Weakenings of normality and special sets of reals

Paul Szeptycki

Department of Mathematics York University Toronto Canada szeptyck@yorku.ca

> TOPOSYM Prague, 2022

< ロ > < 同 > < 回 > < 回 >

Part of joint work with Sergio Garcia-Balan [1] , and Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim [2]

Natural weakenings of normality arise by requiring a restricted class of closed sets to be separated by open sets.

向下 イヨト イヨト

Natural weakenings of normality arise by requiring a restricted class of closed sets to be separated by open sets.

E.g., for two classes of sets C and D, we could say a space is CD-normal if any pair of disjoint sets $C \in C$ and $D \in D$ can be separated by disjoint open sets.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Natural weakenings of normality arise by requiring a restricted class of closed sets to be separated by open sets.

E.g., for two classes of sets C and D, we could say a space is CD-normal if any pair of disjoint sets $C \in C$ and $D \in D$ can be separated by disjoint open sets.

Definition

A space X is

 (Jones) *pseudo-normal*, if any pair of closed sets, one of which is countable, can be separated by open sets.

Natural weakenings of normality arise by requiring a restricted class of closed sets to be separated by open sets.

E.g., for two classes of sets C and D, we could say a space is CD-normal if any pair of disjoint sets $C \in C$ and $D \in D$ can be separated by disjoint open sets.

Definition

A space X is

- (Jones) *pseudo-normal*, if any pair of closed sets, one of which is countable, can be separated by open sets.
- (Schepin) κ-normal (or mildly-normal) if any pair of regular closed sets can be separated.

Natural weakenings of normality arise by requiring a restricted class of closed sets to be separated by open sets.

E.g., for two classes of sets C and D, we could say a space is CD-normal if any pair of disjoint sets $C \in C$ and $D \in D$ can be separated by disjoint open sets.

Definition

A space X is

- (Jones) *pseudo-normal*, if any pair of closed sets, one of which is countable, can be separated by open sets.
- (Schepin) κ-normal (or mildly-normal) if any pair of regular closed sets can be separated.
- (Arya and Singal) almost-normal if disjoint A and B, where A is closed and B is regularly closed, can be separated.

Natural weakenings of normality arise by requiring a restricted class of closed sets to be separated by open sets.

E.g., for two classes of sets C and D, we could say a space is CD-normal if any pair of disjoint sets $C \in C$ and $D \in D$ can be separated by disjoint open sets.

Definition

- A space X is
 - (Jones) *pseudo-normal*, if any pair of closed sets, one of which is countable, can be separated by open sets.
 - (Schepin) κ-normal (or mildly-normal) if any pair of regular closed sets can be separated.
 - (Arya and Singal) almost-normal if disjoint A and B, where A is closed and B is regularly closed, can be separated.
 - and others.

Ψ -spaces

・ロト ・回ト ・ヨト ・ヨト 三日

For an almost disjoint family $A \subseteq [\omega]^{\omega}$, $\Psi(A) = A \cup \omega$ with the usual topology.

・ 回 ト ・ ヨ ト ・ ヨ ト

Э

For an almost disjoint family $A \subseteq [\omega]^{\omega}$, $\Psi(A) = A \cup \omega$ with the usual topology.

Note: If $|A| = 2^{\aleph_0}$ then $\Psi(A)$ is not normal. If A is MAD, then $\Psi(A)$ is not pseudo-normal.

・ 同 ト ・ ヨ ト ・ ヨ ト

For an almost disjoint family $A \subseteq [\omega]^{\omega}$, $\Psi(A) = A \cup \omega$ with the usual topology.

Note: If $|A| = 2^{\aleph_0}$ then $\Psi(A)$ is not normal. If A is MAD, then $\Psi(A)$ is not pseudo-normal.

Question

Can a MAD family have some other weak normality properties? Can one distinguish between these properties in AD families? What about AD families of branches in $2^{<\omega}$?

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Classical examples

<ロ> <四> <四> <四> <三</td>

・ 同 ト ・ ヨ ト ・ ヨ ト

Classical examples

Example Lusin family: There is an ad A of size ω_1 such that no partition of A into disjoint uncountable sets can be separated in $\Psi(A)$. So there is, in ZFC, non-normal Ψ -space of size ω_1

Example: Let $X \subseteq 2^{\omega}$. For $x \in X$, let $a_x = \{x \upharpoonright n : n \in \omega\}$. Then the family of branches

$$A_X = \{a_x : x \in X\}$$

is an almost disjoint family on $2^{<\omega}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: Let $X \subseteq 2^{\omega}$. For $x \in X$, let $a_x = \{x \upharpoonright n : n \in \omega\}$. Then the family of branches

$$A_X = \{a_x : x \in X\}$$

is an almost disjoint family on $2^{<\omega}$.

Theorem (Jones)

If $X \subseteq 2^{\omega}$ and $X = F \cup G$ is a partition, then A_F and A_G can be separated in $\Psi(A_X)$ if and only if F and G are both relative F_{σ} subsets of X. Thus

Example: Let $X \subseteq 2^{\omega}$. For $x \in X$, let $a_x = \{x \upharpoonright n : n \in \omega\}$. Then the family of branches

$$A_X = \{a_x : x \in X\}$$

is an almost disjoint family on $2^{<\omega}$.

Theorem (Jones)

If $X \subseteq 2^{\omega}$ and $X = F \cup G$ is a partition, then A_F and A_G can be separated in $\Psi(A_X)$ if and only if F and G are both relative F_{σ} subsets of X. Thus

Q X is a Q-set if and only if $\Psi(A_X)$ is normal

イロト イポト イヨト イヨト 二日

Example: Let $X \subseteq 2^{\omega}$. For $x \in X$, let $a_x = \{x \upharpoonright n : n \in \omega\}$. Then the family of branches

$$A_X = \{a_x : x \in X\}$$

is an almost disjoint family on $2^{<\omega}$.

Theorem (Jones)

If $X \subseteq 2^{\omega}$ and $X = F \cup G$ is a partition, then A_F and A_G can be separated in $\Psi(A_X)$ if and only if F and G are both relative F_{σ} subsets of X. Thus

- **1** X is a Q-set if and only if $\Psi(A_X)$ is normal
- **2** X is a λ -set if and only if $\Psi(A_X)$ is pseudo-normal.

1

(日) (四) (三) (三) (三)

Given a AD family A on ω , and $X \subseteq \omega$

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Given a AD family A on ω , and $X \subseteq \omega$

• $A \upharpoonright X = \{a \cap X : a \in A, a \cap X \text{ is infinite}\} (X \in I^{++}(A))$

Given a AD family A on ω , and $X \subseteq \omega$

- $A \upharpoonright X = \{a \cap X : a \in A, a \cap X \text{ is infinite} \} (X \in I^{++}(A))$
- A is completely separable if for each X ∈ I⁺⁺(A), then there is a ∈ A with a ⊆* X.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a AD family A on ω , and $X \subseteq \omega$

- $A \upharpoonright X = \{a \cap X : a \in A, a \cap X \text{ is infinite}\} (X \in I^{++}(A))$
- A is completely separable if for each X ∈ I⁺⁺(A), then there is a ∈ A with a ⊆* X.

Theorem

- (Shelah) Under very weak assumptions (e.g., c < ℵ_ω) there are completely separable MAD families.
- (Balcar, Dočkálková, Simon) There are completely separable AD families in ZFC.

(ロ) (同) (E) (E) (E) (E)

Example

Example

There is an AD family A such that $\Psi(A)$ is κ -normal but not normal. And assuming the existence of a completely separable MAD family, the example can be made MAD.

向下 イヨト イヨト

Example

Example

There is an AD family A such that $\Psi(A)$ is κ -normal but not normal. And assuming the existence of a completely separable MAD family, the example can be made MAD.

Proof. $K \subseteq \Psi(A)$ is regular closed iff there is $X \subseteq \omega$ and $K = \overline{X}$. Clearly any finite $B \subseteq A$ can be separated from $A \setminus B$, so it suffices to construct an AD family A so that

$$\overline{X} \cap \overline{Y} \neq \emptyset$$

for every pair $X, Y \in I_A^+$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that $\Psi(A)$ is almost normal and not normal.

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that $\Psi(A)$ is almost normal and not normal.

 $A = A_X \subseteq 2^{<\omega}$ where $X \subseteq 2^{\omega}$ is a σ -set.

伺 ト イヨト イヨト

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that $\Psi(A)$ is almost normal and not normal.

$$A = A_X \subseteq 2^{<\omega}$$
 where $X \subseteq 2^{\omega}$ is a σ -set.

Lemma

For any $X \subseteq 2^{\omega}$, and $Y \subseteq X$, A_Y is the trace of a regular closed set on A_X if and only if Y is a relative G_{δ} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that $\Psi(A)$ is almost normal and not normal.

$$A = A_X \subseteq 2^{<\omega}$$
 where $X \subseteq 2^{\omega}$ is a σ -set.

Lemma

For any $X \subseteq 2^{\omega}$, and $Y \subseteq X$, A_Y is the trace of a regular closed set on A_X if and only if Y is a relative G_{δ} .

And so, $\Psi(A_X)$ is almost normal if and only if every relative G_{δ} is relative F_{σ} .

(本間) (本臣) (王) (臣)

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that $\Psi(A)$ is almost normal and not normal.

$$A = A_X \subseteq 2^{<\omega}$$
 where $X \subseteq 2^{\omega}$ is a σ -set.

Lemma

For any $X \subseteq 2^{\omega}$, and $Y \subseteq X$, A_Y is the trace of a regular closed set on A_X if and only if Y is a relative G_{δ} .

And so, $\Psi(A_X)$ is almost normal if and only if every relative G_{δ} is relative F_{σ} .

Definition

A set of reals X is a σ -set if every relative G_{δ} is a relative F_{σ} .

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that $\Psi(A)$ is almost normal and not normal.

$$A = A_X \subseteq 2^{<\omega}$$
 where $X \subseteq 2^{\omega}$ is a σ -set.

Lemma

For any $X \subseteq 2^{\omega}$, and $Y \subseteq X$, A_Y is the trace of a regular closed set on A_X if and only if Y is a relative G_{δ} .

And so, $\Psi(A_X)$ is almost normal if and only if every relative G_{δ} is relative F_{σ} .

Definition

A set of reals X is a σ -set if every relative G_{δ} is a relative F_{σ} .

And it is consistent that there is a σ -set of size c so not a Q-set a .

Is there an almost normal MAD family?

イロト イヨト イヨト イヨト

э

Is there an almost normal MAD family?

Theorem (Cesar Corral Rojas) PFA implies NO.

イロト イヨト イヨト イヨト

臣

Is there an almost normal MAD family?

Theorem (Cesar Corral Rojas)

PFA implies NO.

His proof uses:

Theorem (Dow)

PFA implies that every MAD family contains a Lusin subfamily.

ヘロト ヘヨト ヘヨト ヘヨト

Is there an almost normal MAD family?

Theorem (Cesar Corral Rojas)

PFA implies NO.

His proof uses:

Theorem (Dow)

PFA implies that every MAD family contains a Lusin subfamily.

And using PFA (or just MA) any Ψ -space over an uncountable AD family has a nontrivial regular closed set

(ロ) (同) (E) (E) (E) (E)

向下 イヨト イヨト

Theorem (Garcia-Sz.)

Any almost normal AD family is strongly \aleph_0 -separated,

(四) (三) (三)

Theorem (Garcia-Sz.)

Any almost normal AD family is strongly \aleph_0 -separated, and assuming CH there is a strongly \aleph_0 -separated MAD family.

(四) (三) (三)

Theorem (Garcia-Sz.)

Any almost normal AD family is strongly \aleph_0 -separated, and assuming CH there is a strongly \aleph_0 -separated MAD family.

Theorem

For $X \subseteq 2^{\omega}$, A_X is strongly \aleph_0 -separated if and only if any disjoint pair of countable subsets of X can be separated by a set that is both a relative G_{δ} and F_{σ} .

(人間) (人) (人) (人) (人)

A set of reals X is a *weak* λ -set if any disjoint pair of countable subsets of X there is a partition of X into two relative G_{δ} subsets separating them.

.

A set of reals X is a *weak* λ -set if any disjoint pair of countable subsets of X there is a partition of X into two relative G_{δ} subsets separating them.

Of course every λ -set (=every countable subset is a relative G_{δ}) is a weak λ -set.

A set of reals X is a *weak* λ -set if any disjoint pair of countable subsets of X there is a partition of X into two relative G_{δ} subsets separating them.

Of course every λ -set (=every countable subset is a relative G_{δ}) is a weak λ -set.

And every weak λ -set is perfectly meagre.

A set of reals X is a *weak* λ -set if any disjoint pair of countable subsets of X there is a partition of X into two relative G_{δ} subsets separating them.

Of course every λ -set (=every countable subset is a relative G_{δ}) is a weak λ -set.

And every weak λ -set is perfectly meagre.

Question

Is there a weak λ -set that is not a λ -set?

A set of reals X is a *weak* λ -set if any disjoint pair of countable subsets of X there is a partition of X into two relative G_{δ} subsets separating them.

Of course every λ -set (=every countable subset is a relative G_{δ}) is a weak λ -set.

And every weak λ -set is perfectly meagre.

Question

Is there a weak λ -set that is not a λ -set?

Question

Is it consistent that a there is an almost normal MAD family?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Weak normality properties in Ψ-spaces, Sergio Garcia-Balan and Paul Szeptycki, Fund. Math., (2022) 258, pp 137-151
- Special sets of reals and weak forms of normality in Isbell-Mrówka spaces, Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim and Paul Szeptycki, Comm. Math. Univ. Car., to appear.

向下 イヨト イヨト

- Weak normality properties in Ψ-spaces, Sergio Garcia-Balan and Paul Szeptycki, Fund. Math., (2022) 258, pp 137-151
- Special sets of reals and weak forms of normality in Isbell-Mrówka spaces, Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim and Paul Szeptycki, Comm. Math. Univ. Car., to appear.

Thank you!

白 ト イ ヨ ト イ ヨ ト