Institute of Mathematics Czech Academy of Sciences

An Asplund space with norming M-basis that is not WCG

Tommaso Russo tommaso.russo.math@gmail.com

P. Hájek, T. Russo, J. Somaglia, and S. Todorčević, An Asplund space with norming Markuševič basis that is not weakly compactly generated, Adv. Math. **392**, 108041 (2021).

> TOPOSYM 2022 Prague, Czech Republic July 25–29, 2022

- $\blacktriangleright \langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta},$
- ► span{ u_{α} }_{$\alpha \in \Gamma$} is dense in \mathcal{X} ,
- ▶ span{ φ_{α} } $_{\alpha \in \Gamma}$ is *w*^{*}-dense in \mathcal{X}^* .

 $\begin{aligned} &\{\langle \varphi_{\alpha}, \mathbf{x} \rangle \colon \alpha \in \Gamma\} & \quad \text{are the coordinates of } \mathbf{x} \in \mathcal{X} \\ &\{\langle \psi, \mathbf{x}_{\alpha} \rangle \colon \alpha \in \Gamma\} & \quad \text{are the coordinates of } \psi \in \mathcal{X}^*. \end{aligned}$

- Markuševič, 1943. Every separable Banach space has an M-basis.
- Amir–Lindenstrauss, 1968. Every WCG Banach space has an M-basis;
 - $Def: \mathcal{X}$ is WCG if it contains a linearly dense weakly compact subset.
- **Johnson, 1970.** ℓ_{∞} has no M-basis.

$$\blacktriangleright \langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta},$$

- ► span{ u_{α} }_{$\alpha \in \Gamma$} is dense in \mathcal{X} ,
- ▶ span{ φ_{α} }_{$\alpha \in \Gamma$} is *w*^{*}-dense in \mathcal{X}^* .

 $\{ \langle \varphi_{\alpha}, x \rangle \colon \alpha \in \Gamma \}$ are the **coordinates** of $x \in \mathcal{X}$ $\{ \langle \psi, x_{\alpha} \rangle \colon \alpha \in \Gamma \}$ are the **coordinates** of $\psi \in \mathcal{X}^*$.

Markuševič, 1943. Every separable Banach space has an M-basis.

Amir–Lindenstrauss, 1968. Every WCG Banach space has an M-basis;

Def: \mathcal{X} is **WCG** if it contains a linearly dense weakly compact subset.

$$\blacktriangleright \langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta},$$

- ► span{ u_{α} }_{$\alpha \in \Gamma$} is dense in \mathcal{X} ,
- ▶ span{ φ_{α} }_{$\alpha \in \Gamma$} is *w*^{*}-dense in \mathcal{X}^* .

 $\{\langle \varphi_{\alpha}, \mathbf{x} \rangle \colon \alpha \in \Gamma\} \qquad \text{are the coordinates of } \mathbf{x} \in \mathcal{X}$

 $\{\langle \psi, \mathsf{x}_{\alpha} \rangle \colon \alpha \in \Gamma\} \qquad \text{are the coordinates of } \psi \in \mathcal{X}^*.$

Markuševič, 1943. Every separable Banach space has an M-basis.

 Amir–Lindenstrauss, 1968. Every WCG Banach space has an M-basis;

Def: \mathcal{X} is **WCG** if it contains a linearly dense weakly compact subset.

$$\blacktriangleright \langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta},$$

- ▶ span{ u_{α} }_{$\alpha \in \Gamma$} is dense in \mathcal{X} ,
- ▶ span{ φ_{α} }_{$\alpha \in \Gamma$} is *w*^{*}-dense in \mathcal{X}^* .

 $\{\langle \varphi_{\alpha}, \mathbf{x} \rangle \colon \alpha \in \Gamma\} \qquad \text{are the coordinates of } \mathbf{x} \in \mathcal{X}$

 $\{\langle \psi, \mathsf{x}_{\alpha} \rangle \colon \alpha \in \Gamma\} \qquad \text{are the coordinates of } \psi \in \mathcal{X}^*.$

- Markuševič, 1943. Every separable Banach space has an M-basis.
- Amir–Lindenstrauss, 1968. Every WCG Banach space has an M-basis;

Def : \mathcal{X} is **WCG** if it contains a linearly dense weakly compact subset.

$$\blacktriangleright \langle \varphi_{\beta}, u_{\alpha} \rangle = \delta_{\alpha,\beta},$$

- ▶ span{ u_{α} } $_{\alpha\in\Gamma}$ is dense in \mathcal{X} ,
- ▶ span{ φ_{α} }_{$\alpha \in \Gamma$} is *w*^{*}-dense in \mathcal{X}^* .

 $\{\langle \varphi_{\alpha}, x \rangle \colon \alpha \in \Gamma\}$ are the **coordinates** of $x \in \mathcal{X}$

 $\{\langle \psi, \mathsf{x}_{\alpha} \rangle \colon \alpha \in \Gamma\} \qquad \text{are the coordinates of } \psi \in \mathcal{X}^{*}.$

- Markuševič, 1943. Every separable Banach space has an M-basis.
- Amir–Lindenstrauss, 1968. Every WCG Banach space has an M-basis;

Def: \mathcal{X} is **WCG** if it contains a linearly dense weakly compact subset.

- Several classes of Banach spaces can be characterised by the existence of M-bases with additional properties.
- So it is tempting to ask if span{φ_α}_{α∈Γ} exhausts X^{*} in a stronger sense.
- $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is shrinking if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is dense in \mathcal{X}^* .
- An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if

- Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- ► Alexandrov–Plichko, 2006. C([0, ω₁]) has no norming M-basis.

- Several classes of Banach spaces can be characterised by the existence of M-bases with additional properties.
- So it is tempting to ask if span{φ_α}_{α∈Γ} exhausts X^{*} in a stronger sense.
- $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is shrinking if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is dense in \mathcal{X}^* .
- An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if

- Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- ► Alexandrov–Plichko, 2006. C([0, ω₁]) has no norming M-basis.

- 2
- Several classes of Banach spaces can be characterised by the existence of M-bases with additional properties.
- So it is tempting to ask if span{φ_α}_{α∈Γ} exhausts X^{*} in a stronger sense.
- ► $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is shrinking if span $\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is dense in \mathcal{X}^* .
- An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if

- Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- Alexandrov–Plichko, 2006. C([0, ω₁]) has no norming M-basis.

- 2
- Several classes of Banach spaces can be characterised by the existence of M-bases with additional properties.
- So it is tempting to ask if span{φ_α}_{α∈Γ} exhausts X^{*} in a stronger sense.
- $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is shrinking if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is dense in \mathcal{X}^* .
- An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if

- Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- Alexandrov–Plichko, 2006. $C([0, \omega_1])$ has no norming M-basis.

- 2
- Several classes of Banach spaces can be characterised by the existence of M-bases with additional properties.
- So it is tempting to ask if span{φ_α}_{α∈Γ} exhausts X^{*} in a stronger sense.
- $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is shrinking if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is dense in \mathcal{X}^* .
- An M-basis $\{u_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if

- Separable Banach spaces have a 1-norming M-basis (Markuševič).
- Every reflexive Banach space has a shrinking M-basis.
- ▶ Alexandrov–Plichko, 2006. $C([0, \omega_1])$ has no norming M-basis.

- Which class of Banach spaces is characterised by admitting a norming M-basis?
- ► John-Zizler, 1974. Do WCG spaces have a norming M-basis?

Theorem (Hájek, Advances 2019)

There exists a WCG $C(\mathcal{K})$ space with no norming M-basis.

Def : \mathcal{X} is **Asplund** if every its separable subspace has separable dual.

- $C(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- ► Godefroy, ~1990. Let X be an Asplund space with a norming M-basis. Is X WCG?

Theorem A (Hájek, R., Somaglia, Todorčević, Advances 2021) There exists an Asplund space \mathcal{X} with a 1-norming M-basis such that \mathcal{X} is not WCG.

- Which class of Banach spaces is characterised by admitting a norming M-basis?
- **John–Zizler, 1974.** Do WCG spaces have a norming M-basis?

Theorem (Hájek, Advances 2019)

There exists a WCG $\mathcal{C}(\mathcal{K})$ space with no norming M-basis.

Def : \mathcal{X} is **Asplund** if every its separable subspace has separable dual.

- $C(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- ► Godefroy, ~1990. Let X be an Asplund space with a norming M-basis. Is X WCG?

Theorem A (Hájek, R., Somaglia, Todorčević, Advances 2021) There exists an Asplund space \mathcal{X} with a 1-norming M-basis such that \mathcal{X} is not WCG.

- Which class of Banach spaces is characterised by admitting a norming M-basis?
- **John–Zizler, 1974.** Do WCG spaces have a norming M-basis?

Theorem (Hájek, Advances 2019)

There exists a WCG $\mathcal{C}(\mathcal{K})$ space with no norming M-basis.

 $\textit{Def}:~\mathcal{X}$ is Asplund if every its separable subspace has separable dual.

- $C(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- ► Godefroy, ~1990. Let X be an Asplund space with a norming M-basis. Is X WCG?

Theorem A (Hájek, R., Somaglia, Todorčević, Advances 2021) There exists an Asplund space \mathcal{X} with a 1-norming M-basis such that \mathcal{X}

- Which class of Banach spaces is characterised by admitting a norming M-basis?
- **John–Zizler, 1974.** Do WCG spaces have a norming M-basis?

Theorem (Hájek, Advances 2019)

There exists a WCG $\mathcal{C}(\mathcal{K})$ space with no norming M-basis.

Def : \mathcal{X} is **Asplund** if every its separable subspace has separable dual.

- $C(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- ► Godefroy, ~1990. Let X be an Asplund space with a norming M-basis. Is X WCG?

Theorem A (Hájek, R., Somaglia, Todorčević, Advances 2021) There exists an Asplund space \mathcal{X} with a 1-norming M-basis such that \mathcal{X} is not WCG.

- Which class of Banach spaces is characterised by admitting a norming M-basis?
- **John–Zizler, 1974.** Do WCG spaces have a norming M-basis?

Theorem (Hájek, Advances 2019)

There exists a WCG $\mathcal{C}(\mathcal{K})$ space with no norming M-basis.

Def : \mathcal{X} is **Asplund** if every its separable subspace has separable dual.

- $C(\mathcal{K})$ is Asplund iff \mathcal{K} is scattered.
- ► Godefroy, ~1990. Let X be an Asplund space with a norming M-basis. Is X WCG?

Theorem A (Hájek, R., Somaglia, Todorčević, Advances 2021)

There exists an Asplund space ${\mathcal X}$ with a 1-norming M-basis such that ${\mathcal X}$ is not WCG.

Our example is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ (that is not WCG).

Problem. Is there a $C(\mathcal{K})$ example?

We now explain how to build \mathcal{K} .

 $\blacktriangleright \ \mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma} \text{ by } A \leftrightarrow 1_{A};$

 \blacktriangleright This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$.

Theorem B (HRST)

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

(i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$, (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leq \omega_1$, (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$ (iv) \mathcal{K}_{ϱ} is scattered.

Our example is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ (that is not WCG).

Problem. Is there a $C(\mathcal{K})$ example?

We now explain how to build $\ensuremath{\mathcal{K}}.$

• $\mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma}$ by $A \leftrightarrow 1_A$;

 \blacktriangleright This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$.

Theorem B (HRST)

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

(i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$,

(ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leqslant \omega_1$,

(iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$, (iv) \mathcal{K}_{φ} is scattered. Our example is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ (that is not WCG).

Problem. Is there a $C(\mathcal{K})$ example?

We now explain how to build \mathcal{K} .

- $\blacktriangleright \mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma} \text{ by } A \leftrightarrow 1_A;$
- This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$.

Theorem B (HRST)

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

- (i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$,
- (ii) $[0,\alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leqslant \omega_1$,

(iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$, (iv) \mathcal{K}_{α} is scattered Our example is a subspace of an Asplund $C(\mathcal{K})$ (that is not WCG).

Problem. Is there a $C(\mathcal{K})$ example?

We now explain how to build \mathcal{K} .

$$\blacktriangleright \mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma} \text{ by } A \leftrightarrow 1_{A};$$

• This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$.

Theorem B (HRST)

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties:

(1) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$, (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leq \omega_1$, (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leq \omega_1$, (iv) \mathcal{K}_{ϱ} is scattered. Our example is a subspace of an Asplund $C(\mathcal{K})$ (that is not WCG).

Problem. Is there a $C(\mathcal{K})$ example?

We now explain how to build \mathcal{K} .

$$\blacktriangleright \mathcal{P}(\Gamma) \equiv \{0,1\}^{\Gamma} \text{ by } A \leftrightarrow 1_{A};$$

• This gives a compact 'product' topology on $\mathcal{P}(\Gamma)$.

Theorem B (HRST)

There exists a family $\mathcal{F}_{\varrho} \subseteq [\omega_1]^{<\omega}$ of finite subsets of ω_1 such that $\mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}$ has the following properties: (i) $\{\alpha\} \in \mathcal{K}_{\varrho}$ for every $\alpha < \omega_1$, (ii) $[0, \alpha) \in \mathcal{K}_{\varrho}$ for every $\alpha \leqslant \omega_1$, (iii) if $A \in \mathcal{K}_{\varrho}$ is an infinite set, then $A = [0, \alpha)$ for some $\alpha \leqslant \omega_1$, (iv) \mathcal{K}_{ϱ} is scattered.

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261–294.

- S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.
 - We consider functions $\varrho \colon [\omega_1]^2 \to \omega$.
 - We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\varrho(\alpha, \beta)$, with $\alpha < \beta$, for $\varrho(\{\alpha, \beta\})$.
 - We also add the 'boundary condition' $\varrho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ρ -function on ω_1 is a function $\rho: [\omega_1]^2 \to \omega$ such that: ($\rho 1$) { $\xi \leq \alpha: \rho(\xi, \alpha) \leq n$ } is finite, for every $\alpha < \omega_1$ and $n < \omega$ ($\rho 2$) $\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$, ($\rho 3$) $\rho(\alpha, \beta) \leq \max\{\rho(\alpha, \gamma), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$.

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261–294.

- S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.
 - We consider functions $\varrho \colon [\omega_1]^2 \to \omega$.
 - We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\varrho(\alpha, \beta)$, with $\alpha < \beta$, for $\varrho(\{\alpha, \beta\})$.
 - We also add the 'boundary condition' $\varrho(lpha, lpha) = 0$.

Definition (Todorčević)

A ρ -function on ω_1 is a function $\rho: [\omega_1]^2 \to \omega$ such that: ($\rho 1$) { $\xi \leq \alpha: \rho(\xi, \alpha) \leq n$ } is finite, for every $\alpha < \omega_1$ and $n < \omega$ ($\rho 2$) $\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$, ($\rho 3$) $\rho(\alpha, \beta) \leq \max\{\rho(\alpha, \gamma), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$.

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261–294.

- S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.
- We consider functions $\varrho \colon [\omega_1]^2 \to \omega$.
- We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\varrho(\alpha, \beta)$, with $\alpha < \beta$, for $\varrho(\{\alpha, \beta\})$.
- We also add the 'boundary condition' $\varrho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ϱ -function on ω_1 is a function $\varrho : [\omega_1]^2 \to \omega$ such that: $(\varrho 1) \{\xi \leq \alpha : \varrho(\xi, \alpha) \leq n\}$ is finite, for every $\alpha < \omega_1$ and $n < \omega$ $(\varrho 2) \ \varrho(\alpha, \gamma) \leq \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$, $(\varrho 3) \ \varrho(\alpha, \beta) \leq \max\{\varrho(\alpha, \gamma), \varrho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$.

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261–294.

- S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.
- We consider functions $\varrho \colon [\omega_1]^2 \to \omega$.
- We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\rho(\alpha, \beta)$, with $\alpha < \beta$, for $\rho(\{\alpha, \beta\})$.
- We also add the 'boundary condition' $\rho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ϱ -function on ω_1 is a function $\varrho : [\omega_1]^2 \to \omega$ such that: $(\varrho 1) \{\xi \leq \alpha : \varrho(\xi, \alpha) \leq n\}$ is finite, for every $\alpha < \omega_1$ and $n < \omega$ $(\varrho 2) \ \varrho(\alpha, \gamma) \leq \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$, $(\varrho 3) \ \varrho(\alpha, \beta) \leq \max\{\varrho(\alpha, \gamma), \varrho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$.

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261–294.

- S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.
- We consider functions $\varrho \colon [\omega_1]^2 \to \omega$.
- We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\rho(\alpha, \beta)$, with $\alpha < \beta$, for $\rho(\{\alpha, \beta\})$.
- We also add the 'boundary condition' $\rho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ρ -function on ω_1 is a function $\rho: [\omega_1]^2 \to \omega$ such that: (ρ 1) { $\xi \leq \alpha: \rho(\xi, \alpha) \leq n$ } is finite, for every $\alpha < \omega_1$ and $n < \omega$, (ρ 2) $\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$, (ρ 3) $\rho(\alpha, \beta) \leq \max\{\rho(\alpha, \gamma), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$.

S. Todorčević, Partitioning pairs of countable ordinals, Acta Math.
159 (1987), 261–294.

- S. Todorčević, *Walks on ordinals and their characteristics*. Birkhäuser Verlag, Basel, 2007.
 - We consider functions $\varrho \colon [\omega_1]^2 \to \omega$.
 - We identify $[\omega_1]^2 = \{(\alpha, \beta) \in \omega_1^2 : \alpha < \beta\}.$
 - Thus, we write $\rho(\alpha, \beta)$, with $\alpha < \beta$, for $\rho(\{\alpha, \beta\})$.
 - We also add the 'boundary condition' $\rho(\alpha, \alpha) = 0$.

Definition (Todorčević)

A ρ -function on ω_1 is a function $\rho: [\omega_1]^2 \to \omega$ such that: (ρ 1) { $\xi \leq \alpha: \rho(\xi, \alpha) \leq n$ } is finite, for every $\alpha < \omega_1$ and $n < \omega$, (ρ 2) $\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$, (ρ 3) $\rho(\alpha, \beta) \leq \max\{\rho(\alpha, \gamma), \rho(\beta, \gamma)\}$ for $\alpha < \beta < \gamma < \omega_1$.

Proposition (Todorčević)

There exists a function $\varrho: [\omega_1]^2 \to \omega$ such that $(\alpha < \beta < \gamma < \omega_1)$:

- $\blacktriangleright \ \varrho(\alpha,\beta) > 0;$
- $\blacktriangleright \ \varrho(\alpha, \gamma) \leqslant \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\};\$

$$\blacktriangleright \ \varrho(\alpha, \gamma) \neq \varrho(\beta, \gamma).$$

$F_n(\alpha) := \{\xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n\}$ $\mathcal{F}_n := \{F_n(\alpha) : n < \omega, \alpha < \omega_1\} \quad \text{and} \quad \mathcal{K}_n := \overline{\mathcal{F}_n}.$

Fact

$$|F_n(\alpha)| \leq n+1;$$

• $(F_n(\alpha))_{n < \omega}$ converges to $[0, \alpha]$.

Proposition (Todorčević)

There exists a function $\varrho: [\omega_1]^2 \to \omega$ such that $(\alpha < \beta < \gamma < \omega_1)$:

- $\blacktriangleright \ \varrho(\alpha,\beta) > 0;$
- $\blacktriangleright \ \varrho(\alpha, \gamma) \leqslant \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\};\$
- $\blacktriangleright \ \varrho(\alpha, \gamma) \neq \varrho(\beta, \gamma).$

$$F_n(\alpha) := \{\xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n\}$$
$$\mathcal{F}_{\varrho} := \{F_n(\alpha) : n < \omega, \, \alpha < \omega_1\} \quad \text{and} \quad \mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}.$$

Fact

$$|F_n(\alpha)| \leq n+1;$$

• $(F_n(\alpha))_{n < \omega}$ converges to $[0, \alpha]$.

Proposition (Todorčević)

There exists a function $\varrho: [\omega_1]^2 \to \omega$ such that $(\alpha < \beta < \gamma < \omega_1)$:

- $\blacktriangleright \ \varrho(\alpha,\beta) > 0;$
- $\blacktriangleright \ \varrho(\alpha, \gamma) \leqslant \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\};\$

$$\blacktriangleright \ \varrho(\alpha, \gamma) \neq \varrho(\beta, \gamma).$$

$$F_n(\alpha) := \{\xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n\}$$
$$\mathcal{F}_{\varrho} := \{F_n(\alpha) : n < \omega, \, \alpha < \omega_1\} \quad \text{and} \quad \mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}.$$

Fact

$$\models |F_n(\alpha)| \leq n+1;$$

• $(F_n(\alpha))_{n < \omega}$ converges to $[0, \alpha]$.

Proposition (Todorčević)

There exists a function $\varrho: [\omega_1]^2 \to \omega$ such that $(\alpha < \beta < \gamma < \omega_1)$:

- $\blacktriangleright \ \varrho(\alpha,\beta) > 0;$
- $\blacktriangleright \ \varrho(\alpha, \gamma) \leqslant \max\{\varrho(\alpha, \beta), \varrho(\beta, \gamma)\};\$

$$\blacktriangleright \ \varrho(\alpha, \gamma) \neq \varrho(\beta, \gamma).$$

$$F_n(\alpha) := \{\xi \leqslant \alpha : \varrho(\xi, \alpha) \leqslant n\}$$
$$\mathcal{F}_{\varrho} := \{F_n(\alpha) : n < \omega, \, \alpha < \omega_1\} \quad \text{and} \quad \mathcal{K}_{\varrho} := \overline{\mathcal{F}_{\varrho}}.$$

Fact

$$|F_n(\alpha)| \leq n+1;$$

• $(F_n(\alpha))_{n < \omega}$ converges to $[0, \alpha]$.

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_0(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Kubiś and Leiderman (2004). No semi-Eberlein compact space has a P-point.

- Used to find a Corson, not semi-Eberlein space.
- A point *p* ∈ K is a **P-point** if it is not isolated and for every choice of (U_j)_{j<ω} nhoods of *p*, ∩U_j is a nhood of *p*.

Question (Kubiś and Leiderman, 2004)

- A point p∈ K is a weak P-point if it is not isolated and no sequence in K \ {p} converges to p.
- The compact space K_q in Theorem B is semi-Eberlein and it has a weak P-point.

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_0(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Kubiś and Leiderman (2004). No semi-Eberlein compact space has a P-point.

- Used to find a Corson, not semi-Eberlein space.
- A point *p* ∈ *K* is a **P-point** if it is not isolated and for every choice of (*U_j*)_{*j*<ω} nhoods of *p*, ∩*U_j* is a nhood of *p*.

Question (Kubiś and Leiderman, 2004)

- A point p∈ K is a weak P-point if it is not isolated and no sequence in K \ {p} converges to p.
- The compact space K_e in Theorem B is semi-Eberlein and it has a weak P-point.

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_0(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Kubiś and Leiderman (2004). No semi-Eberlein compact space has a P-point.

- Used to find a Corson, not semi-Eberlein space.
- A point p ∈ K is a P-point if it is not isolated and for every choice of (U_j)_{j<ω} nhoods of p, ∩U_j is a nhood of p.

Question (Kubiś and Leiderman, 2004)

- A point p∈ K is a weak P-point if it is not isolated and no sequence in K \ {p} converges to p.
- The compact space K_e in Theorem B is semi-Eberlein and it has a weak P-point.

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_0(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Kubiś and Leiderman (2004). No semi-Eberlein compact space has a P-point.

- Used to find a Corson, not semi-Eberlein space.
- A point p ∈ K is a P-point if it is not isolated and for every choice of (U_j)_{j<ω} nhoods of p, ∩U_j is a nhood of p.

Question (Kubiś and Leiderman, 2004)

- A point p ∈ K is a weak P-point if it is not isolated and no sequence in K \ {p} converges to p.
- The compact space K_g in Theorem B is semi-Eberlein and it has a weak P-point.

A compact space is **semi-Eberlein** if it is homeomorphic to a compact $\mathcal{K} \subseteq [0,1]^{\Gamma}$ such that $c_0(\Gamma) \cap \mathcal{K}$ is dense in \mathcal{K} .

Kubiś and Leiderman (2004). No semi-Eberlein compact space has a P-point.

- Used to find a Corson, not semi-Eberlein space.
- A point $p \in \mathcal{K}$ is a **P-point** if it is not isolated and for every choice of $(U_j)_{j < \omega}$ nhoods of $p, \cap U_j$ is a nhood of p.

Question (Kubiś and Leiderman, 2004)

Can a semi-Eberlein compact space have weak P-points?

- A point p ∈ K is a weak P-point if it is not isolated and no sequence in K \ {p} converges to p.
- The compact space K_e in Theorem B is semi-Eberlein and it has a weak P-point.

T. Russo (Czech Academy of Sciences) | An Asplund space with norming M-basis that is not WCG

The end

P. Hájek, T. Russo, J. Somaglia, and S. Todorčević, An Asplund space with norming Markuševič basis that is not weakly compactly generated, Adv. Math. **392**, 108041 (2021).

Thank you for your attention!

▶ We define a biorthogonal system $\{f_{\gamma}; \mu_{\gamma}\}_{\gamma < \omega_1}$ in $C(\mathcal{K}_{\varrho})$:

$$f_{\gamma} \in \mathcal{C}(\mathcal{K}_{\varrho}) \qquad f_{\gamma}(A) = \begin{cases} 1 & \gamma \in A \\ 0 & \gamma \notin A \end{cases} \quad (A \in \mathcal{K}_{\varrho}) \\ \mu_{\gamma} := \delta_{\{\gamma\}} \in \mathcal{M}(\mathcal{K}_{\varrho}) \qquad \mu_{\gamma}(S) = \begin{cases} 1 & \{\gamma\} \in S \\ 0 & \{\gamma\} \notin S \end{cases} \quad (S \subseteq \mathcal{K}_{\varrho}).$$

 $\langle \mu_{\alpha}, f_{\gamma} \rangle = f_{\gamma}(\{\alpha\}) = \delta_{\alpha,\gamma}, \text{ so it is biorthogonal.}$

The space that we are looking for is

$$\mathcal{X}_{\varrho} := \overline{\operatorname{span}} \{ f_{\gamma} \}_{\gamma < \omega_1} \subseteq \mathcal{C}(\mathcal{K}_{\varrho}).$$