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Definition
The small inductive dimension (Menger–Urysohn dimension) indX
of a topological space X is defined by induction:

1 indX = −1 if X = ∅;

2 indX 6 n, n > 0, if given any point x ∈ X and any closed set
F 63 x , x has an open neighborhood U such that U ⊂ X \ F
and ind FrU 6 n − 1;

3 indX = n, n > 0, if indX 6 n and indX 66 n − 1;
4 indX =∞ if indX 66 n for any integer n > −1.

A space X with indX = 0 is said to be zero-dimensional.

Any space X of finite dimension indX is T3.



Definition

The large inductive dimension (Brouwer–Čech dimension) IndX of
a topological space X is defined by induction:

1 IndX = −1 if X = ∅;

2 IndX 6 n, n > 0, if, given any disjoint closed sets F and G , F
has an open neighborhood U such that U ⊂ X \ G and
Ind FrU 6 n − 1;

3 IndX = n, n > 0, if IndX 6 n and IndX 66 n − 1;
4 IndX =∞ if IndX 66 n for any integer n > −1.

Any space X of finite dimension IndX is T4.



Let X be a set, and let F be an indexed family of its subsets. If
∃ n such that each point x ∈ X belongs to at most n + 1 elements
of F , then the least such n is called the order of F and denoted
ordF . If there exists no such n, then ordF =∞.

Definition
The covering (Lebesgue) dimension dimX of a space X in the
sense of Čech is the least integer n such that any finite open cover
of X has a finite open refinement of order 6 n. If there exists no
such n, then dimX =∞.

The covering dimension dim0 X of a space X in the sense of
Katětov is the least integer n such that any finite cozero cover of X
has a finite cozero refinement of order 6 n. If there exists no such
n, then dim0 X =∞.

A space X with dim0 X = 0 is said to be strongly
zero-dimensional.

dimX = 0 =⇒ X ∈ T4 /⇐= dim0 X = 0
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Katětov is the least integer n such that any finite cozero cover of X
has a finite cozero refinement of order 6 n. If there exists no such
n, then dim0 X =∞.

A space X with dim0 X = 0 is said to be strongly
zero-dimensional.

dimX = 0 =⇒ X ∈ T4 /⇐= dim0 X = 0



Let X be a set, and let F be an indexed family of its subsets. If
∃ n such that each point x ∈ X belongs to at most n + 1 elements
of F , then the least such n is called the order of F and denoted
ordF . If there exists no such n, then ordF =∞.

Definition
The covering (Lebesgue) dimension dimX of a space X in the
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S is the Sorgengrey arrow space

indS = IndS = dimS = 0, indS × S = 0, IndS × S = 0,
dimS × S > 1.

Terasawa (1972): dim0 S
κ = 0 for all κ.

Theorem
dim S × S =∞.

The Bi are disjoint
Bernstein sets

Problem
Is it true that dim0 X 6 dimX for any (completely regular) X?
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dimX = 0 =⇒ dim0 X = 0.
If X is normal, then dim0 X = dimX .
dimX = 0 ⇐⇒ IndX = 0 (and X ∈ T4).
For X ∈ T1, IndX > indX .
For completely regular X , dim0 X = dimβX .
Any Lindelöf zero-dimensional space X is strongly
zero-dimensional, i.e., if X is Lindelöf and indX = 0, then
dim0 X = 0 (= dimX = IndX ). Moreover,
dimX 6 indX 6 IndX .
Y ⊂ X is closed =⇒ dimY 6 dimX .
Y ⊂ X is C -embedded =⇒ dim0 Y 6 dim0 X .
Zero-dimensionality is multiplicative and hereditary, while
strong zero-dimensionality is not.
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dim0 X = 0 (= dimX = IndX ). Moreover,
dimX 6 indX 6 IndX .
Y ⊂ X is closed =⇒ dimY 6 dimX .
Y ⊂ X is C -embedded =⇒ dim0 Y 6 dim0 X .
Zero-dimensionality is multiplicative and hereditary, while
strong zero-dimensionality is not.



dimX = 0 =⇒ dim0 X = 0.
If X is normal, then dim0 X = dimX .
dimX = 0 ⇐⇒ IndX = 0 (and X ∈ T4).
For X ∈ T1, IndX > indX .
For completely regular X , dim0 X = dimβX .
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Problem (Shakhmatov (1990), Arhangel’skii+van Mill (2018))

Is it true that dim0(G × H) 6 dim0 G + dim0 H for arbitrary
topological groups G and H? for ω-narrow groups G and H?

Theorem
There exist Lindelöf topological groups G and H with
dim0 G = dimG = dim0 H = dimH = 0 and dim0(G × H) > 0
(and dim(G × H) > 0).

One of the groups can be made to have countable network weight.

Problem (Arkhangel’skii (1981))

Is it true that the free (free Abelian) topological group of any
strongly zero-dimensinal space is strongly zero-dimensional?

Theorem
There exists a (strongly) zero-dimensional Lindelöf space X such
that both covering dimensions of F (X ) and A(X ) are positive.
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that both covering dimensions of F (X ) and A(X ) are positive.



Construction

1 We modify Przymusiński’s (strongly) zero-dimensional Lindelöf
spaces C1 and C2 such that dim0(C1 × C2) > 0 so as to make
them Lindelöf to any finite power. Then the free Abelian
topological groups A(Ci ) are Lindelöf and (strongly)
zero-dimensional.

2 There exists a coarser separable metrizable topology on Ci

such that Ci has a base consisting of sets closed in this
topology. Therefore, Ci is a retract of the free Abelian
topological group A(Ci ) [Gartside+Reznichenko+S.].

3 Clearly, C1 × C2 is a retract of A(C1)× A(C2). Hence C1 × C2
is C -embedded in A(C1)× A(C2) =⇒
dim0(A(C1)× A(C2)) > dim0(C1 × C2) > 1.

4 We note that A(C1)× A(C2) ∼= A(C1 ⊕ C2) and prove that
C1 × C2 is C -embedded in both A(C1 ⊕ C2) and F (C1 ⊕ C2)
by examining the retraction A(C1)× A(C2)→ C1 × C2, the
isomorphism A(C1)× A(C2) ∼= A(C1 ⊕ C2), and the natural
quotient homomorphism F (C1 ⊕ C2)→ A(C1 ⊕ C2).
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spaces C1 and C2 such that dim0(C1 × C2) > 0 so as to make
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A space X is
basically disconnected if the closure of any cozero set in X is
open;
an F -space if any two disjoint cozero sets are completely
(= functionally) separated in X ;
a P-space if any (co)zero set is clopen (⇔ any Gδ-set is open).

Theorem
Any Abelian F -group G with dim0 G <∞ and ψ(G ) 6 ω contains
an open Boolean subgroup with the same properties.

Corollary
The existence of an Abelian topological F -group G with
dim0 G <∞ and ψ(G ) 6 ω is equivalent to the existence of a
nondiscrete Boolean topological group with the same properties.

Problem
Is it true that dim0 G <∞ for any Abelian topological F -group G
with ψ(G ) 6 ω?
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(= functionally) separated in X ;
a P-space if any (co)zero set is clopen (⇔ any Gδ-set is open).

Theorem
Any Abelian F -group G with dim0 G <∞ and ψ(G ) 6 ω contains
an open Boolean subgroup with the same properties.
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Theorem
The existence of an Abelian basically disconnected group which is
not a P-space is equivalent to the existence of a nondiscrete
Boolean basically disconnected group of countable pseudocharacter.

(Consistently) exists a basically disconnected group G , not a
P-space, containing no open Boolean subgroups:
G = G1 × G2, where G1 is a countable nondiscrete extremally
disconnected group and G2 is an arbitrary nondiscrete
P-group [Comfort+Hindman+Negrepontis].
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Open problems

Problem
Is it true that dim0 X 6 dimX for any (completely regular) X? For
any topological group?

Problem
Is it true that dim0 G <∞ for any Abelian topological F -group G
with ψ(G ) 6 ω?

Problem (Shakhmatov (1990), Arhangel’skii+van Mill (2018))
Does the inequality dim0 H 6 dim0 G hold for an arbitrary
subgroup H of an arbitrary topological group G?

Problem (Arhangel’skii (1981))
Is it true that indF (X ) = 0 (indA(X ) = 0) for any metrizable
space X with indX = 0?
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THANK YOU


