DENSE METRIZABILITY

Stevo Todorcevic

University of Toronto, CNRS Paris, Mathematical Institute SASA

Prague, July 25, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(ロ) (型) (主) (主) (三) のへで

1. Dense metrizability

- 1. Dense metrizability
- 2. Complete dense metrizability

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

4. From Eberlein to Corson

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points
- 4. From Eberlein to Corson
- 5. Some examples old and new

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points
- 4. From Eberlein to Corson
- 5. Some examples old and new
- 6. A hierarchy of compact spaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points
- 4. From Eberlein to Corson
- 5. Some examples old and new
- 6. A hierarchy of compact spaces
- 7. A spectrum of dense metrizability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points
- 4. From Eberlein to Corson
- 5. Some examples old and new
- 6. A hierarchy of compact spaces
- 7. A spectrum of dense metrizability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

8. Dense metrizability in powers

- 1. Dense metrizability
- 2. Complete dense metrizability
- 3. Character of generic points
- 4. From Eberlein to Corson
- 5. Some examples old and new
- 6. A hierarchy of compact spaces
- 7. A spectrum of dense metrizability
- 8. Dense metrizability in powers
- 9. Cellularity versus density in powers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characterizing dense metrizability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Characterizing dense metrizability

Theorem (T. 1999)

The following are equivalent for a compact Hausdorff space K:

- 1. K contains a dense metrizable subspace.
- 2. *K* has a dense set of G_{δ} points and the generic ultrafilter of the regular open algebra of *K* is countably generated.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characterizing dense metrizability

Theorem (T. 1999)

The following are equivalent for a compact Hausdorff space K:

- 1. K contains a dense metrizable subspace.
- 2. *K* has a dense set of G_{δ} points and the generic ultrafilter of the regular open algebra of *K* is countably generated.

Corollary (T., 1999)

The following are equivalent for a compactum K with a dense set of G_{δ} -points:

- 1. K has a dense metrizable subspace.
- 2. the generic ultrafilter of the regular-open algebra of K is countably generated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_{δ} -points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_{δ} -points.

Proof.

Assume $K \subseteq \Sigma(I)$ for some index-set *I*. Let \mathbb{P}_I be the standard σ -closed poset that forces $|I| = \aleph_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_{δ} -points.

Proof.

Assume $K \subseteq \Sigma(I)$ for some index-set *I*. Let \mathbb{P}_I be the standard σ -closed poset that forces $|I| = \aleph_1$. Note that *K* remains compact in the forcing extension of \mathbb{P}_I .

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_{δ} -points.

Proof.

Assume $K \subseteq \Sigma(I)$ for some index-set I. Let \mathbb{P}_I be the standard σ -closed poset that forces $|I| = \aleph_1$. **Note that** K **remains compact in the forcing extension of** \mathbb{P}_I . Moreover, \mathbb{P}_I forces that $|K| = \aleph_1$.

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_{δ} -points.

Proof.

Assume $K \subseteq \Sigma(I)$ for some index-set *I*. Let \mathbb{P}_I be the standard σ -closed poset that forces $|I| = \aleph_1$. **Note that** *K* **remains compact in the forcing extension of** \mathbb{P}_I . Moreover, \mathbb{P}_I forces that $|K| = \aleph_1$.

Therefore K has a G_{δ} -point, a statement that is absolute between the universe and the forcing extension of \mathbb{P}_{I} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof.

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let \mathbb{P} be the standard σ -closed poset that forces $|X| = \aleph_1$.

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathbb{P} be the standard σ -closed poset that forces $|X| = \aleph_1$. Note that forcing with \mathbb{P} does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact.

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

Let \mathbb{P} be the standard σ -closed poset that forces $|X| = \aleph_1$. Note that forcing with \mathbb{P} does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact.

By a result of Rosenthal sequentially compact sets of Baire-class-1 functions are compact. Therefore in the forcing extension, the set K remains compact

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every compact subset K of the first Baire class has a dense set of G_{δ} -points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

Let \mathbb{P} be the standard σ -closed poset that forces $|X| = \aleph_1$. Note that forcing with \mathbb{P} does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact.

By a result of Rosenthal sequentially compact sets of Baire-class-1 functions are compact. Therefore in the forcing extension, the set K remains compact

Thus K is compact in the forcing extension and has cardinality at most \aleph_1 . Thus, K has a G_{δ} -point in the forcing extension by \mathbb{P} , a statement that is absolute between the universe and the forcing extension.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X.

Let $\mathbb{P}_{\mathcal{K}} = \operatorname{RO}(\mathcal{K})^+$ and go to the forcing extension of $\mathbb{P}_{\mathcal{K}}$.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \operatorname{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K . Let \hat{X} be the metric completion of X.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \operatorname{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K . Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \operatorname{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K . Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$. **Then** $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $\mathcal{B}_1(\hat{X})$.

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \operatorname{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K . Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$. Then $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $\mathcal{B}_1(\hat{X})$. Then the closure $\overline{\hat{K}}$ is included in $\mathcal{B}_1(\hat{X})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \operatorname{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K . Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$. **Then** $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $\mathcal{B}_1(\hat{X})$. **Then the closure** $\overline{\hat{K}}$ is included in $\mathcal{B}_1(\hat{X})$. The generic filter is generated by sets that form a free sequence of regular pairs of $\overline{\hat{K}}$ and so it is countably generated.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \operatorname{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K . Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$. **Then** $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $\mathcal{B}_1(\hat{X})$. **Then the closure** \widehat{K} is included in $\mathcal{B}_1(\hat{X})$. The generic filter is generated by sets that form a free sequence of regular pairs of \widehat{K} and so it is countably generated.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

K is a **Talagrand compact** if the Banach space C(K) with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

K is a **Talagrand compact** if the Banach space C(K) with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).

K is a **Gul'ko compact** if the Banach space C(K) with its weak topology is countably determined (continuous image of a closed subset of the product of a set of irrationals and a compact space).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

K is a **Talagrand compact** if the Banach space C(K) with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).

K is a **Gul'ko compact** if the Banach space C(K) with its weak topology is countably determined (continuous image of a closed subset of the product of a set of irrationals and a compact space).

K is a **Corson compact** if it can be embedded in a Σ -Product of the real line.

An old example of a Corson compact space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An old example of a Corson compact space

Theorem (T., 1978)

There is a first countable Corson compact space without dense metrizable subspace.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An old example of a Corson compact space

Theorem (T., 1978)

There is a first countable Corson compact space without dense metrizable subspace.

Proof.

(Sketch) Choose an everywhere branching Baire subtree of $\bigcup_{\alpha<\omega_1}\omega^\alpha$ with no uncountable branches and let

$$K_T = \{1_A : A \text{ is a path of } T\} \subseteq \{0, 1\}^T.$$

Sokolov's characterization of Gul'ko compacta

Sokolov's characterization of Gul'ko compacta

Theorem (Sokolov, 1984)

A compactum K is Gulko it it can be embedded into a Tychonov cube \mathbb{R}^{I} in such a way that for some countable decomposition

$$I = \bigcup_{n < \omega} I_n$$

of the index set I, we have that for every $x \in K$, if we let

$$N_x = \{n < \omega : |\mathrm{supp}(x) \cap I_n| < \aleph_0\},\$$

then $I = \bigcup_{n \in N_x} I_n$.

Theorem (Sokolov, 1984)

A compactum K is Gul'ko if it has a weakly σ -point-finite T_0 -separating cover by co-zero sets, i.e. a T_0 -separating cover \mathcal{U} by co-zero sets which has a decomposition

$$\mathcal{U} = \bigcup_{n < \omega} \mathcal{U}_n$$

such that for every $x \in K$, if we let

$$N_{x} = \{n < \omega : \operatorname{ord}(x, \mathcal{U}_{n}) < \aleph_{0}\},\$$

then $\mathcal{U} = \bigcup_{n \in N_x} \mathcal{U}_n$.

Two classical results

Two classical results

Theorem (Namioka, 1974)

Every Eberlein compactum has a dense completely metrizable subspace.

Proof.

(Hint). Use Namioka's joint versus separate continuity theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two classical results

Theorem (Namioka, 1974)

Every Eberlein compactum has a dense completely metrizable subspace.

Proof.

(Hint). Use Namioka's joint versus separate continuity theorem

Theorem (Leiderman, 1985; Gruenhage, 1987)

Every Gul'ko compactum has a dense completely metrizable subspace.

Proof. (Hint). Use Sokolov's characterization theorem.

Definition

For a cardinal θ , we say that a compact subset K of theTychonov cube \mathbb{R}^{I} has the property $\mathcal{E}_{2}(\theta)$ if there is a sequence I_{n} $(n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_x = \{n < \omega : |\mathrm{supp}(x) \cap I_n| < \aleph_0\},\$$

then $|I \setminus \bigcup_{n \in N_x} I_n| < \theta$.

Definition

For a cardinal θ , we say that a compact subset K of theTychonov cube \mathbb{R}^{I} has the property $\mathcal{E}_{2}(\theta)$ if there is a sequence I_{n} $(n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_{x} = \{n < \omega : |\mathrm{supp}(x) \cap I_{n}| < \aleph_{0}\},\$$

then
$$|I \setminus \bigcup_{n \in N_x} I_n| < \theta$$
.

Remark (1) $\mathcal{E}_2(1)$ is the class of Gul'ko compacta.

Definition

For a cardinal θ , we say that a compact subset K of theTychonov cube \mathbb{R}^{I} has the property $\mathcal{E}_{2}(\theta)$ if there is a sequence I_{n} $(n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_{x} = \{n < \omega : |\mathrm{supp}(x) \cap I_{n}| < \aleph_{0}\},\$$

then
$$|I \setminus \bigcup_{n \in N_x} I_n| < \theta$$
.

Remark (1) $\mathcal{E}_2(1)$ is the class of Gul'ko compacta. (2) $\mathcal{E}_2(\aleph_1)$ is included in the class of Corson compacta.

Definition

For a cardinal θ , we say that a compact subset K of theTychonov cube \mathbb{R}^{I} has the property $\mathcal{E}_{2}(\theta)$ if there is a sequence I_{n} $(n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_{x} = \{n < \omega : |\mathrm{supp}(x) \cap I_{n}| < \aleph_{0}\},\$$

then
$$|I \setminus \bigcup_{n \in N_x} I_n| < \theta$$
.

Remark

- (1) $\mathcal{E}_2(1)$ is the class of Gul'ko compacta.
- (2) $\mathcal{E}_2(\aleph_1)$ is included in the class of Corson compacta.

(3) $\mathcal{E}_2(\aleph_1)$ was first considered by Leiderman (2012) under the name **almost Gul'ko compact spaces**.

Two examples in $\mathcal{E}_2(2) \setminus \mathcal{E}_2(1)$

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

Two examples in $\mathcal{E}_2(2) \setminus \mathcal{E}_2(1)$

Example (Leiderman, 1985) Let I = [0, 1] and let

$$\mathcal{K}_L = \{ \mathbb{1}_A : A \subseteq I \text{ and } (\exists b \in I) \sum_{a \in A} |b - a| \leq 1 \}.$$

Then $K_L \in \mathcal{E}_2(2)$ by letting I_n $(n < \omega)$ be an enumeration of all intervals of I with rational end-points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two examples in $\mathcal{E}_2(2) \setminus \mathcal{E}_2(1)$

Example (Leiderman, 1985) Let I = [0, 1] and let

$$\mathcal{K}_L = \{1_A : A \subseteq I \text{ and } (\exists b \in I) \sum_{a \in A} |b - a| \leq 1\}.$$

Then $K_L \in \mathcal{E}_2(2)$ by letting I_n $(n < \omega)$ be an enumeration of all intervals of I with rational end-points.

Example (Argyros-Marcourakis, 1993)

Call a subset A of I = [0, 1] admissible if for every finite subset $a_1 < \cdots < a_n$ of A, we have that $a_n - a_m < 1/m$ for all m < n. Let

 $K_{AM} = \{1_A : A \text{ admissible subset of } I\}.$

Then $K_{AM} \in \mathcal{E}_2(2)$ by letting again I_n $(n < \omega)$ be an enumeration of all intervals of I with rational end-points.

A Corson compactum in $\mathcal{E}_2(\mathfrak{c}^+) \setminus \mathcal{E}_2(\mathfrak{c})$

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

A Corson compactum in $\mathcal{E}_2(\mathfrak{c}^+) \setminus \mathcal{E}_2(\mathfrak{c})$

Example

Let T to be the tree of all closed subsets of a stationary subset E of ω_1 whose complement $\omega_1 \setminus E$ is also stationary. The Corson compactum

$$\mathcal{K}_{\mathcal{T}} = \{1_{\mathcal{A}}: \mathcal{A} ext{ is a path of } \mathcal{T}\}$$

has no metrizable subspaces and $K_T \notin \mathcal{E}_2(\mathfrak{c})$.

A Corson compactum in $\mathcal{E}_2(\mathfrak{c}^+) \setminus \mathcal{E}_2(\mathfrak{c})$

Example

Let T to be the tree of all closed subsets of a stationary subset E of ω_1 whose complement $\omega_1 \setminus E$ is also stationary. The Corson compactum

$$K_T = \{1_A : A \text{ is a path of } T\}$$

has no metrizable subspaces and $K_T \notin \mathcal{E}_2(\mathfrak{c})$.

Question

For which θ do we have that every compactum in $\mathcal{E}_2(\theta)$ has a metrizable subspace?

A new example

A new example

Theorem (T., 2022)

There is a compact subset K of $\Sigma_{\mathfrak{b}}(I)$ for some index set I of cardinality \mathfrak{b} such that $K \in \mathcal{E}_2(\mathfrak{b})$ and K has no dense metrizable subspace.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (T., 2022)

There is a compact subset K of $\Sigma_{\mathfrak{b}}(I)$ for some index set I of cardinality \mathfrak{b} such that $K \in \mathcal{E}_2(\mathfrak{b})$ and K has no dense metrizable subspace.

Corollary (T., 2022)

If $\mathfrak{b} = \aleph_1$ there is a (Corson) compactum in $\mathcal{E}_2(\aleph_1)$ without a dense metrizable subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For $a \neq b$ in I, let

$$D(a,b) = \{n < \omega : a(n) \neq b(n)\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $a \neq b$ in I, let $D(a,b) = \{n < \omega : a(n) \neq b(n)\}.$

For $m, n \in D(a, b)$, set

mE(a, b)n if either $a >_{[m,n]} b$ or $b >_{[m,n]} a$.

For $a \neq b$ in I, let $D(a,b) = \{n < \omega : a(n) \neq b(n)\}.$

For $m, n \in D(a, b)$, set

mE(a, b)n if either $a >_{[m,n]} b$ or $b >_{[m,n]} a$. Finally, set

$$\operatorname{osc}(a, b) = |D(a, b)/E(a, b)|.$$

and

$$\operatorname{osc}^*(a, b) = \operatorname{osc}(a \upharpoonright k, b \upharpoonright k),$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where k is the minimum of the first relatively large equivalence class in D(a, b)/E(a, b).

A crucial property of the oscillation mapping

A crucial property of the oscillation mapping

(o) For every positive integers k and ℓ and every family \mathcal{F} of pairwise disjoint subsets of l of size ℓ there exist $p \neq q$ in \mathcal{F} such that

$$\operatorname{osc}^*(p(i), q(i)) + 1 = \operatorname{osc}(p(i), q(i)) = k$$
 for all $i < \ell$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A crucial property of the oscillation mapping

(o) For every positive integers k and ℓ and every family \mathcal{F} of pairwise disjoint subsets of l of size ℓ there exist $p \neq q$ in \mathcal{F} such that

$$\operatorname{osc}^*(p(i), q(i)) + 1 = \operatorname{osc}(p(i), q(i)) = k$$
 for all $i < \ell$.

Define

$$c:[I]^2 \to \{0,1\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

by letting $c(\{a, b\}) = 0$ if and only if $osc^*(a, b)$ is even.
A crucial property of the oscillation mapping

(o) For every positive integers k and ℓ and every family \mathcal{F} of pairwise disjoint subsets of l of size ℓ there exist $p \neq q$ in \mathcal{F} such that

$$\operatorname{osc}^*(p(i), q(i)) + 1 = \operatorname{osc}(p(i), q(i)) = k$$
 for all $i < \ell$.

Define

$$c:[I]^2 \to \{0,1\}$$

by letting $c(\{a, b\}) = 0$ if and only if $osc^*(a, b)$ is even.

Let

$$K = \{1_A : A \subseteq I \text{ and } c[[A]^2] = \{0\}\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Properties of K

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Properties of K

(1) d(K) = b but K has no cellular family of open subsets of cardinality b. Thus, K has no dense metrizable subspace.

(2) Let s_n $(n < \omega)$ be an enumeration of $\omega^{<\omega}$. For $n < \omega$, set

$$I_n = \{a \in I : s_n \sqsubseteq a\}.$$

Then $(I_n : n < \omega)$ establishes the fact that $K \in \mathcal{E}_2(\mathfrak{b})$.

Properties of K

(1) d(K) = b but K has no cellular family of open subsets of cardinality b. Thus, K has no dense metrizable subspace.

(2) Let s_n $(n < \omega)$ be an enumeration of $\omega^{<\omega}$. For $n < \omega$, set

$$I_n = \{a \in I : s_n \sqsubseteq a\}.$$

Then $(I_n : n < \omega)$ establishes the fact that $K \in \mathcal{E}_2(\mathfrak{b})$. Namely, if for $x = 1_A$ in K, we let

$$N_{\mathsf{x}} = \{ n < \omega : |A \cap I_n| < \aleph_0 \},$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

then $I \setminus \bigcup_{n \in N_x} I_n$ has cardinality $< \mathfrak{b}$.

The main result

Theorem (T., 2022)

The generic ultrafilter of every compactum in $\mathcal{E}_2(\aleph_0)$ is countably generated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (T., 2022)

The generic ultrafilter of every compactum in $\mathcal{E}_2(\aleph_0)$ is countably generated.

Corollary (T., 2022)

Every compactum in the class $\mathcal{E}_2(\aleph_0)$ contains a dense metrizable subspace.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

Fix a compact subset K of some Σ -product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra RO(K) is **not** countably generated and go towards showing $K \notin \mathcal{E}_2(\aleph_0)$.

Fix a compact subset K of some Σ -product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra RO(K) is **not** countably generated and go towards showing $K \notin \mathcal{E}_2(\aleph_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.

Fix a compact subset K of some Σ -product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra RO(K) is **not** countably generated and go towards showing $K \notin \mathcal{E}_2(\aleph_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.

Let $\dot{x_G}$ be the $\operatorname{RO}(K)^+$ -name for the generic point of K, the intersection of closures of elements of the generic filter \dot{G} and let \dot{J} be the $\operatorname{RO}(K)^+$ -name for the set

$$\{\gamma \in I : (\exists n) \{y \in K : |y(\gamma)| > 1/n\} \in G\}.$$

Fix a compact subset K of some Σ -product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra RO(K) is **not** countably generated and go towards showing $K \notin \mathcal{E}_2(\aleph_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.

Let $\dot{x_G}$ be the $\operatorname{RO}(K)^+$ -name for the generic point of K, the intersection of closures of elements of the generic filter \dot{G} and let \dot{J} be the $\operatorname{RO}(K)^+$ -name for the set

$$\{\gamma \in I : (\exists n) \{ y \in K : |y(\gamma)| > 1/n \} \in G \}.$$

Note that our assumption in particular means that every member of $RO(K)^+$ forces that \dot{J} is a cofinal subset of I.

Fix a compact subset K of some Σ -product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra RO(K) is **not** countably generated and go towards showing $K \notin \mathcal{E}_2(\aleph_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.

Let $\dot{x_G}$ be the $\operatorname{RO}(K)^+$ -name for the generic point of K, the intersection of closures of elements of the generic filter \dot{G} and let \dot{J} be the $\operatorname{RO}(K)^+$ -name for the set

$$\{\gamma \in I : (\exists n) \{ y \in K : |y(\gamma)| > 1/n \} \in G \}.$$

Note that our assumption in particular means that every member of $RO(K)^+$ forces that \dot{J} is a cofinal subset of I.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let N be the $\operatorname{RO}(K)^+$ -name for the set of all $n < \omega$ such that $I_n \cap J$ is bounded in I.

Let N be the $\operatorname{RO}(K)^+$ -name for the set of all $n < \omega$ such that $I_n \cap \dot{J}$ is bounded in I.

Let \mathbb{P} be the collection of all finite partial mappings p from l to open intervals of \mathbb{R} with end points in \mathbb{Q} such that for every $i \in \text{dom}(p)$, the interval p(i) is either centerred at 0 and both of its end points are strictly above or strictly below 0 and such that

$$O(p) = \{x \in K : \forall i \in \operatorname{dom}(p) \ x(i) \in p(i)\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is a nonempty open subset of K.

Let N be the $\operatorname{RO}(K)^+$ -name for the set of all $n < \omega$ such that $I_n \cap \dot{J}$ is bounded in I.

Let \mathbb{P} be the collection of all finite partial mappings p from l to open intervals of \mathbb{R} with end points in \mathbb{Q} such that for every $i \in \text{dom}(p)$, the interval p(i) is either centerred at 0 and both of its end points are strictly above or strictly below 0 and such that

$$O(p) = \{x \in K : \forall i \in \operatorname{dom}(p) \ x(i) \in p(i)\}$$

is a nonempty open subset of K. Note that O(p) $(p \in \mathbb{P})$ is a dense subset of $RO(K)^+$ For $p \in \mathbb{P}$, let

$$\operatorname{supp}(p) = \{i \in \operatorname{dom}(p) : 0 \notin p(i)\}.$$

(日)((1))

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fix an enumeration n_k ($k < \omega$) of ω such that every $n < \omega$ is equal to n_k for infinitely many k.

Fix an enumeration n_k ($k < \omega$) of ω such that every $n < \omega$ is equal to n_k for infinitely many k.

Starting from p_0 and α_0 , recursively on $k < \omega$, we define an increasing sequence p_k of elements of \mathbb{P} and an increasing sequence α_k of ordinals from I such that for all k:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fix an enumeration n_k $(k < \omega)$ of ω such that every $n < \omega$ is equal to n_k for infinitely many k.

Starting from p_0 and α_0 , recursively on $k < \omega$, we define an increasing sequence p_k of elements of \mathbb{P} and an increasing sequence α_k of ordinals from I such that for all k:

If there is $q \in \mathbb{P}$ extending p_k such that O(q) forces that $n_k \in \dot{N}$, we choose p_{k+1} to extend such q and have an $\alpha_{k+1} > \alpha_k$ in $\operatorname{supp}(p_{n+1})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fix an enumeration n_k $(k < \omega)$ of ω such that every $n < \omega$ is equal to n_k for infinitely many k.

Starting from p_0 and α_0 , recursively on $k < \omega$, we define an increasing sequence p_k of elements of \mathbb{P} and an increasing sequence α_k of ordinals from I such that for all k:

If there is $q \in \mathbb{P}$ extending p_k such that O(q) forces that $n_k \in N$, we choose p_{k+1} to extend such q and have an $\alpha_{k+1} > \alpha_k$ in $\operatorname{supp}(p_{n+1})$.

If such a q cannot be found, we have that $O(p_k)$ forces $n_k \notin N$, so we can then find $\alpha_{k+1} > \alpha_k$ in I_{n_k} and p_{k+1} extending p_k such that $\alpha_{k+1} \in \operatorname{supp}(p_{k+1})$.

Fix an enumeration n_k $(k < \omega)$ of ω such that every $n < \omega$ is equal to n_k for infinitely many k.

Starting from p_0 and α_0 , recursively on $k < \omega$, we define an increasing sequence p_k of elements of \mathbb{P} and an increasing sequence α_k of ordinals from I such that for all k:

If there is $q \in \mathbb{P}$ extending p_k such that O(q) forces that $n_k \in N$, we choose p_{k+1} to extend such q and have an $\alpha_{k+1} > \alpha_k$ in $\operatorname{supp}(p_{n+1})$.

If such a q cannot be found, we have that $O(p_k)$ forces $n_k \notin N$, so we can then find $\alpha_{k+1} > \alpha_k$ in I_{n_k} and p_{k+1} extending p_k such that $\alpha_{k+1} \in \operatorname{supp}(p_{k+1})$.

Pick an element x in the intersection $\bigcap_{k < \omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pick an element x in the intersection $\bigcap_{k < \omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We claim that $I_n \cap A = \emptyset$ for all $n \in N_x$.

Pick an element x in the intersection $\bigcap_{k < \omega} O(p_k)$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

We claim that $I_n \cap A = \emptyset$ for all $n \in N_x$.

This shows that A is then an infinite subset of $I \setminus \bigcup_{n \in N_x} I_n$ and therefore that $|I \setminus \bigcup_{n \in N_x} I_n| \ge \aleph_0$, as required.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pick an element x in the intersection $\bigcap_{k < \omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

We claim that $I_n \cap A = \emptyset$ for all $n \in N_x$.

This shows that A is then an infinite subset of $I \setminus \bigcup_{n \in N_x} I_n$ and therefore that $|I \setminus \bigcup_{n \in N_x} I_n| \ge \aleph_0$, as required.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

It follows that $K \notin \mathcal{E}_2(\aleph_0)$.

The proof of the main result is finished.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

- 1. K^{ω} has a dense metrizable subspace.
- 2. K^{ω} has a cellular family of open sets of cardinality d(K).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

- 1. K^{ω} has a dense metrizable subspace.
- 2. K^{ω} has a cellular family of open sets of cardinality d(K).

Proof.

(Sketch) To prove the mplication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^{\omega})^+$ is countably generated. For this, we show that $\mathcal{O}(K^{\omega})^+$ forces that K and therefore K^{ω} has countable π -basis.

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

- 1. K^{ω} has a dense metrizable subspace.
- 2. K^{ω} has a cellular family of open sets of cardinality d(K).

Proof.

(Sketch) To prove the mplication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^{\omega})^+$ is countably generated. For this, we show that $\mathcal{O}(K^{\omega})^+$ forces that K and therefore K^{ω} has countable π -basis.

Fix a π -basis \mathcal{P} of K of cardinality d(K).

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K :

- 1. K^{ω} has a dense metrizable subspace.
- 2. K^{ω} has a cellular family of open sets of cardinality d(K).

Proof.

(Sketch) To prove the mplication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^{\omega})^+$ is countably generated. For this, we show that $\mathcal{O}(K^{\omega})^+$ forces that K and therefore K^{ω} has countable π -basis.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Fix a π -basis \mathcal{P} of K of cardinality d(K).

Partition ω into countably many infinite sets I_n ($n < \omega$).

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

- 1. K^{ω} has a dense metrizable subspace.
- 2. K^{ω} has a cellular family of open sets of cardinality d(K).

Proof.

(Sketch) To prove the mplication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^{\omega})^+$ is countably generated. For this, we show that $\mathcal{O}(K^{\omega})^+$ forces that K and therefore K^{ω} has countable π -basis.

Fix a π -basis \mathcal{P} of K of cardinality d(K).

Partition ω into countably many infinite sets I_n ($n < \omega$).

Our assumption allows us to fix for each $n < \omega$ a cellular family C_n of cardinality d(K) of finitely supported open sets with supports all included in the infinite set I_n .

For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \to \mathcal{C}_n$.

For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \to \mathcal{C}_n$. Let $\dot{\mathcal{G}}$ be the $\mathcal{O}(K^{\omega})^+$ -name of the generic ultrafilter of $\mathcal{O}(K^{\omega})^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \to \mathcal{C}_n$. Let $\dot{\mathcal{G}}$ be the $\mathcal{O}(K^{\omega})^+$ -name of the generic ultrafilter of $\mathcal{O}(K^{\omega})^+$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Using this we describe a $\mathcal{O}(K^{\omega})^+$ -name $\dot{g}: \mathcal{P} \to \omega$ for an injection, as follows.
Using this we describe a $\mathcal{O}(K^{\omega})^+$ -name $\dot{g}: \mathcal{P} \to \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \dot{\mathcal{G}}$.

Using this we describe a $\mathcal{O}(K^{\omega})^+$ -name $\dot{g}: \mathcal{P} \to \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \dot{\mathcal{G}}$.

Note that since C_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection.

Using this we describe a $\mathcal{O}(K^{\omega})^+$ -name $\dot{g}: \mathcal{P} \to \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \dot{\mathcal{G}}$.

Note that since C_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection.

To see that \dot{g} is indeed a name for a function with domain \mathcal{P} , fix a member V of $\mathcal{O}(K^{\omega})^+$ and $U \in \mathcal{P}$. By going to a subset, we may assume, V has finite support.

Using this we describe a $\mathcal{O}(K^{\omega})^+$ -name $\dot{g}: \mathcal{P} \to \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \dot{\mathcal{G}}$.

Note that since C_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection.

To see that \dot{g} is indeed a name for a function with domain \mathcal{P} , fix a member V of $\mathcal{O}(K^{\omega})^+$ and $U \in \mathcal{P}$. By going to a subset, we may assume, V has finite support.

Pick $n < \omega$ so that I_n does not intersect the support of V. Then V and $f_n(U)$ are compatible, so their intersection $V \cap f_n(U)$ is a refinement of V forcing that $\dot{g}(U)$ is defined. Since V was arbitrary, this finishes the proof.

Question

Is there a Corson compactum K such that K^ω has no dense metrizable subspace.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question

Is there a Corson compactum K such that K^ω has no dense metrizable subspace.

Equivalently, is there a Corson compactum K such that K^{ω} contains no cellular family of open sets of cardinality d(K)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Is there a Corson compactum K such that K^{ω} has no dense metrizable subspace.

Equivalently, is there a Corson compactum K such that K^{ω} contains no cellular family of open sets of cardinality d(K)?

Theorem (Leiderman-Spadaro-T., 2021)

If there is a locally countable family of countable sets of cardinality bigger than the cardinality of its union, then there is a Corson compactum K such that K^{ω} has no dense metrizable subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I binary if the tree T(A) is binary, i.e., every node of T(A) has at most two immediate successors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I binary if the tree T(A) is binary, i.e., every node of T(A) has at most two immediate successors.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

By our choice of /, no uncountable subset of / is binary.

The assumption allows us to find a cardinal κ and a subset I of κ^{ω} of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I binary if the tree T(A) is binary, i.e., every node of T(A) has at most two immediate successors.

By our choice of /, no uncountable subset of / is binary.

Let

$$K = \{1_A : A \subseteq I \text{ is binary}\}.$$

The assumption allows us to find a cardinal κ and a subset I of κ^{ω} of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I binary if the tree T(A) is binary, i.e., every node of T(A) has at most two immediate successors.

By our choice of /, no uncountable subset of / is binary.

Let

$$K = \{1_A : A \subseteq I \text{ is binary}\}.$$

Then K is Corson, $d(K^{\omega}) = \kappa^+$ and $c(K^{\omega}) = \kappa$.

(ロ)、

The assumption allows us to find a cardinal κ and a subset I of κ^{ω} of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I binary if the tree T(A) is binary, i.e., every node of T(A) has at most two immediate successors.

By our choice of /, no uncountable subset of / is binary.

Let

$$K = \{1_A : A \subseteq I \text{ is binary}\}.$$

Then K is Corson, $d(K^{\omega}) = \kappa^+$ and $c(K^{\omega}) = \kappa$. So K^{ω} has no dense metrizable subspace.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Theorem (T., 2022)

There exist two compact subses K_0 and K_1 of $\Sigma_{\mathfrak{b}}(I)$, both belonging to the class $\mathcal{E}_2(\mathfrak{b})$ such that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace but their product does have a dense metrizable subspace.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (T., 2022)

There exist two compact subses K_0 and K_1 of $\Sigma_{\mathfrak{b}}(I)$, both belonging to the class $\mathcal{E}_2(\mathfrak{b})$ such that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace but their product does have a dense metrizable subspace.

Proof.

(Sketch) As before we fix a subset I of ω^{ω} consisting of increasing mappings from ω into ω such that I is well-ordered by $<^*$ in order type \mathfrak{b} and such that I is unbounded in $(\omega^{\omega}, <^*)$. and consider the oscillation mappings $\operatorname{osc} : [I]^2 \to \omega$ and $\operatorname{osc}^* : [I]^2 \to \omega$ on I and the projection $c : [I]^2 \to 2$.

Theorem (T., 2022)

There exist two compact subses K_0 and K_1 of $\Sigma_{\mathfrak{b}}(I)$, both belonging to the class $\mathcal{E}_2(\mathfrak{b})$ such that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace but their product does have a dense metrizable subspace.

Proof.

(Sketch) As before we fix a subset I of ω^{ω} consisting of increasing mappings from ω into ω such that I is well-ordered by $<^*$ in order type \mathfrak{b} and such that I is unbounded in $(\omega^{\omega}, <^*)$. and consider the oscillation mappings $\operatorname{osc} : [I]^2 \to \omega$ and $\operatorname{osc}^* : [I]^2 \to \omega$ on I and the projection $c : [I]^2 \to 2$. Let

$$K_0 = \{1_A : A \subseteq I, c[[A]^2] = \{0\}\}$$
 and $K_1 = \{1_A : A \subseteq I, c[[A]^2] = \{1\}\}.$

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^{ω} and K_1^{ω} has a cellular family of open sets of cardinality b.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^{ω} and K_1^{ω} has a cellular family of open sets of cardinality \mathfrak{b} .

It follows that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace.

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^{ω} and K_1^{ω} has a cellular family of open sets of cardinality \mathfrak{b} .

It follows that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace.

It remains to prove that the product ${\cal K}_0^\omega\times {\cal K}_1^\omega$ does have a dense metrizable subspace.

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^{ω} and K_1^{ω} has a cellular family of open sets of cardinality \mathfrak{b} .

It follows that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace.

It remains to prove that the product ${\cal K}_0^\omega\times {\cal K}_1^\omega$ does have a dense metrizable subspace.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Since $K_0^{\omega} \times K_1^{\omega} = (K_0 \times K_1)^{\omega}$ it suffices to show that the product $K_0 \times K_1$ has a cellular family of open sets of cardinality $\mathfrak{b} = d(K_0 \times K_1)$.

For $a \in I$ and i < 2, set

$$[a]_i = \{1_A \in K_i : a \in A\}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

For $a \in I$ and i < 2, set

$$[a]_i = \{1_A \in K_i : a \in A\}.$$

Then for all $a \in I$ and i < 2, the $[a]_i$ is a nonempty basic open set of K_i and the family

$$\mathcal{F} = \{ [a]_0 \times [a]_1 : a \in I \}$$

is a cellular family of cardinality b of nonempty basic open subsets of the product $K_0 \times K_1$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

For $a \in I$ and i < 2, set

$$[a]_i = \{1_A \in K_i : a \in A\}.$$

Then for all $a \in I$ and i < 2, the $[a]_i$ is a nonempty basic open set of K_i and the family

$$\mathcal{F} = \{ [a]_0 \times [a]_1 : a \in I \}$$

is a cellular family of cardinality b of nonempty basic open subsets of the product $K_0 \times K_1$.

Corollary (T., 2022)

If $\mathfrak{b} = \aleph_1$ there exist two compacta K_0 and K_1 in $\mathcal{E}_2(\aleph_1)$ such that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace but their product does have a dense metrizable subspace.

References

1. Talagrand, M. Espaces de Banach faiblement \mathcal{K} -analytiques. Ann. Math., 110 (1979), 407–438.

2. Sokolov, G. A. On some classes of compact spaces lying in $\Sigma\text{-products.}$ Comment. Math. Univ. Carolin. 25 (1984), no. 2, 219–231.

3. Todorcevic, S. Compact subsets of the first Baire class. J. Amer. Math. Soc. 12 (1999), no. 4, 1179–1212.

4 Leiderman, A. G. Trees and some classes of Corson compacta. Abstract. Italian-Spanish Conference on Topology and its Applications, Trieste 2012.

5. Leiderman, A; Spadaro, S ;Todorcevic, S. Dense metrizable subspaces in powers of Corson compacta. Proc. Amer. Math. Soc. 150 (2022), no. 7, 3177–3187.

6. Todorcevic, S. Dense metrizability, preprint 2022.