Covering Dimensions of Topological Groups

Ol'ga Sipacheva

Definition

The small inductive dimension (Menger–Urysohn dimension) ind X of a topological space X is defined by induction:

• ind
$$X = -1$$
 if $X = \emptyset$;

- ind X ≤ n, n ≥ 0, if given any point x ∈ X and any closed set
 F ≥ x, x has an open neighborhood U such that U ⊂ X \ F
 and ind Fr U ≤ n − 1;
- **③** ind X = n, $n \ge 0$, if ind $X \le n$ and ind X ≤ n 1;
- ind $X = \infty$ if ind $X \leq n$ for any integer $n \geq -1$.

A space X with ind X = 0 is said to be zero-dimensional.

Any space X of finite dimension ind X is T_3 .

Definition

The large inductive dimension (Brouwer–Čech dimension) Ind X of a topological space X is defined by induction:

Ind
$$X = -1$$
 if $X = \emptyset$;

- Ind X ≤ n, n ≥ 0, if, given any disjoint closed sets F and G, F has an open neighborhood U such that U ⊂ X \ G and Ind Fr U ≤ n − 1;
- **③** Ind X = n, $n \ge 0$, if Ind $X \le n$ and Ind X ≤ n 1;
- Ind $X = \infty$ if Ind $X \leq n$ for any integer $n \geq -1$.

Any space X of finite dimension Ind X is T_4 .

Definition

The covering (Lebesgue) dimension dim X of a space X in the sense of Čech is the least integer n such that any finite open cover of X has a finite open refinement of order $\leq n$. If there exists no such n, then dim $X = \infty$.

The covering dimension dim₀ X of a space X in the sense of Katětov is the least integer *n* such that any finite cozero cover of X has a finite cozero refinement of order $\leq n$. If there exists no such *n*, then dim₀ X = ∞ .

A space X with $\dim_0 X = 0$ is said to be strongly zero-dimensional.

 $\dim X = 0 \implies X \in T_4 \iff \dim_0 X = 0$

Definition

The covering (Lebesgue) dimension dim X of a space X in the sense of Čech is the least integer n such that any finite open cover of X has a finite open refinement of order $\leq n$. If there exists no such n, then dim $X = \infty$.

The covering dimension dim₀ X of a space X in the sense of Katětov is the least integer *n* such that any finite cozero cover of X has a finite cozero refinement of order $\leq n$. If there exists no such *n*, then dim₀ X = ∞ .

A space X with $\dim_0 X = 0$ is said to be strongly zero-dimensional.

 $\dim X = 0 \implies X \in T_4 \iff \dim_0 X = 0$

Definition

The covering (Lebesgue) dimension dim X of a space X in the sense of Čech is the least integer n such that any finite open cover of X has a finite open refinement of order $\leq n$. If there exists no such n, then dim $X = \infty$.

The covering dimension $\dim_0 X$ of a space X in the sense of Katětov is the least integer *n* such that any finite cozero cover of X has a finite cozero refinement of order $\leq n$. If there exists no such *n*, then $\dim_0 X = \infty$.

A space X with $\dim_0 X = 0$ is said to be strongly zero-dimensional.

Definition

The covering (Lebesgue) dimension dim X of a space X in the sense of Čech is the least integer n such that any finite open cover of X has a finite open refinement of order $\leq n$. If there exists no such n, then dim $X = \infty$.

The covering dimension $\dim_0 X$ of a space X in the sense of Katětov is the least integer *n* such that any finite cozero cover of X has a finite cozero refinement of order $\leq n$. If there exists no such *n*, then $\dim_0 X = \infty$.

A space X with $\dim_0 X = 0$ is said to be strongly zero-dimensional.

 $\dim X = 0 \implies X \in T_4 \iff \dim_0 X = 0$

Definition

The covering (Lebesgue) dimension dim X of a space X in the sense of Čech is the least integer n such that any finite open cover of X has a finite open refinement of order $\leq n$. If there exists no such n, then dim $X = \infty$.

The covering dimension $\dim_0 X$ of a space X in the sense of Katětov is the least integer *n* such that any finite cozero cover of X has a finite cozero refinement of order $\leq n$. If there exists no such *n*, then $\dim_0 X = \infty$.

A space X with $\dim_0 X = 0$ is said to be strongly zero-dimensional.

 $\dim X = 0 \implies X \in T_4 \iff \dim_0 X = 0$

$$\begin{array}{ll} \operatorname{ind} S = \operatorname{Ind} S = \dim S = 0, & \operatorname{ind} S \times S = 0, \\ & \operatorname{dim} S \times S \geqslant 1. \end{array} \end{array}$$

Terasawa (1972): dim₀ $S^{\kappa} = 0$ for all κ .

$$\begin{array}{ll} \operatorname{ind} S = \operatorname{Ind} S = \dim S = 0, & \operatorname{ind} S \times S = 0, \\ & \operatorname{dim} S \times S \geqslant 1. \end{array} \end{array}$$

Terasawa (1972): dim₀ $S^{\kappa} = 0$ for all κ .

Theorem

 $\dim S \times S = \infty.$

$$\begin{array}{ll} \operatorname{ind} S = \operatorname{Ind} S = \dim S = 0, & \operatorname{ind} S \times S = 0, \\ & \operatorname{dim} S \times S \geqslant 1. \end{array} \end{array}$$

Terasawa (1972): dim₀ $S^{\kappa} = 0$ for all κ .

Theorem

 $\dim S \times S = \infty.$

The B_i are disjoint Bernstein sets

$$\begin{array}{ll} \operatorname{ind} S = \operatorname{Ind} S = \dim S = 0, & \operatorname{ind} S \times S = 0, \\ & \operatorname{dim} S \times S \geqslant 1. \end{array} \end{array}$$

Terasawa (1972): dim₀ $S^{\kappa} = 0$ for all κ .

Theorem

 $\dim S \times S = \infty.$

The B_i are disjoint Bernstein sets

Problem

Is it true that $\dim_0 X \leq \dim X$ for any (completely regular) X?

• dim $X = 0 \implies \dim_0 X = 0$.

- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \text{Ind } X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed \implies dim $Y \leq$ dim X. $Y \subset X$ is C-embedded \implies dim₀ $Y \leq$ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0 \pmod{X \in T_4}$.
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- Y ⊂ X is closed ⇒ dim Y ≤ dim X.
 Y ⊂ X is C-embedded ⇒ dim₀ Y ≤ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge$ ind X.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed \implies dim $Y \leq$ dim X. $Y \subset X$ is C-embedded \implies dim₀ $Y \leq$ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \operatorname{ind} X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed \implies dim $Y \leq$ dim X. $Y \subset X$ is C-embedded \implies dim₀ $Y \leq$ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- Y ⊂ X is closed ⇒ dim Y ≤ dim X.
 Y ⊂ X is C-embedded ⇒ dim₀ Y ≤ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed \implies dim $Y \leq$ dim X. $Y \subset X$ is C-embedded \implies dim₀ $Y \leq$ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed \implies dim $Y \leq$ dim X. $Y \subset X$ is C-embedded \implies dim₀ $Y \leq$ dim₀ X.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed $\implies \dim Y \leq \dim X$. $Y \subset X$ is C-embedded $\implies \dim_0 Y \leq \dim_0 X$
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \text{Ind } X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim $X \leq ind X \leq Ind X$.
- $Y \subset X$ is closed $\implies \dim Y \leq \dim X$. $Y \subset X$ is C-embedded $\implies \dim_0 Y \leq \dim_0 X$.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

- dim $X = 0 \implies \dim_0 X = 0$.
- If X is normal, then $\dim_0 X = \dim X$.
- dim $X = 0 \iff \operatorname{Ind} X = 0$ (and $X \in T_4$).
- For $X \in T_1$, Ind $X \ge \text{ind } X$.
- For completely regular X, $\dim_0 X = \dim \beta X$.
- Any Lindelöf zero-dimensional space X is strongly zero-dimensional, i.e., if X is Lindelöf and ind X = 0, then dim₀ X = 0 (= dim X = Ind X). Moreover, dim X ≤ ind X ≤ Ind X.
- $Y \subset X$ is closed $\implies \dim Y \leq \dim X$. $Y \subset X$ is C-embedded $\implies \dim_0 Y \leq \dim_0 X$.
- Zero-dimensionality is multiplicative and hereditary, while strong zero-dimensionality is not.

Is it true that $\dim_0(G \times H) \leq \dim_0 G + \dim_0 H$ for arbitrary topological groups G and H? for ω -narrow groups G and H?

Theorem

There exist Lindelöf topological groups G and H with $\dim_0 G = \dim G = \dim_0 H = \dim H = 0$ and $\dim_0(G \times H) > 0$ (and $\dim(G \times H) > 0$).

One of the groups can be made to have countable network weight.

Problem (Arkhangel'skii (1981))

Is it true that the free (free Abelian) topological group of any strongly zero-dimensional space is strongly zero-dimensional?

Theorem

Is it true that $\dim_0(G \times H) \leq \dim_0 G + \dim_0 H$ for arbitrary topological groups G and H? for ω -narrow groups G and H?

Theorem

There exist Lindelöf topological groups G and H with $\dim_0 G = \dim G = \dim_0 H = \dim H = 0$ and $\dim_0(G \times H) > 0$ (and $\dim(G \times H) > 0$).

One of the groups can be made to have countable network weight.

Problem (Arkhangel'skii (1981))

Is it true that the free (free Abelian) topological group of any strongly zero-dimensinal space is strongly zero-dimensional?

Theorem

Is it true that $\dim_0(G \times H) \leq \dim_0 G + \dim_0 H$ for arbitrary topological groups G and H? for ω -narrow groups G and H?

Theorem

There exist Lindelöf topological groups G and H with $\dim_0 G = \dim G = \dim_0 H = \dim H = 0$ and $\dim_0(G \times H) > 0$ (and $\dim(G \times H) > 0$).

One of the groups can be made to have countable network weight.

Problem (Arkhangel'skii (1981))

Is it true that the free (free Abelian) topological group of any strongly zero-dimensinal space is strongly zero-dimensional?

Theorem

Is it true that $\dim_0(G \times H) \leq \dim_0 G + \dim_0 H$ for arbitrary topological groups G and H? for ω -narrow groups G and H?

Theorem

There exist Lindelöf topological groups G and H with $\dim_0 G = \dim G = \dim_0 H = \dim H = 0$ and $\dim_0(G \times H) > 0$ (and $\dim(G \times H) > 0$).

One of the groups can be made to have countable network weight.

Problem (Arkhangel'skii (1981))

Is it true that the free (free Abelian) topological group of any strongly zero-dimensinal space is strongly zero-dimensional?

Theorem

Is it true that $\dim_0(G \times H) \leq \dim_0 G + \dim_0 H$ for arbitrary topological groups G and H? for ω -narrow groups G and H?

Theorem

There exist Lindelöf topological groups G and H with $\dim_0 G = \dim G = \dim_0 H = \dim H = 0$ and $\dim_0(G \times H) > 0$ (and $\dim(G \times H) > 0$).

One of the groups can be made to have countable network weight.

Problem (Arkhangel'skii (1981))

Is it true that the free (free Abelian) topological group of any strongly zero-dimensinal space is strongly zero-dimensional?

Theorem

- We modify Przymusiński's (strongly) zero-dimensional Lindelöf spaces C₁ and C₂ such that dim₀(C₁ × C₂) > 0 so as to make them Lindelöf to any finite power. Then the free Abelian topological groups A(C_i) are Lindelöf and (strongly) zero-dimensional.
- There exists a coarser separable metrizable topology on C_i such that C_i has a base consisting of sets closed in this topology. Therefore, C_i is a retract of the free Abelian topological group $A(C_i)$ [Gartside+Reznichenko+S.].
- Olearly, C₁ × C₂ is a retract of A(C₁) × A(C₂). Hence C₁ × C₂ is C-embedded in A(C₁) × A(C₂) ⇒ dim₀(A(C₁) × A(C₂)) ≥ dim₀(C₁ × C₂) ≥ 1.
- We note that A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂) and prove that C₁ × C₂ is C-embedded in both A(C₁ ⊕ C₂) and F(C₁ ⊕ C₂) by examining the retraction A(C₁) × A(C₂) → C₁ × C₂, the isomorphism A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂), and the natural quotient homomorphism F(C₁ ⊕ C₂) → A(C₁ ⊕ C₂).

- We modify Przymusiński's (strongly) zero-dimensional Lindelöf spaces C₁ and C₂ such that dim₀(C₁ × C₂) > 0 so as to make them Lindelöf to any finite power. Then the free Abelian topological groups A(C_i) are Lindelöf and (strongly) zero-dimensional.
- **2** There exists a coarser separable metrizable topology on C_i such that C_i has a base consisting of sets closed in this topology. Therefore, C_i is a retract of the free Abelian topological group $A(C_i)$ [Gartside+Reznichenko+S.].
- Solution Clearly, C₁ × C₂ is a retract of A(C₁) × A(C₂). Hence C₁ × C₂ is C-embedded in A(C₁) × A(C₂) ⇒ dim₀(A(C₁) × A(C₂)) ≥ dim₀(C₁ × C₂) ≥ 1.
- We note that A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂) and prove that C₁ × C₂ is C-embedded in both A(C₁ ⊕ C₂) and F(C₁ ⊕ C₂) by examining the retraction A(C₁) × A(C₂) → C₁ × C₂, the isomorphism A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂), and the natural quotient homomorphism F(C₁ ⊕ C₂) → A(C₁ ⊕ C₂).

- We modify Przymusiński's (strongly) zero-dimensional Lindelöf spaces C₁ and C₂ such that dim₀(C₁ × C₂) > 0 so as to make them Lindelöf to any finite power. Then the free Abelian topological groups A(C_i) are Lindelöf and (strongly) zero-dimensional.
- There exists a coarser separable metrizable topology on C_i such that C_i has a base consisting of sets closed in this topology. Therefore, C_i is a retract of the free Abelian topological group A(C_i) [Gartside+Reznichenko+S.].
- Solution Clearly, C₁ × C₂ is a retract of A(C₁) × A(C₂). Hence C₁ × C₂ is C-embedded in A(C₁) × A(C₂) ⇒ dim₀(A(C₁) × A(C₂)) ≥ dim₀(C₁ × C₂) ≥ 1.
- We note that A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂) and prove that C₁ × C₂ is C-embedded in both A(C₁ ⊕ C₂) and F(C₁ ⊕ C₂) by examining the retraction A(C₁) × A(C₂) → C₁ × C₂, the isomorphism A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂), and the natural quotient homomorphism F(C₁ ⊕ C₂) → A(C₁ ⊕ C₂).

- We modify Przymusiński's (strongly) zero-dimensional Lindelöf spaces C₁ and C₂ such that dim₀(C₁ × C₂) > 0 so as to make them Lindelöf to any finite power. Then the free Abelian topological groups A(C_i) are Lindelöf and (strongly) zero-dimensional.
- **2** There exists a coarser separable metrizable topology on C_i such that C_i has a base consisting of sets closed in this topology. Therefore, C_i is a retract of the free Abelian topological group $A(C_i)$ [Gartside+Reznichenko+S.].
- Clearly, C₁ × C₂ is a retract of A(C₁) × A(C₂). Hence C₁ × C₂ is C-embedded in A(C₁) × A(C₂) → dim₀(A(C₁) × A(C₂)) ≥ dim₀(C₁ × C₂) ≥ 1.
- We note that $A(C_1) \times A(C_2) \cong A(C_1 \oplus C_2)$ and prove that $C_1 \times C_2$ is *C*-embedded in both $A(C_1 \oplus C_2)$ and $F(C_1 \oplus C_2)$ by examining the retraction $A(C_1) \times A(C_2) \rightarrow C_1 \times C_2$, the isomorphism $A(C_1) \times A(C_2) \cong A(C_1 \oplus C_2)$, and the natural quotient homomorphism $F(C_1 \oplus C_2) \rightarrow A(C_1 \oplus C_2)$.

- We modify Przymusiński's (strongly) zero-dimensional Lindelöf spaces C₁ and C₂ such that dim₀(C₁ × C₂) > 0 so as to make them Lindelöf to any finite power. Then the free Abelian topological groups A(C_i) are Lindelöf and (strongly) zero-dimensional.
- There exists a coarser separable metrizable topology on C_i such that C_i has a base consisting of sets closed in this topology. Therefore, C_i is a retract of the free Abelian topological group $A(C_i)$ [Gartside+Reznichenko+S.].
- Clearly, C₁ × C₂ is a retract of A(C₁) × A(C₂). Hence C₁ × C₂ is C-embedded in A(C₁) × A(C₂) ⇒ dim₀(A(C₁) × A(C₂)) ≥ dim₀(C₁ × C₂) ≥ 1.
- We note that A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂) and prove that C₁ × C₂ is C-embedded in both A(C₁ ⊕ C₂) and F(C₁ ⊕ C₂) by examining the retraction A(C₁) × A(C₂) → C₁ × C₂, the isomorphism A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂), and the natural quotient homomorphism F(C₁ ⊕ C₂) → A(C₁ ⊕ C₂).

- We modify Przymusiński's (strongly) zero-dimensional Lindelöf spaces C₁ and C₂ such that dim₀(C₁ × C₂) > 0 so as to make them Lindelöf to any finite power. Then the free Abelian topological groups A(C_i) are Lindelöf and (strongly) zero-dimensional.
- There exists a coarser separable metrizable topology on C_i such that C_i has a base consisting of sets closed in this topology. Therefore, C_i is a retract of the free Abelian topological group A(C_i) [Gartside+Reznichenko+S.].
- Clearly, $C_1 \times C_2$ is a retract of $A(C_1) \times A(C_2)$. Hence $C_1 \times C_2$ is *C*-embedded in $A(C_1) \times A(C_2) \implies$ $\dim_0(A(C_1) \times A(C_2)) \ge \dim_0(C_1 \times C_2) \ge 1$.
- We note that A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂) and prove that C₁ × C₂ is C-embedded in both A(C₁ ⊕ C₂) and F(C₁ ⊕ C₂) by examining the retraction A(C₁) × A(C₂) → C₁ × C₂, the isomorphism A(C₁) × A(C₂) ≅ A(C₁ ⊕ C₂), and the natural quotient homomorphism F(C₁ ⊕ C₂) → A(C₁ ⊕ C₂).

- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Problem

- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

Theorem

Any Abelian F-group G with dim₀ G $< \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Problem

- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Problem

- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Problem

- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Problem

- basically disconnected if the closure of any cozero set in X is open;
- an *F*-space if any two disjoint cozero sets are completely (= functionally) separated in *X*;
- a *P*-space if any (co)zero set is clopen (\Leftrightarrow any G_{δ} -set is open).

Theorem

Any Abelian F-group G with dim₀ $G < \infty$ and $\psi(G) \leq \omega$ contains an open Boolean subgroup with the same properties.

Corollary

The existence of an Abelian topological F-group G with $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Problem

Theorem

The existence of an Abelian basically disconnected group which is not a P-space is equivalent to the existence of a nondiscrete Boolean basically disconnected group of countable pseudocharacter.

(Consistently) exists a basically disconnected group *G*, not a *P*-space, containing no open Boolean subgroups:

 $G = G_1 \times G_2$, where G_1 is a countable nondiscrete extremally disconnected group and G_2 is an arbitrary nondiscrete *P*-group [Comfort+Hindman+Negrepontis].

Theorem

The existence of an Abelian basically disconnected group which is not a P-space is equivalent to the existence of a nondiscrete Boolean basically disconnected group of countable pseudocharacter.

(Consistently) exists a basically disconnected group G, not a P-space, containing no open Boolean subgroups:

 $G = G_1 \times G_2$, where G_1 is a countable nondiscrete extremally disconnected group and G_2 is an arbitrary nondiscrete *P*-group [Comfort+Hindman+Negrepontis].

Theorem

The existence of an Abelian basically disconnected group which is not a P-space is equivalent to the existence of a nondiscrete Boolean basically disconnected group of countable pseudocharacter.

(Consistently) exists a basically disconnected group G, not a P-space, containing no open Boolean subgroups:

 $G = G_1 \times G_2$, where G_1 is a countable nondiscrete extremally disconnected group and G_2 is an arbitrary nondiscrete P-group [Comfort+Hindman+Negrepontis].

Problem

Is it true that $\dim_0 X \leq \dim X$ for any (completely regular) X? For any topological group?

Problem

Is it true that dim₀ $G < \infty$ for any Abelian topological F-group G with $\psi(G) \leq \omega$?

Problem (Shakhmatov (1990), Arhangel'skii+van Mill (2018)) Does the inequality dim₀ $H \leq \dim_0 G$ hold for an arbitrary subgroup H of an arbitrary topological group G?

Problem

Is it true that $\dim_0 X \leq \dim X$ for any (completely regular) X? For any topological group?

Problem

Is it true that dim₀ $G < \infty$ for any Abelian topological F-group G with $\psi(G) \leq \omega$?

Problem (Shakhmatov (1990), Arhangel'skii+van Mill (2018)) Does the inequality dim₀ $H \leq \dim_0 G$ hold for an arbitrary subgroup H of an arbitrary topological group G?

Problem

Is it true that $\dim_0 X \leq \dim X$ for any (completely regular) X? For any topological group?

Problem

Is it true that dim₀ $G < \infty$ for any Abelian topological F-group G with $\psi(G) \leq \omega$?

Problem (Shakhmatov (1990), Arhangel'skii+van Mill (2018) Does the inequality dim₀ $H \leq \dim_0 G$ hold for an arbitrary subgroup H of an arbitrary topological group G?

Problem

Is it true that $\dim_0 X \leq \dim X$ for any (completely regular) X? For any topological group?

Problem

Is it true that dim₀ $G < \infty$ for any Abelian topological F-group G with $\psi(G) \leq \omega$?

Problem (Shakhmatov (1990), Arhangel'skii+van Mill (2018)) Does the inequality dim₀ $H \leq \dim_0 G$ hold for an arbitrary subgroup H of an arbitrary topological group G?

Problem

Is it true that $\dim_0 X \leq \dim X$ for any (completely regular) X? For any topological group?

Problem

Is it true that dim₀ $G < \infty$ for any Abelian topological F-group G with $\psi(G) \leq \omega$?

Problem (Shakhmatov (1990), Arhangel'skii+van Mill (2018)) Does the inequality dim₀ $H \leq \dim_0 G$ hold for an arbitrary subgroup H of an arbitrary topological group G?

THANK YOU