Weak* derived sets

Zdeněk Silber, Charles University

TOPOSYM 2022, Praha

Zdeněk Silber, Charles University

Weak* derived sets

TOPOSYM 2022, Praha 1 / 10

The weak^{*} derived set of $A \subseteq X^*$ is the set

$$A^{(1)} = \bigcup_{n=1}^{\infty} \overline{A \cap nB_{X^*}}^{w^*},$$

that is the set of weak^{*} limits of bounded nets from *A*.

∃ ▶ ∢

The weak^{*} derived set of $A \subseteq X^*$ is the set

$$A^{(1)} = \bigcup_{n=1}^{\infty} \overline{A \cap nB_{X^*}}^{w^*},$$

that is the set of weak^{*} limits of bounded nets from A.

Definition

Let A be a subspace of X^* ,

• $q_A(x) = \sup\{|a(x)|; a \in B_A\} \le ||x||$

The weak^{*} derived set of $A \subseteq X^*$ is the set

$$A^{(1)} = \bigcup_{n=1}^{\infty} \overline{A \cap nB_{X^*}}^{w^*},$$

that is the set of weak^{*} limits of bounded nets from A.

Definition

Let A be a subspace of X^* ,

- $q_A(x) = \sup\{|a(x)|; a \in B_A\} \le ||x||$
- A is total $\stackrel{def.}{\iff} q_A$ is a norm on X

The weak^{*} derived set of $A \subseteq X^*$ is the set

$$A^{(1)} = \bigcup_{n=1}^{\infty} \overline{A \cap nB_{X^*}}^{w^*},$$

that is the set of weak^{*} limits of bounded nets from A.

Definition

Let A be a subspace of X^* ,

•
$$q_A(x) = \sup\{|a(x)|; a \in B_A\} \le ||x||$$

• A is total
$$\stackrel{def.}{\iff} q_A$$
 is a norm on $X \iff \overline{A}^{w^*} = X^*$

Zdeněk Silber, Charles University

< □ > < 凸

The weak^{*} derived set of $A \subseteq X^*$ is the set

$$A^{(1)} = \bigcup_{n=1}^{\infty} \overline{A \cap nB_{X^*}}^{w^*},$$

that is the set of weak^{*} limits of bounded nets from A.

Definition

Let A be a subspace of X^* ,

- $q_A(x) = \sup\{|a(x)|; a \in B_A\} \le ||x||$
- A is total $\stackrel{def.}{\iff} q_A$ is a norm on $X \iff \overline{A}^{w^*} = X^*$
- A is norming $\stackrel{def.}{\Longleftrightarrow} q_A$ is an equivalent norm on X

The weak^{*} derived set of $A \subseteq X^*$ is the set

$$A^{(1)} = \bigcup_{n=1}^{\infty} \overline{A \cap nB_{X^*}}^{w^*},$$

that is the set of weak^{*} limits of bounded nets from A.

Definition

Let A be a subspace of X^* ,

- $q_A(x) = \sup\{|a(x)|; a \in B_A\} \le ||x||$
- A is total $\stackrel{def.}{\iff} q_A$ is a norm on $X \iff \overline{A}^{w^*} = X^*$
- A is norming $\stackrel{def.}{\iff} q_A$ is an equivalent norm on $X \iff A^{(1)} = X^*$

Observation

If X is separable, then $A^{(1)}$ is the set of weak^{*} limits of sequences from A.

Observation

If X is separable, then $A^{(1)}$ is the set of weak^{*} limits of sequences from A.

Krein-Šmulyan's theorem

Let $A \subseteq X^*$ be convex, then

$$A = \overline{A}^{w^*} \iff A = A^{(1)}.$$

Observation

If X is separable, then $A^{(1)}$ is the set of weak^{*} limits of sequences from A.

Krein-Šmulyan's theorem

Let $A \subseteq X^*$ be convex, then

$$A = \overline{A}^{w^*} \iff A = A^{(1)}.$$

• But that does not imply that $A^{(1)} = \overline{A}^{w^*}$ for convex sets, as it can happen that $A^{(1)} \neq (A^{(1)})^{(1)}$.

The reflexive case

Proposition

X reflexive \implies for every $A \subseteq X^*$ convex we have $A^{(1)} = \overline{A}^{w^*} = \overline{A}$.

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: Image:

The reflexive case

Proposition

X reflexive
$$\implies$$
 for every $A \subseteq X^*$ convex we have $A^{(1)} = \overline{A}^{w^*} = \overline{A}$.

Theorem (Ostrovskii 2011)

X non-reflexive \implies there is a convex set $A \subseteq X^*$ such that $A^{(1)} \subsetneq \overline{A}^{w^*}$.

3 1 4 3 1

The reflexive case

Proposition

X reflexive
$$\implies$$
 for every $A \subseteq X^*$ convex we have $A^{(1)} = \overline{A}^{w^*} = \overline{A}$.

Theorem (Ostrovskii 2011)

X non-reflexive \implies there is a convex set $A \subseteq X^*$ such that $A^{(1)} \subsetneq \overline{A}^{w^*}$.

Corollary

X is reflexive \iff for every $A \subseteq X^*$ convex we have $A^{(1)} = \overline{A}^{w^*} = \overline{A}$.

(日) (四) (日) (日) (日)

X is quasi-reflexive $\stackrel{def.}{\iff}$ X is of finite codimension in X^{**}.

★ ∃ ▶

э

X is quasi-reflexive $\stackrel{def.}{\iff}$ X is of finite codimension in X^{**}.

Theorem (Davis, Johnson 1972)

X quasi-reflexive \iff all total subspaces of X^* are norming.

< ∃ > < ∃

X is quasi-reflexive $\stackrel{def.}{\iff}$ X is of finite codimension in X^{**}.

Theorem (Davis, Johnson 1972)

X quasi-reflexive \iff all total subspaces of X^* are norming.

 \iff for every weak* dense subspace A of X* we have $A^{(1)} = \overline{A}^{w^*}$

X is quasi-reflexive $\stackrel{def.}{\iff}$ X is of finite codimension in X^{**}.

Theorem (Davis, Johnson 1972)

X quasi-reflexive \iff all total subspaces of X^* are norming.

 \iff for every weak* dense subspace A of X* we have $A^{(1)} = \overline{A}^{w^*}$ \iff for every subspace A of X* we have $A^{(1)} = \overline{A}^{w^*}$

Let $A \subseteq X^*$. For α non-limit ordinal set

$$A^{(\alpha)} = \left(A^{(\alpha-1)}\right)^{(1)},$$

for α limit ordinal set

 $A^{(lpha)} = \bigcup_{eta < lpha} A^{(eta)}.$

Zdeněk Silber, Charles University

- E > - E >

Image: Image:

э

Let $A \subseteq X^*$. For α non-limit ordinal set

$$A^{(\alpha)} = \left(A^{(\alpha-1)}\right)^{(1)},$$

for α limit ordinal set

$$A^{(\alpha)} = \bigcup_{\beta < \alpha} A^{(\beta)}.$$

Definition

The order of $A \subseteq X^*$ is the least ordinal α such that $A^{(\alpha)} = A^{(\alpha+1)}$.

3

イロト 不得 トイヨト イヨト

Theorem (Ostrovskii 2011)

X non-reflexive \implies there is a convex set $A \subseteq X^*$ of order at least 2.

Theorem (Ostrovskii 2011)

X non-reflexive \implies there is a convex set $A \subseteq X^*$ of order at least 2.

Theorem (Ostrovskii 1987)

Let X be a separable non-quasi-reflexive B.S. Then

- For any countable non-limit α there is a subspace A of X^* of order α .
- Every subspace of X^* is of countable non-limit order.

The first result

Theorem (S. 2021)

Let X be a non-reflexive B.S. Then

- For any finite ordinal *n* there is a convex subset of X^* of order *n*.
- There is a convex subset of X^* of order $\omega + 1$.

Theorem (S. 2021)

Let X be a non-reflexive B.S. Then

- For any finite ordinal n there is a convex subset of X^* of order n.
- There is a convex subset of X^* of order $\omega + 1$.
- Ostrovskii (unpublished): there are convex sets of any countable non-limit order in the dual of any non-reflexive space.

Theorem (S. 2021)

Let X be a non-reflexive B.S. Then

- For any finite ordinal n there is a convex subset of X^* of order n.
- There is a convex subset of X^* of order $\omega + 1$.
- Ostrovskii (unpublished): there are convex sets of any countable non-limit order in the dual of any non-reflexive space.

Theorem (Singer, Pelczynski 1962)

X non-reflexive Banach space. Then X contains a seminormalized basic sequence (z_n) with bounded partial sums.

Theorem (S. 2021)

Let X be a non-reflexive B.S. Then

- For any finite ordinal n there is a convex subset of X^* of order n.
- There is a convex subset of X^* of order $\omega + 1$.
- Ostrovskii (unpublished): there are convex sets of any countable non-limit order in the dual of any non-reflexive space.

Theorem (Singer, Pelczynski 1962)

X non-reflexive Banach space. Then X contains a seminormalized basic sequence (z_n) with bounded partial sums.

Question

Can the order of a convex subset be a countable limit ordinal?

8/10

A D N A B N A B N A B N

Question (García, Kalenda, Maestre)

For which Banach spaces X does there exist a subspace A of X^* such that $A^{(1)}$ is a proper norm dense subspace of X^* ?

Question (García, Kalenda, Maestre)

For which Banach spaces X does there exist a subspace A of X^* such that $A^{(1)}$ is a proper norm dense subspace of X^* ?

• Motivated by the study of extension properties of holomorphic functions on dual Banach spaces.

Question (García, Kalenda, Maestre)

For which Banach spaces X does there exist a subspace A of X^* such that $A^{(1)}$ is a proper norm dense subspace of X^* ?

• Motivated by the study of extension properties of holomorphic functions on dual Banach spaces.

Theorem (Ostrovskii 2011)

The dual Banach space X^* contains a linear subspace A such that $A^{(1)}$ is a proper norm dense subset of X^* , if and only if X is a non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual.

Theorem (S. 2022)

Let X be a Banach space. Then the following are equivalent:

- X is non-quasi-reflexive and contains an infinite-dimensional subspace with separable dual.
- There is a subspace A in X*, such that A⁽¹⁾ is a proper norm dense subspace of X*.
- So For each countable successor ordinal α there is a subspace A in X*, such that A^(α) is a proper norm dense subspace of X*.

Theorem (S. 2022)

Let X be a Banach space. Then the following are equivalent:

- X is non-quasi-reflexive and contains an infinite-dimensional subspace with separable dual.
- There is a subspace A in X*, such that A⁽¹⁾ is a proper norm dense subspace of X*.
- Solution For each countable successor ordinal α there is a subspace A in X*, such that A^(α) is a proper norm dense subspace of X*.
 - The proof uses the existence of a subspace of X with nice finite-dimensional decomposition.

Theorem (S. 2022)

Let X be a Banach space. Then the following are equivalent:

- X is non-quasi-reflexive and contains an infinite-dimensional subspace with separable dual.
- There is a subspace A in X*, such that A⁽¹⁾ is a proper norm dense subspace of X*.
- Solution For each countable successor ordinal α there is a subspace A in X*, such that A^(α) is a proper norm dense subspace of X*.
 - The proof uses the existence of a subspace of X with nice finite-dimensional decomposition.
 - It is unknown if we can always find such A for a limit ordinal α (possible in c_0 , unclear in $\ell_1 \oplus \ell_2$).