ > < 同 > < 回 >

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | Gromov asymptotic dimension    |

Every locally compact abelian group G is of the form  $\mathbb{R}^n \times G_0$ , where  $G_0$  contains a compact open subgroup. We define:

- $n_{\mathbb{R}}(G) = n$ , and
- $\rho_0(G)$  is the maximum free rank of a discrete quotient group of G.

### Theorem (D. Dikranjan, N. Z., 2020)

For every LCA group G, asdim  $G = n_{\mathbb{R}}(G) + \rho_0(G)$ .

< □ > < 同 > < 回 >

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | Gromov asymptotic dimension    |
| metrisability                    | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | large-scale metrisability      |

A pair  $(G, \mathcal{I})$  of a group and a group ideal is large-scale metrisable if there exists a left-invariant pseudo-metric d satisfying  $\mathcal{I} = \mathcal{D}_d(G)$ .

### Proposition (D. Dikranjan, N. Z., 2020)

Let G be a LCA group. Then G is metrisable if and only if  $\widehat{G}$  is large-scale metrisable.

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | Gromov asymptotic dimension    |
| metrisability                    | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | large-scale metrisability      |
| topological entropy              | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | coarse entropy                 |

Coarse entropy (N. Z., 2019) measures the chaos created by a bornologous self-map in a locally finite coarse space (a coarse space whose balls are finite).

## Corollary

Let f be a surjective endomorphism of a group. Then

$$\mathbf{h}_{c}(f) = \mathbf{h}_{alg}(f) = \mathbf{h}_{top}(\widehat{f})$$

(It follows from the Bridge Theorem between algebraic and topological entropies (D. Dikranjan, A. Giordano Bruno, 2012)).

• □ ▶ • □ ▶ • □ ▶

| Small-scale                      |                                                   | Large-scale                    |
|----------------------------------|---------------------------------------------------|--------------------------------|
| group topology                   |                                                   | compact-group coarse structure |
| Čech-Lebesgue covering dimension | $\stackrel{\widehat{\cdot}}{\leftrightarrow}$     | Gromov asymptotic dimension    |
| metrisability                    | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | large-scale metrisability      |
| topological entropy              | $\stackrel{\widehat{\cdot}}{\longleftrightarrow}$ | coarse entropy                 |
| property C                       | $\widehat{\not\leftrightarrow}$                   | asymptotic property C          |

#### Remark (T. Yamauchi, private communication, 2019)

Let  $G = \bigoplus_{n \in \mathbb{N}} \mathbb{Z}$  endowed with the discrete topology. Then G as a countable group has asymptotic property C (T. Yamauchi, 2015), while  $\widehat{G} = \prod_{n \in \mathbb{N}} \mathbb{T}$  does not satisfy property C (it is actually strongly infinite-dimensional).

(日)

#### Preservation results:

- If  $\{G_i\}_i$  is a family of topological groups satisfying  $\mathcal{K}(G_i) = \mathcal{CB}(G_i)$ , then  $\mathcal{K}(\prod_i G_i) = \mathcal{CB}(\prod_i G_i)$ .
- Suppose that G is a topological group and  $K \leq G$  is compact, then  $\mathcal{K}(G) = \mathcal{CB}(G)$  if and only if  $\mathcal{K}(G/K) = \mathcal{CB}(G/K)$ .
- If G is a topological group and  $H \leq G$  is closed, then  $\mathcal{K}(H) = \mathcal{CB}(H)$  provided that  $\mathcal{K}(G) = \mathcal{CB}(G)$ .

#### Theorem

If G is a LCA group, then  $\mathcal{K}(G) = \mathcal{CB}(G)$ .

### Example (C. Rosendal, 2018)

Let  $G = \text{Sym}(\mathbb{N})$  be the group of the permutations of  $\mathbb{N}$  with the discrete topology. Then  $\mathcal{K}(G) = [G]^{<\omega} \subsetneq \mathcal{P}(G) = \mathcal{CB}(G)$ .

#### Corollary

No infinite-dimensional Banach space can be embedded (as a topological group) in a product of locally compact groups.

Nicolò Zava (ISTA)

#### Preservation results:

- If  $\{G_i\}_i$  is a family of topological groups satisfying  $\mathcal{K}(G_i) = \mathcal{CB}(G_i)$ , then  $\mathcal{K}(\prod_i G_i) = \mathcal{CB}(\prod_i G_i)$ .
- Suppose that G is a topological group and  $K \leq G$  is compact, then  $\mathcal{K}(G) = \mathcal{CB}(G)$  if and only if  $\mathcal{K}(G/K) = \mathcal{CB}(G/K)$ .
- If G is a topological group and  $H \leq G$  is closed, then  $\mathcal{K}(H) = \mathcal{CB}(H)$  provided that  $\mathcal{K}(G) = \mathcal{CB}(G)$ .

#### Theorem

If G is a LCA group, then  $\mathcal{K}(G) = \mathcal{CB}(G)$ .

## Example (C. Rosendal, 2018)

Let  $G = \text{Sym}(\mathbb{N})$  be the group of the permutations of  $\mathbb{N}$  with the discrete topology. Then  $\mathcal{K}(G) = [G]^{<\omega} \subsetneq \mathcal{P}(G) = \mathcal{CB}(G)$ .

### Corollary

No infinite-dimensional Banach space can be embedded (as a topological group) in a product of locally compact groups.

Nicolò Zava (ISTA)

Thank you very much for the attention.

< □ ▶ < □ ▶