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Characterizing dense metrizability

Theorem (T. 1999)

The following are equivalent for a compact Hausdorff space K :

1. K contains a dense metrizable subspace.

2. K has a dense set of Gδ points and the generic ultrafilter of
the regular open algebra of K is countably generated.

Corollary (T., 1999)

The following are equivalent for a compactum K with a dense set
of Gδ-points:

1. K has a dense metrizable subspace.

2. the generic ultrafilter of the regular-open algebra of K is
countably generated.
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Dense set of Gδ points

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of Gδ-points.

Proof.
Assume K ⊆ Σ(I ) for some index-set I .
Let PI be the standard σ-closed poset that forces |I | = ℵ1.
Note that K remains compact in the forcing extension of PI .
Moreover, PI forces that |K | = ℵ1.
Therefore K has a Gδ-point, a statement that is absolute between
the universe and the forcing extension of PI .
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Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of
Gδ-points.

Proof.
Assume K is a subspace of the space of Baire-class-1 functions on
some Polish space X .
Let P be the standard σ-closed poset that forces |X | = ℵ1.
Note that forcing with P does not change X , the set of
Baire-class-1 functions on X and the fact K is sequentially
compact.
By a result of Rosenthal sequentially compact sets of
Baire-class-1 functions are compact. Therefore in the forcing
extension, the set K remains compact
Thus K is compact in the forcing extension and has cardinality at
most ℵ1. Thus, K has a Gδ-point in the forcing extension by P, a
statement that is absolute between the universe and the forcing
extension.
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The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic
filter of the regular-open algebra of K is countably generated.

Proof.
(Sketch) Assume K ⊆ B1(X ) for some Polish space X .
Let PK = RO(K )+ and go to the forcing extension of PK .
Let X̂ be the metric completion of X .
Then every f ∈ K naturally extends to f̂ ∈ B1(X̂ ).
Then K̂ = {f̂ : f ∈ K} is relatively compact in B1(X̂ ).

Then the closure K̂ is included in B1(X̂ ).
The generic filter is generated by sets that form a free sequence

of regular pairs of K̂ and so it is countably generated.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense
metrizable subspace.
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Compact spaces of functional analysis

K is a Eberlein compact if it is homeomorphic to a weakly
compact subset of a Banach space.

K is a Talagrand compact if the Banach space C (K ) with its
weak topology is K -analytic (continuous image of a closed subset
of the product of irrationals and a compact space).

K is a Gul’ko compact if the Banach space C (K ) with its weak
topology is countably determined (continuous image of a closed
subset of the product of a set of irrationals and a compact space).

K is a Corson compact if it can be embedded in a Σ-Product of
the real line.
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An old example of a Corson compact space

Theorem (T., 1978)

There is a first countable Corson compact space without dense
metrizable subspace.

Proof.
(Sketch) Choose an everywhere branching Baire subtree of⋃
α<ω1

ωα with no uncountable branches and let

KT = {1A : A is a path of T} ⊆ {0, 1}T .
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Sokolov’s characterization of Gul’ko compacta

Theorem (Sokolov, 1984)

A compactum K is Gulko it it can be embedded into a Tychonov
cube RI in such a way that for some countable decomposition

I =
⋃
n<ω

In

of the index set I , we have that for every x ∈ K , if we let

Nx = {n < ω : |supp(x) ∩ In| < ℵ0},

then I =
⋃

n∈Nx
In.
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Theorem (Sokolov, 1984)

A compactum K is Gul’ko if it has a weakly σ-point-finite
T0-separating cover by co-zero sets, i.e. a T0-separating cover U
by co-zero sets which has a decomposition

U =
⋃
n<ω

Un

such that for every x ∈ K , if we let

Nx = {n < ω : ord(x ,Un) < ℵ0},

then U =
⋃

n∈Nx
Un.



Two classical results

Theorem (Namioka, 1974)

Every Eberlein compactum has a dense completely metrizable
subspace.

Proof.
(Hint). Use Namioka’s joint versus separate continuity theorem

Theorem (Leiderman, 1985; Gruenhage, 1987)

Every Gul’ko compactum has a dense completely metrizable
subspace.

Proof.
(Hint). Use Sokolov’s characterization theorem.
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A hierarchy of compact spaces

Definition
For a cardinal θ, we say that a compact subset K of theTychonov
cube RI has the property E2(θ) if there is a sequence In (n < ω) of
subsets of I such that if for x ∈ K , we let

Nx = {n < ω : |supp(x) ∩ In| < ℵ0},

then |I \
⋃

n∈Nx
In| < θ.

Remark
(1) E2(1) is the class of Gul’ko compacta.
(2) E2(ℵ1) is included in the class of Corson compacta.
(3) E2(ℵ1) was first considered by Leiderman (2012) under the
name almost Gul’ko compact spaces.
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Two examples in E2(2) \ E2(1)

Example (Leiderman, 1985)

Let I = [0, 1] and let

KL = {1A : A ⊆ I and (∃b ∈ I )
∑
a∈A
|b − a| ≤ 1}.

Then KL ∈ E2(2) by letting In (n < ω) be an enumeration of all
intervals of I with rational end-points.

Example (Argyros-Marcourakis, 1993)

Call a subset A of I = [0, 1] admissible if for every finite subset
a1 < · · · < an of A, we have that an − am < 1/m for all m < n. Let

KAM = {1A : A admissible subset of I}.

Then KAM ∈ E2(2) by letting again In (n < ω) be an enumeration
of all intervals of I with rational end-points.
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A Corson compactum in E2(c+) \ E2(c)

Example

Let T to be the tree of all closed subsets of a stationary subset E
of ω1 whose complement ω1 \ E is also stationary. The Corson
compactum

KT = {1A : A is a path of T}

has no metrizable subspaces and KT 6∈ E2(c).

Question
For which θ do we have that every compactum in E2(θ) has a
metrizable subspace?
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A new example

Theorem (T., 2022)

There is a compact subset K of Σb(I ) for some index set I of
cardinality b such that K ∈ E2(b) and K has no dense metrizable
subspace.

Corollary (T., 2022)

If b = ℵ1 there is a (Corson) compactum in E2(ℵ1) without a
dense metrizable subspace.
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Fix a set I ⊆ ωω of increasing functions well-ordered by <∗ in
order type b and unbounded in (ωω, <∗).

For a 6= b in I , let

D(a, b) = {n < ω : a(n) 6= b(n)}.

For m, n ∈ D(a, b), set

mE (a, b)n if either a >[m,n] b or b >[m,n] a. Finally, set

osc(a, b) = |D(a, b)/E (a, b)|.

and
osc∗(a, b) = osc(a � k , b � k),

where k is the minimum of the first relatively large equivalence
class in D(a, b)/E (a, b).
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A crucial property of the oscillation mapping

(o) For every positive integers k and ` and every family F of
pairwise disjoint subsets of I of size ` there exist p 6= q in F
such that

osc∗(p(i), q(i)) + 1 = osc(p(i), q(i)) = k for all i < `.

Define
c : [I ]2 → {0, 1}

by letting c({a, b}) = 0 if and only if osc∗(a, b) is even.

Let

K = {1A : A ⊆ I and c[[A]2] = {0}}.
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Properties of K

(1) d(K ) = b but K has no cellular family of open subsets of
cardinality b. Thus, K has no dense metrizable subspace.

(2) Let sn (n < ω) be an enumeration of ω<ω. For n < ω, set

In = {a ∈ I : sn v a}.

Then (In : n < ω) establishes the fact that K ∈ E2(b).
Namely, if for x = 1A in K , we let

Nx = {n < ω : |A ∩ In| < ℵ0},

then I \
⋃

n∈Nx
In has cardinality < b.
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The main result

Theorem (T., 2022)

The generic ultrafilter of every compactum in E2(ℵ0) is countably
generated.

Corollary (T., 2022)

Every compactum in the class E2(ℵ0) contains a dense metrizable
subspace.
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Skect of a proof

Fix a compact subset K of some Σ-product Σ(I ) and assume that
the generic ultra-filter of the regular-open algebra RO(K ) is not
countably generated and go towards showing K 6∈ E2(ℵ0).

We assume that I well-ordered and replacing I by an initial
segment Γ and K by its projection to Σ(Γ), we may assume hat
very element of RO(K )+ forces that I has uncountable cofinality.

Let ˙xG be the RO(K )+-name for the generic point of K , the
intersection of closures of elements of the generic filter Ġ and let J̇
be the RO(K )+-name for the set

{γ ∈ I : (∃n){y ∈ K : |y(γ)| > 1/n} ∈ Ġ}.

Note that our assumption in particular means that every member
of RO(K )+ forces that J̇ is a cofinal subset of I .
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Fix a sequence In (n < ω) of subsets of I .
We shall find x ∈ K such that I \

⋃
n∈Nx

In is infinite, where
Nx = {n < ω : supp(x) ∩ In is finite}.

Let Ṅ be the RO(K )+-name for the set of all n < ω such that
In ∩ J̇ is bounded in I .

Let P be the collection of all finite partial mappings p from I to
open intervals of R with end points in Q such that for every
i ∈ dom(p), the interval p(i) is either centerred at 0 and both of
its end points are strictly above or strictly below 0 and such that

O(p) = {x ∈ K : ∀i ∈ dom(p) x(i) ∈ p(i)}

is a nonempty open subset of K . Note that O(p) (p ∈ P) is a
dense subset of RO(K )+ For p ∈ P, let

supp(p) = {i ∈ dom(p) : 0 6∈ p(i)}.
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Fix p0 ∈ P and α0 ∈ Γ such that O(p0) forces that α0 is an upper
bound of the set

⋃
n∈Ṅ In ∩ J̇. We may assume that α0 ∈ dom(p0).

Fix an enumeration nk (k < ω) of ω such that every n < ω is
equal to nk for infinitely many k .

Starting from p0 and α0, recursively on k < ω, we define an
increasing sequence pk of elements of P and an increasing
sequence αk of ordinals from I such that for all k :

If there is q ∈ P extending pk such that O(q) forces that nk ∈ Ṅ,
we choose pk+1 to extend such q and have an αk+1 > αk in
supp(pn+1).
If such a q cannot be found, we have that O(pk) forces nk 6∈ Ṅ, so
we can then find αk+1 > αk in Ink and pk+1 extending pk such
that αk+1 ∈ supp(pk+1).
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Dense metrizability in powers

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K :

1. Kω has a dense metrizable subspace.

2. Kω has a cellular family of open sets of cardinality d(K ).

Proof.
(Sketch) To prove the mplication from (2) to (1), it suffices to
prove that the generic ultrafilter of the forcing notion O(Kω)+ is
countably generated. For this, we show that O(Kω)+ forces that
K and therefore Kω has countable π-basis.

Fix a π-basis P of K of cardinality d(K ).

Partition ω into countably many infinite sets In (n < ω).

Our assumption allows us to fix for each n < ω a cellular family Cn
of cardinality d(K ) of finitely supported open sets with supports all
included in the infinite set In.
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For each n < ω, we fix a bijection fn : P → Cn.

Let Ġ be the O(Kω)+-name of the generic ultrafilter of O(Kω)+.

Using this we describe a O(Kω)+-name ġ : P → ω for an
injection, as follows.

Given U ∈ P, we let ġ(U) to be the minimal n < ω such that
fn(U) ∈ Ġ.

Note that since Cn is a cellular family and since fn is an injection,
no two different U and V in P get mapped to the same n, so
indeed ġ is an injection.

To see that ġ is indeed a name for a function with domain P, fix a
member V of O(Kω)+ and U ∈ P. By going to a subset, we may
assume, V has finite support.

Pick n < ω so that In does not intersect the support of V . Then V
and fn(U) are compatible, so their intersection V ∩ fn(U) is a
refinement of V forcing that ġ(U) is defined. Since V was
arbitrary, this finishes the proof.
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Note that since Cn is a cellular family and since fn is an injection,
no two different U and V in P get mapped to the same n, so
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Note that since Cn is a cellular family and since fn is an injection,
no two different U and V in P get mapped to the same n, so
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Question
Is there a Corson compactum K such that Kω has no dense
metrizable subspace.

Equivalently, is there a Corson compactum K such that Kω

contains no cellular family of open sets of cardinality d(K )?

Theorem (Leiderman-Spadaro-T., 2021)

If there is a locally countable family of countable sets of cardinality
bigger than the cardinality of its union, then there is a Corson
compactum K such that Kω has no dense metrizable subspace.
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Sketch of the construction

The assumption allows us to find a cardinal κ and a subset I of κω

of cardinality bigger than κ such that

T (A) = {a � n : a ∈ A, n < ω}

is uncountable for every uncountable A ⊆ I .

Call a subset A of I binary if the tree T (A) is binary, i.e., every
node of T (A) has at most two immediate successors.

By our choice of I , no uncountable subset of I is binary.

Let
K = {1A : A ⊆ I is binary}.

Then K is Corson, d(Kω) = κ+ and c(Kω) = κ.
So Kω has no dense metrizable subspace.
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b-example

Theorem (T., 2022)

There exist two compact subses K0 and K1 of Σb(I ), both
belonging to the class E2(b) such that neither of the infinite
powers Kω

0 and Kω
1 has a dense metrizable subspace but their

product does have a dense metrizable subspace.

Proof.
(Sketch) As before we fix a subset I of ωω consisting of increasing
mappings from ω into ω such that I is well-ordered by <∗ in order
type b and such that I is unbounded in (ωω, <∗). and consider the
oscillation mappings osc : [I ]2 → ω and osc∗ : [I ]2 → ω on I and
the projection c : [I ]2 → 2. Let

K0 = {1A : A ⊆ I , c[[A]2] = {0}} and K1 = {1A : A ⊆ I , c[[A]2] = {1}}.
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Then as before K0 and K1 belong to E2(b).

The crucial property (o) of the oscillation mapping shows that
neither of the infinite powers Kω

0 and Kω
1 has a cellular family of

open sets of cardinality b.

It follows that neither of the infinite powers Kω
0 and Kω

1 has a
dense metrizable subspace.

It remains to prove that the product Kω
0 × Kω

1 does have a dense
metrizable subspace.

Since Kω
0 × Kω

1 = (K0 × K1)ω it suffices to show that the
product K0 × K1 has a cellular family of open sets of
cardinality b = d(K0 × K1).
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For a ∈ I and i < 2, set

[a]i = {1A ∈ Ki : a ∈ A}.

Then for all a ∈ I and i < 2, the [a]i is a nonempty basic open set
of Ki and the family

F = { [a]0 × [a]1 : a ∈ I}

is a cellular family of cardinality b of nonempty basic open subsets
of the product K0 × K1.

Corollary (T., 2022)

If b = ℵ1 there exist two compacta K0 and K1 in E2(ℵ1) such that
neither of the infinite powers Kω

0 and Kω
1 has a dense metrizable

subspace but their product does have a dense metrizable subspace.
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is a cellular family of cardinality b of nonempty basic open subsets
of the product K0 × K1.

Corollary (T., 2022)

If b = ℵ1 there exist two compacta K0 and K1 in E2(ℵ1) such that
neither of the infinite powers Kω

0 and Kω
1 has a dense metrizable

subspace but their product does have a dense metrizable subspace.
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