Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	00000

Franklin D. Tall

University of Toronto

July 4, 2022 version

This lecture is dedicated to Prof. A. V. Arhangel'skiĭ, whom I first met at Toposym 1971. This paper will appear in the Kunen memorial issue of Top. Appl.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
●0000	00000000	0	O	00000

Grothendieck's Theorem

For a topological space X, $C_p(X)$ is the set of continuous real-valued functions on X, given the pointwise topology inherited from \mathbb{R}^X . The classic theorem of Grothendieck states:

Grothendieck's Theorem

For a topological space X, $C_p(X)$ is the set of continuous real-valued functions on X, given the pointwise topology inherited from \mathbb{R}^X . The classic theorem of Grothendieck states:

Proposition ([Gro52])

Let X be countably compact and let $A \subseteq C_p(X)$ be such that every infinite subset of A has a limit point in $C_p(X)$. Then the closure of A in $C_p(X)$ is compact.

Grothendieck's Theorem

For a topological space X, $C_p(X)$ is the set of continuous real-valued functions on X, given the pointwise topology inherited from \mathbb{R}^X . The classic theorem of Grothendieck states:

Proposition ([Gro52])

Let X be countably compact and let $A \subseteq C_p(X)$ be such that every infinite subset of A has a limit point in $C_p(X)$. Then the closure of A in $C_p(X)$ is compact.

[Gro52] A. Grothendieck. Critéres de compacité dans les espaces fonctionnels généraux. *Amer. J. Math.*, **74**:168–186, 1952.

Countably Tight & Grothendieck

Definition ([Arh98])

 $A \subseteq X$ is countably compact in X if every infinite subset of A has a limit point in X.

X is a *g*-space if each $A \subseteq X$ which is countably compact in X has compact closure.

X is a Grothendieck space (resp. weakly Grothendieck space) if $C_p(X)$ is a hereditary g-space (resp. a g-space).

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
○●○○○	00000000	0	O	00000

Countably Tight & Grothendieck

Definition ([Arh98])

 $A \subseteq X$ is countably compact in X if every infinite subset of A has a limit point in X. X is a g-space if each $A \subseteq X$ which is countably compact in X has compact closure. X is a Grothendieck space (resp. weakly Grothendieck space) if $C_p(X)$ is a hereditary g-space (resp. a g-space).

Theorem ([Arh98])

If X is countably tight, then X is weakly Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00●00	00000000	0	O	00000

Theorem

If Y is a hereditary g-space, then countably compact subspaces of Y are compact.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00●00	00000000	0	O	00000

Theorem

If Y is a hereditary g-space, then countably compact subspaces of Y are compact.

Proof. Let $Z \subseteq Y$ be countably compact. Then it is countably compact in itself and its closure in itself is compact.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00●00	00000000	0	O	00000

Theorem

If Y is a hereditary g-space, then countably compact subspaces of Y are compact.

Proof. Let $Z \subseteq Y$ be countably compact. Then it is countably compact in itself and its closure in itself is compact.

Problem

If countably compact subspaces of $C_p(X)$ are compact, is X Grothendieck?

Grothendieck 000●0	PFA C-Tight & Grothendieck		Open Problems 0	Morley O	Two Lemmas 00000
Countable Theory	Tightness and	the	Grothendieck	Property	in C_p

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
○○○●○		0	O	00000

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
○○○●○		0	O	00000

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
000●0	00000000	0	O	00000

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Jose lovino noticed a connection between interchanging double limits and definability in model theory.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
000●0	00000000	0	O	00000

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Jose lovino noticed a connection between interchanging double limits and definability in model theory. He and P. Casazza used this to prove the undefinability in first order (continuous) logic of a famous pathological Banach space: Tsirelson's space.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley O	Two Lemmas

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck's Theorem involves interchanging double limits as one often does in Analysis, e.g. under suitable conditions,

$$\lim_{m\to\infty}\lim_{n\to\infty}f_n(x_m)=\lim_{n\to\infty}\lim_{m\to\infty}f_n(x_m).$$

Jose lovino noticed a connection between interchanging double limits and definability in model theory. He and P. Casazza used this to prove the undefinability in first order (continuous) logic of a famous pathological Banach space: Tsirelson's space. I saw that their results could be greatly generalized using C_p -theory, but today I'll just talk about topology rather than model theory.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000				

The Grothendieck property has become important in research on the definability of pathological Banach spaces [CI18], [HT20], [HT22].

- **[CI18]** P. Casazza and J. Iovino. On the undefinability of Tsirelson's space and its descendants. ArXiv: 1812.02840, 2018.
- **[HT20]** C. Hamel and F. D. Tall. Model theory for C_p-theorists. Top. Appl., paper 107197, 2020.
- **[HT22]** C. Hamel and F. D. Tall, C_p-theory for model theorists, in J. lovino, ed., *Beyond first order model theory, II*, to appear.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
0000●		0	O	00000

We here answer a question of Arhangel'skiĭ by proving it undecidable whether countably tight spaces with Lindelöf finite powers are Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
0000●	00000000	0	O	00000

We here answer a question of Arhangel'skii by proving it undecidable whether countably tight spaces with Lindelöf finite powers are Grothendieck.

We answer another of his questions by proving that PFA implies Lindelöf countably tight spaces are Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
0000●	00000000	0	O	00000

We here answer a question of Arhangel'skiĭ by proving it undecidable whether countably tight spaces with Lindelöf finite powers are Grothendieck.

We answer another of his questions by proving that PFA implies Lindelöf countably tight spaces are Grothendieck.

We also prove that various other consequences of MA_{ω_1} and PFA considered by Arhangel'skiĭ, Okunev, and Reznichenko are not theorems of ZFC.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	●0000000	0	O	00000

In [Arh98], Arhangel'skiĭ proved:

Proposition

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	●0000000	0	O	00000

In [Arh98], Arhangel'skiĭ proved:

Proposition

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

In fact, MA_{ω_1} suffices.

In [Arh98], Arhangel'skiĭ proved:

Proposition

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

In fact, MA_{ω_1} suffices.

Arhangel'skiĩ asked whether the conclusion of the Proposition is true in $\rm ZFC.$

Proposition

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

Arhangel'skiĩ asked whether the conclusion of the Proposition is true in ZFC.

It is not:

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	●0000000	o	O	00000

Proposition

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

Arhangel'skiĩ asked whether the conclusion of the Proposition is true in $\rm ZFC.$

It is not:

Example

Assuming \diamondsuit plus Kurepa's Hypothesis, Ivanov [Iva78] constructed a compact space Y of cardinality 2^c such that Yⁿ is hereditarily separable for all $n < \omega$. $C_p(Y)$ is the required counterexample.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	●0000000	o	O	00000

Proposition

 $MA + \neg CH$ implies that if X is countably tight and Xⁿ is Lindelöf for all $n < \omega$, then X is Grothendieck.

Arhangel'skiĩ asked whether the conclusion of the Proposition is true in $\rm ZFC.$

Example

Assuming \diamondsuit plus Kurepa's Hypothesis, Ivanov [Iva78] constructed a compact space Y of cardinality 2^c such that Yⁿ is hereditarily separable for all $n < \omega$. $C_p(Y)$ is the required counterexample.

To see this, we require several results from the literature.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	○●○○○○○○	0	O	00000

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Definition

A space X is Fréchet-Urysohn if whenever x is a limit point of $Z \subseteq X$, there is a sequence in Z converging to x.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	0000000	0	O	00000

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Definition

A space X is Fréchet-Urysohn if whenever x is a limit point of $Z \subseteq X$, there is a sequence in Z converging to x.

Arhangel'skiĭ later proved:

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact subspaces of $C_p(X)$ are Fréchet-Urysohn.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	0●000000	0	O	00000

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact subspaces of $C_p(X)$ are Fréchet-Urysohn.

He also proved:

Lemma ([Arh92])

X embeds into $C_p(C_p(X))$.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	○●○○○○○○	0	O	00000

Lemma ([Arh92])

 X^n is Lindelöf for every $n < \omega$ if and only if $C_p(X)$ is countably tight.

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact subspaces of $C_p(X)$ are Fréchet-Urysohn.

Lemma ([Arh92])

X embeds into $C_p(C_p(X))$.

Clearly, separable Fréchet-Urysohn spaces have cardinality $\leq c$. Ivanov's space Y is too big to be Fréchet-Urysohn, yet it embeds in $C_p(C_p(Y))$, so $C_p(Y)$ cannot be Grothendieck, although it is weakly Grothendieck.

Clearly, separable Fréchet-Urysohn spaces have cardinality $\leq \mathfrak{c}$. Ivanov's space Y is too big to be Fréchet-Urysohn, yet it embeds in $C_p(C_p(Y))$, so $C_p(Y)$ cannot be Grothendieck, although it is weakly Grothendieck.

 $(C_p(Y))^n$ is, however, (hereditarily) Lindelöf for all $n < \omega$ by the Velichko-Zenor theorem:

Clearly, separable Fréchet-Urysohn spaces have cardinality $\leq c$. Ivanov's space Y is too big to be Fréchet-Urysohn, yet it embeds in $C_p(C_p(Y))$, so $C_p(Y)$ cannot be Grothendieck, although it is weakly Grothendieck.

 $(C_{p}(Y))^{n}$ is, however, (hereditarily) Lindelöf for all $n < \omega$ by the Velichko-Zenor theorem:

Lemma ([Vel81], [Zen80])

If X^n is hereditarily separable for all $n < \omega$, then $(C_p(X))^n$ is hereditarily Lindelöf for all $n < \omega$.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00●00000	0	O	00000

- [Arh92] A. V. Arhangel'skii. Topological Function Spaces, vol. 78 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1992.
- [Arh98] A. V. Arhangel'skii. Embedding in C_p-spaces. Topology Appl., 85:9–33, 1998.
- [Iva78] A. V. Ivanov On bicompacta all finite powers of which are hereditarily separable. *Doklady Akademii Nauk SSSR*, 243(5):1109–1112, 1978.
- [Vel81] N. V. Velichko. Weak topology of spaces of continuous functions. Mathematical Notes of the Academy of Sciences of the USSR, 30:849–854, 1981.

[Zen80] P. Zenor. Hereditary *m*-separability and the hereditary *m*-Lindelöf property in product spaces and function spaces. *Fund. Math.*, **106**(3):175–180, 1980.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	000●0000	0	O	00000

A dramatic strengthening of the conclusion of Arhangel'skiĩ's Proposition is

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	000●0000	0	O	00000

A dramatic strengthening of the conclusion of Arhangel'skii's Proposition is

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

The proof actually follows easily from known results.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	0000●000	0	O	00000

The Proof: surlindelöf

Definition

A space is surlindelöf if it is a subspace of $C_p(X)$ for some Lindelöf X.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	0000●000	0	O	00000

The Proof: surlindelöf

Definition

A space is surlindelöf if it is a subspace of $C_p(X)$ for some Lindelöf X.

Arhangel'skiĭ proved:

Lemma ([Arh92])

PFA implies that every surlindelöf compact space is countably tight.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	0000●000	0	O	00000

The Proof: surlindelöf

Definition

A space is surlindelöf if it is a subspace of $C_p(X)$ for some Lindelöf X.

Lemma ([Arh92])

PFA implies that every surlindelöf compact space is countably tight.

Okunev and Reznichenko proved:

Lemma ([OR07])

 MA_{ω_1} implies that every separable surlindelöf compact countably tight space is metrizable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
	00000000			

The Proof: Fréchet-Urysohn

Theorem

PFA implies that every surlindelöf compact space is *Fréchet-Urysohn*.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000●00	0	O	00000

The Proof: Fréchet-Urysohn

Theorem

PFA implies that every surlindelöf compact space is *Fréchet-Urysohn*.

Proof. Metrizable spaces are clearly Fréchet-Urysohn. By countable tightness, if K is compact and $L \subseteq K$ and $p \in \overline{L}$, then there is a countable $M \subseteq L$ such that $p \in \overline{M}$. But \overline{M} is separable compact and so metrizable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	000000●0	0	O	00000

The Proof Concluded

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	000000●0	0	O	00000

The Proof Concluded

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

In fact, as often happens, we have:

Theorem

If ZFC is consistent, so is ZFC plus "every Lindelöf countably tight space is Grothendieck".

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	000000●0	0	O	00000

The Proof Concluded

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

In fact, as often happens, we have:

Theorem

If ZFC is consistent, so is ZFC plus "every Lindelöf countably tight space is Grothendieck".

We can answer several more questions of Arhangel'skiĭ, but that would require more C_p -theory than we have time for.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	0000000●	0	O	00000

- [Arh92] A. V. Arhangel'skiĭ. Topological Function Spaces, vol. 78 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1992.
- [Arh98] A. V. Arhangel'skii. Embedding in C_p-spaces. Topology Appl., 85:9–33, 1998.
- [OR07] O. Okunev and E. Reznichenko. A note on surlindelöf spaces. *Topology Proc.*, **31**(2):667–675, 2007.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	●	O	00000

Open Problems

Problem

Are Lindelöf first countable spaces Grothendieck?

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	●	O	00000

Open Problems

Problem

Are Lindelöf first countable spaces Grothendieck?

Theorem

 MA_{ω_1} implies that every Lindelöf first countable space is Grothendieck.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	●	00000

And now for something completely different...

And now for something completely different...

Conjecture (Vaught's, 1961)

The number of non-isomorphic countable models of a complete first-order theory in a countable language is either countable or c.

Conjecture (Vaught's, 1961)

The number of non-isomorphic countable models of a complete first-order theory in a countable language is either countable or c.

To avoid a trivial solution from CH, code the countable models by reals and instead conjecture an uncountable set of models includes a perfect set.

Grothendieck 00000	PFA C-Tight & Grothendieck 00000000	Open Problems 0	Morley •	Two Lemmas 00000

Conjecture (Vaught's, 1961)

The number of non-isomorphic countable models of a complete first-order theory in a countable language is either countable or c.

To avoid a trivial solution from CH, code the countable models by reals and instead conjecture an uncountable set of models includes a perfect set.

Theorem (Morley's, 1970)

The number of non-isomorphic countable models is countable, includes a perfect set, or is of size \aleph_1 .

Conjecture (Vaught's, 1961)

The number of non-isomorphic countable models of a complete first-order theory in a countable language is either countable or c.

Theorem (Morley's, 1970)

The number of non-isomorphic countable models is countable, includes a perfect set, or is of size \aleph_1 .

Second order logic. Quantify over elements and subsets of the universe of discourse, e.g. over natural numbers and sets of natural numbers.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	•	00000

Conjecture (Vaught's, 1961)

The number of non-isomorphic countable models of a complete first-order theory in a countable language is either countable or c.

Theorem (Morley's, 1970)

The number of non-isomorphic countable models is countable, includes a perfect set, or is of size \aleph_1 .

Second order logic. Quantify over elements and subsets of the universe of discourse, e.g. over natural numbers and sets of natural numbers.Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller, F. D. Tall. An undecidable extension of Morley's theorem on the number of countable models. Submitted.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	•	00000

Conjecture (Vaught's, 1961)

The number of non-isomorphic countable models of a complete first-order theory in a countable language is either countable or c.

Theorem (Morley's, 1970)

The number of non-isomorphic countable models is countable, includes a perfect set, or is of size \aleph_1 .

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller, F. D. Tall. An undecidable extension of Morley's theorem on the number of countable models. Submitted.

No: add \aleph_2 Cohen reals and then add \aleph_3 random reals to a model of V = L. Get $\aleph_2 < \aleph_3 = 2^{\aleph_0}$ countable non-isomorphic models.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	•	00000

Theorem (Morley's, 1970)

The number of non-isomorphic countable models is countable, includes a perfect set, or is of size \aleph_1 .

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller, F. D. Tall. An undecidable extension of Morley's theorem on the number of countable models. Submitted.

No: add \aleph_2 Cohen reals and then add \aleph_3 random reals to a model of V = L. Get $\aleph_2 < \aleph_3 = 2^{\aleph_0}$ countable non-isomorphic models.

Yes: Assuming there are infinitely many Woodin cardinals, there is a model of $\neg CH$ in which every second order theory in a countable language either has $\leq \aleph_1$ isomorphism classes of countable models or else has a perfect set of non-isomorphic models.

Grothendieck 00000	PFA C-Tight & Grothendieck 00000000	Open Problems 0	Morley	Two Lemmas 00000

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller, F. D. Tall. An undecidable extension of Morley's theorem on the number of countable models. Submitted.

No: add \aleph_2 Cohen reals and then add \aleph_3 random reals to a model of V = L. Get $\aleph_2 < \aleph_3 = 2^{\aleph_0}$ countable non-isomorphic models.

Yes: Assuming there are infinitely many Woodin cardinals, there is a model of $\neg CH$ in which every second order theory in a countable language either has $\leq \aleph_1$ isomorphism classes of countable models or else has a perfect set of non-isomorphic models.

In the realm of large cardinals, this is a relatively weak assumption. We expect some large cardinal assumption is necessary, but haven't proved that.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0		00000

No: add \aleph_2 Cohen reals and then add \aleph_3 random reals to a model of V = L. Get $\aleph_2 < \aleph_3 = 2^{\aleph_0}$ countable non-isomorphic models.

Yes: Assuming there are infinitely many Woodin cardinals, there is a model of $\neg CH$ in which every second order theory in a countable language either has $\leq \aleph_1$ isomorphism classes of countable models or else has a perfect set of non-isomorphic models.

In the realm of large cardinals, this is a relatively weak assumption. We expect some large cardinal assumption is necessary, but haven't proved that.

The positive conclusion is actually much more general than second order Morley: every equivalence relation on $\mathcal{P}(\mathbb{R})$ that is obtained as a countable intersection of projective sets has $\leq \aleph_1$ or a perfect set of inequivalent elements.

The positive conclusion is actually much more general than second order Morley: every equivalence relation on $\mathcal{P}(\mathbb{R})$ that is obtained as a countable intersection of projective sets has $\leq \aleph_1$ or a perfect set of inequivalent elements.

The idea is to translate the model theory problem into a descriptive set theory problem and then apply determinacy for σ -projective sets of reals, which are obtained by closing the Borel sets under continuous real-valued images, complements, and countable unions.

The positive conclusion is actually much more general than second order Morley: every equivalence relation on $\mathcal{P}(\mathbb{R})$ that is obtained as a countable intersection of projective sets has $\leq \aleph_1$ or a perfect set of inequivalent elements.

The idea is to translate the model theory problem into a descriptive set theory problem and then apply determinacy for σ -projective sets of reals, which are obtained by closing the Borel sets under continuous real-valued images, complements, and countable unions. The determinacy comes from the Woodins assumption, but one also needs to get "generic absoluteness" theorems. This refines the work of Foreman and Magidor in 1995, who got the equivalence relation version of our results in the usual model for PFA (thus needing a supercompact).

The idea is to translate the model theory problem into a descriptive set theory problem and then apply determinacy for σ -projective sets of reals, which are obtained by closing the Borel sets under continuous real-valued images, complements, and countable unions. The determinacy comes from the Woodins assumption, but one also needs to get "generic absoluteness" theorems. This refines the work of Foreman and Magidor in 1995, who got the equivalence relation version of our results in the usual model for PFA (thus needing a supercompact).

Idea for refuting Vaught's Conjecture: Try using machine that transforms topological spaces into logics.

The idea is to translate the model theory problem into a descriptive set theory problem and then apply determinacy for σ -projective sets of reals, which are obtained by closing the Borel sets under continuous real-valued images, complements, and countable unions. The determinacy comes from the Woodins assumption, but one also needs to get "generic absoluteness" theorems. This refines the work of Foreman and Magidor in 1995, who got the equivalence relation version of our results in the usual model for PFA (thus needing a supercompact).

Idea for refuting Vaught's Conjecture: Try using machine that transforms topological spaces into logics.

C. Hamel, C. J. Eagle, F. D. Tall. Two applications of topology to model theory. *Ann. Pure & Appl. Logic*, 2020.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	●0000

Recall from the proof above

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	●0000

Lemma

PFA implies that every surlindelöf compact space is countably tight.

and recall

Lemma

 MA_{ω_1} implies that every separable surlindelöf compact countably tight space is metrizable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	O	O	●0000

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Lemma

 MA_{ω_1} implies that every separable surlindelöf compact countably tight space is metrizable.

These two Lemmas actually consistently solve several other problems of Arhangel'skiĭ:

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	o	O	●0000

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Lemma

 MA_{ω_1} implies that every separable surlindelöf compact countably tight space is metrizable.

Problem ([Arh98])

• If X is separable and compact and $Y \subseteq C_p(X)$ is Lindelöf, does Y have a countable network?

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	●0000

Problem ([Arh98])

- If X is separable and compact and Y ⊆ C_p(X) is Lindelöf, does Y have a countable network?
- If X is separable and compact and $C_p(X)$ is Lindelöf, must X be hereditarily separable?

Notice that a positive answer to the first of these yields a positive answer to the second, since a space with a countable network is clearly hereditarily separable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	0●000

Lemma ([Arh92, I.1.3])

X has a countable network if and only if $C_p(X)$ does.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	0●000

Lemma ([Arh92, I.1.3])

X has a countable network if and only if $C_p(X)$ does.

Okunev [Oku95] considers versions of Problem 2 with the additional hypothesis that finite powers of Y are Lindelöf. He proves:

Proposition

 $MA + \neg CH$ implies that if Y is a space with all finite powers Lindelöf and X is a separable compact subspace of $C_p(Y)$, then X is metrizable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	0●000

Lemma ([Arh92, I.1.3])

X has a countable network if and only if $C_p(X)$ does.

Proposition

 $MA + \neg CH$ implies that if Y is a space with all finite powers Lindelöf and X is a separable compact subspace of $C_p(Y)$, then X is metrizable.

Okunev states that this is a reformulation of

Proposition

 $MA + \neg CH$ implies that if X is a separable compact space and $Y \subseteq C_p(X)$ has all finite powers Lindelöf, then Y has a countable network.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	0●000

Lemma ([Arh92, I.1.3])

X has a countable network if and only if $C_p(X)$ does.

Proposition

 $MA + \neg CH$ implies that if Y is a space with all finite powers Lindelöf and X is a separable compact subspace of $C_p(Y)$, then X is metrizable.

Okunev and Reznichenko note that actually MA_{ω_1} suffices for these instead of $MA+\neg CH.$ They also prove:

Proposition ([OR07, I.8])

PFA implies that every surlindelöf compact separable space is metrizable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	0●000

Proposition

 $MA + \neg CH$ implies that if Y is a space with all finite powers Lindelöf and X is a separable compact subspace of $C_p(Y)$, then X is metrizable.

Proposition ([OR07, I.8])

PFA implies that every surlindelöf compact separable space is metrizable.

Proposition ([OR07, I.9])

PFA implies every surlindelöf compact space is \aleph_0 -monolithic, where a space is \aleph_0 -monolithic if the closure of every countable set has countable network weight.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	00●00

Answers With PFA

We can use the Two Lemmas to prove:

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Grothendieck 00000	PFA C-Tight & Grothendieck 00000000	Open Problems 0	Morley O	Two Lemmas 00●00
Answers	With PFA			
We can use the Two Lemmas to prove:				
Theore	em			

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Recall our Two Lemmas:

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Lemma

 MA_{ω_1} implies that every separable surlindelöf compact countably tight space is metrizable.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

We closely follow part of the argument in [Oku95] for Proposition 20. He starts by recalling some material from [Arh92] (or see [Tka15]).

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Given a continuous map $p: X \to Y$, the dual map $p^*: C_p(Y) \to C_p(X)$ is defined by $p^*(f) = f \circ p$, for all $f \in C_p(Y)$. The dual map is always continuous; it is an embedding if and only if p is onto.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Given a continuous map $p: X \to Y$, the dual map $p^*: C_p(Y) \to C_p(X)$ is defined by $p^*(f) = f \circ p$, for all $f \in C_p(Y)$. The dual map is always continuous; it is an embedding if and only if p is onto.

If $Y \subseteq C_p(X)$, then the reflection map $\varphi_{xy} : X \to C_p(Y)$ is defined by $\varphi_{xy}(x)(y) = y(x)$, for all $x \in X$ and $y \in Y$. The reflection map is continuous.

Grothendieck 00000	PFA C-Tight & Grothendieck 00000000	Open Problems 0	Morley O	Two Lemmas 000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Given a continuous map $p: X \to Y$, the dual map $p^*: C_p(Y) \to C_p(X)$ is defined by $p^*(f) = f \circ p$, for all $f \in C_p(Y)$. The dual map is always continuous; it is an embedding if and only if p is onto.

If $Y \subseteq C_p(X)$, then the reflection map $\varphi_{xy} : X \to C_p(Y)$ is defined by $\varphi_{xy}(x)(y) = y(x)$, for all $x \in X$ and $y \in Y$. The reflection map is continuous.

Proof of Theorem. Suppose X is a separable compact space and Y is a Lindelöf subspace of $C_p(X)$ which does not have a countable network.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Given a continuous map $p: X \to Y$, the dual map $p^*: C_p(Y) \to C_p(X)$ is defined by $p^*(f) = f \circ p$, for all $f \in C_p(Y)$. The dual map is always continuous; it is an embedding if and only if p is onto.

If $Y \subseteq C_p(X)$, then the reflection map $\varphi_{xy} : X \to C_p(Y)$ is defined by $\varphi_{xy}(x)(y) = y(x)$, for all $x \in X$ and $y \in Y$. The reflection map is continuous.

Proof of Theorem. Suppose X is a separable compact space and Y is a Lindelöf subspace of $C_p(X)$ which does not have a countable network. We consider the reflection map $\varphi_{XY} : X \to C_p(Y)$ and let $X_1 = \varphi_{XY}(X)$. Then X_1 is separable and compact.

Grothendieck 00000	PFA C-Tight & Grothendieck 00000000	Open Problems o	Morley O	Two Lemmas 000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Given a continuous map $p: X \to Y$, the dual map $p^*: C_p(Y) \to C_p(X)$ is defined by $p^*(f) = f \circ p$, for all $f \in C_p(Y)$. The dual map is always continuous; it is an embedding if and only if p is onto.

Proof of Theorem. Suppose X is a separable compact space and Y is a Lindelöf subspace of $C_p(X)$ which does not have a countable network. We consider the reflection map $\varphi_{XY} : X \to C_p(Y)$ and let $X_1 = \varphi_{XY}(X)$. Then X_1 is separable and compact.

Next, consider the dual map $\varphi_{XY}^* : C_p(X_1) \to C_p(X)$. It's an embedding, so $Y_1 = (\varphi_{XY}^*)^{-1}(Y)$ is a subspace of $C_p(X_1)$ homeomorphic to Y.

Grothendieck	PFA C-Tight & Grothendieck	Open Problems	Morley	Two Lemmas
00000	00000000	0	O	000●0

Theorem

PFA implies that if X is a separable compact space and $Y \subseteq C_p(X)$ is Lindelöf, then Y has a countable network.

Proof of Theorem. Suppose X is a separable compact space and Y is a Lindelöf subspace of $C_p(X)$ which does not have a countable network. We consider the reflection map $\varphi_{XY} : X \to C_p(Y)$ and let $X_1 = \varphi_{XY}(X)$. Then X_1 is separable and compact.

Next, consider the dual map $\varphi_{XY}^* : C_p(X_1) \to C_p(X)$. It's an embedding, so $Y_1 = (\varphi_{XY}^*)^{-1}(Y)$ is a subspace of $C_p(X_1)$ homeomorphic to Y. Since Y does not have a countable network, neither does Y_1 . Then neither does $C_p(X_1)$, so neither does X_1 . But by the Two Lemmas, X_1 is metrizable. This is a contradiction, since compact metrizable spaces have a countable network.

80/81

Grothendieck 00000	PFA C-Tight & Grothendieck 00000000	Open Problems ○	Morley O	Two Lemmas 0000●

- [Arh92] A. V. Arhangel'skii. Topological Function Spaces, vol. 78 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1992.
- [Arh98] A. V. Arhangel'skii. Embedding in C_p-spaces. Topology Appl., 85:9–33, 1998.
- **[Oku95]** O. G. Okunev. On Lindelöf sets of continuous functions. Topology Appl., **63**:91–96, 1995.
- [OR07] O. Okunev and E. Reznichenko. A note on surlindelöf spaces. *Topology Proc.*, **31**(2):667–675, 2007.
- **[Tka15]** V. Tkachuk A C_p-theory problem book. Problem Books in Mathematics. Vol. I–IV. Springer, 2011–2015.