Minimal non-trivial closed hereditary coreflective subcategories in categories of topological spaces

Veronika Pitrová

Jan Evangelista Purkyně University in Ústí nad Labem

TOPOSYM 2022

• category: objects and morphisms

- category: objects and morphisms
- Top: topological spaces and continuous maps

- category: objects and morphisms
- Top: topological spaces and continuous maps
- subcategories of **Top** are assumed to be
 - full: $X, Y \in \mathbf{A}, f : X \to Y \Rightarrow f \in \mathbf{A}$

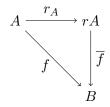
- category: objects and morphisms
- Top: topological spaces and continuous maps
- subcategories of **Top** are assumed to be
 - full: $X, Y \in \mathbf{A}, f : X \to Y \Rightarrow f \in \mathbf{A}$
 - isomorphism-closed: $X \in \mathbf{A}, X \cong Y \Rightarrow Y \in \mathbf{A}$

- category: objects and morphisms
- Top: topological spaces and continuous maps
- subcategories of **Top** are assumed to be
 - full: $X, Y \in \mathbf{A}, f : X \to Y \Rightarrow f \in \mathbf{A}$
 - isomorphism-closed: $X \in \mathbf{A}, X \cong Y \Rightarrow Y \in \mathbf{A}$
 - contain a non-empty space

$\mathbf{B}\subseteq \mathbf{A}$

$\mathbf{B} \subseteq \mathbf{A}$

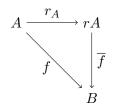
B is reflective in **A**:



$\mathbf{B} \subseteq \mathbf{A}$

B is reflective in **A**:

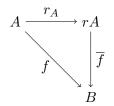
for every $A \in \mathbf{A}$ there exists an $rA \in \mathbf{B}$ and an $r_A : A \to rA$ such that for every $B \in \mathbf{B}$ and $f : A \to B$ there exists a unique $\overline{f} : rA \to B$ such that the following diagram commutes:



• Čech-Stone compactification

$\mathbf{B} \subseteq \mathbf{A}$

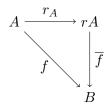
\mathbf{B} is reflective in \mathbf{A} :



- Čech-Stone compactification
- epireflective: every reflection is an epimorphism (onto)

$\mathbf{B} \subseteq \mathbf{A}$

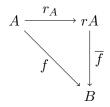
\mathbf{B} is reflective in \mathbf{A} :



- Čech-Stone compactification
- epireflective: every reflection is an epimorphism (onto)
- quotient reflective: every reflection is a quotient map

$\mathbf{B} \subseteq \mathbf{A}$

\mathbf{B} is reflective in \mathbf{A} :

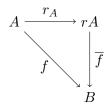


- Čech-Stone compactification
- epireflective: every reflection is an epimorphism (onto)
- quotient reflective: every reflection is a quotient map
- every epireflective subcategory of **Top** is assumed to contain a two-point space

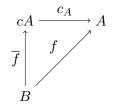
$\mathbf{B}\subseteq \mathbf{A}$

\mathbf{B} is reflective in \mathbf{A} :

for every $A \in \mathbf{A}$ there exists an $rA \in \mathbf{B}$ and an $r_A : A \to rA$ such that for every $B \in \mathbf{B}$ and $f : A \to B$ there exists a unique $\overline{f} : rA \to B$ such that the following diagram commutes:



B is coreflective in **A**:



• epireflective subcategories of **Top**: closed under the formation of products and subspaces

- epireflective subcategories of **Top**: closed under the formation of products and subspaces
 - Top₀, Top₁, Haus, ZD, Tych

- epireflective subcategories of **Top**: closed under the formation of products and subspaces
 - Top₀, Top₁, Haus, ZD, Tych
- quotient reflective subcategories of **Top**: closed under the formation of products, subspaces and spaces with finer topologies

- epireflective subcategories of **Top**: closed under the formation of products and subspaces
 - Top₀, Top₁, Haus, ZD, Tych
- quotient reflective subcategories of **Top**: closed under the formation of products, subspaces and spaces with finer topologies
 - Top₀, Top₁, Haus

- epireflective subcategories of **Top**: closed under the formation of products and subspaces
 - Top₀, Top₁, Haus, ZD, Tych
- quotient reflective subcategories of **Top**: closed under the formation of products, subspaces and spaces with finer topologies
 - Top₀, Top₁, Haus
- coreflective subcategories of **A** (**A** is epireflective in **Top**): closed under the formation of topological sums and extremal quotient objects

• epireflective subcategories of **Top**: closed under the formation of products and subspaces

• Top_0 , Top_1 , Haus, ZD, Tych

• quotient reflective subcategories of **Top**: closed under the formation of products, subspaces and spaces with finer topologies

• Top₀, Top₁, Haus

- coreflective subcategories of **A** (**A** is epireflective in **Top**): closed under the formation of topological sums and extremal quotient objects
 - $X \xrightarrow{q} Y \xrightarrow{r_Y} rY \dots rY$ is an extremal quotient object of X

• epireflective subcategories of **Top**: closed under the formation of products and subspaces

• Top₀, Top₁, Haus, ZD, Tych

• quotient reflective subcategories of **Top**: closed under the formation of products, subspaces and spaces with finer topologies

• Top₀, Top₁, Haus

- coreflective subcategories of **A** (**A** is epireflective in **Top**): closed under the formation of topological sums and extremal quotient objects
 - $X \xrightarrow{q} Y \xrightarrow{r_Y} rY \dots rY$ is an extremal quotient object of X
 - $\bullet\,$ they coincide with quotient spaces if ${\bf A}$ is quotient reflective

• epireflective subcategories of **Top**: closed under the formation of products and subspaces

• Top_0 , Top_1 , Haus, ZD, Tych

• quotient reflective subcategories of **Top**: closed under the formation of products, subspaces and spaces with finer topologies

• Top₀, Top₁, Haus

- coreflective subcategories of **A** (**A** is epireflective in **Top**): closed under the formation of topological sums and extremal quotient objects
 - $X \xrightarrow{q} Y \xrightarrow{r_Y} rY \dots rY$ is an extremal quotient object of X
 - $\bullet\,$ they coincide with quotient spaces if ${\bf A}$ is quotient reflective
 - $\bullet~\mathbf{Dis},\,\mathbf{FG}$ (finitely generated spaces), sequential spaces

• closed hereditary: closed under the formation of closed subspaces

- closed hereditary: closed under the formation of closed subspaces
- non-trivial: cointains a non-discrete space

- closed hereditary: closed under the formation of closed subspaces
- non-trivial: cointains a non-discrete space
- why non-trivial:

- closed hereditary: closed under the formation of closed subspaces
- non-trivial: cointains a non-discrete space
- why non-trivial: **B** is CHC in **A**

- closed hereditary: closed under the formation of closed subspaces
- non-trivial: cointains a non-discrete space
- why non-trivial:
 - ${\bf B}$ is CHC in ${\bf A} \Rightarrow {\bf B}$ contains a one point space

- closed hereditary: closed under the formation of closed subspaces
- non-trivial: cointains a non-discrete space
- why non-trivial:

 ${\bf B}$ is CHC in ${\bf A}\Rightarrow {\bf B}$ contains a one point space $\Rightarrow {\bf B}$ contains all discrete spaces

- closed hereditary: closed under the formation of closed subspaces
- non-trivial: cointains a non-discrete space
- why non-trivial:

 ${\bf B}$ is CHC in ${\bf A}\Rightarrow {\bf B}$ contains a one point space $\Rightarrow {\bf B}$ contains all discrete spaces

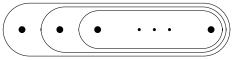
Dis is the smallest CHC subcategory

- $\mathbf{A} = \mathbf{Top}$
- $\mathbf{A} = \mathbf{Top}_0$
- $\mathbf{A} = \mathbf{Top}_1$
- $\mathbf{A} \subseteq \mathbf{Haus}, \, \mathbf{A}$ is quotient reflective in \mathbf{Top}
- $\mathbf{ZD} \subseteq \mathbf{A} \subseteq \mathbf{Tych}$, in this case \mathbf{A} is not quotient reflective in **Top**

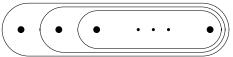
The spaces $B(\alpha)$

• α : regular cardinal

- α : regular cardinal
- B(α): the space on the set α ∪ {α}
 open subsets: {γ ∈ α ∪ {α} : γ ≥ β} for every β < α

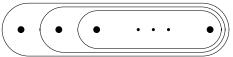


- α : regular cardinal
- B(α): the space on the set α ∪ {α}
 open subsets: {γ ∈ α ∪ {α} : γ ≥ β} for every β < α



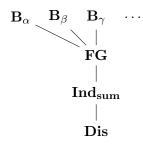
• $CH(B(\alpha)) = \mathbf{B}_{\alpha}$ is closed hereditary

- α : regular cardinal
- B(α): the space on the set α ∪ {α}
 open subsets: {γ ∈ α ∪ {α} : γ ≥ β} for every β < α

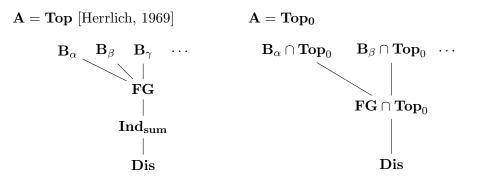


- $CH(B(\alpha)) = \mathbf{B}_{\alpha}$ is closed hereditary
- $\mathbf{B}_{\alpha} \cap \mathbf{B}_{\beta} = \mathbf{FG}$ for $\alpha \neq \beta$

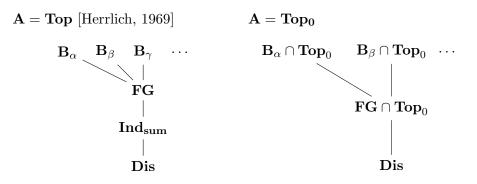
 $\mathbf{A} = \mathbf{Top}$ [Herrlich, 1969]



A is Top, Top_0 or Top_1



A is Top, Top_0 or Top_1



 $\mathbf{A} = \mathbf{Top_1}$ there are no minimal non-trivial CHC subcategories

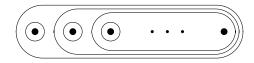
The spaces $C(\alpha)$

The spaces $C(\alpha)$

• α : regular cardinal

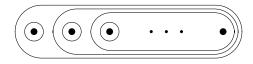
The spaces $C(\alpha)$

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup \{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup \{\alpha\}) \setminus U| < \alpha$



The spaces $C(\alpha)$

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup \{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup \{\alpha\}) \setminus U| < \alpha$



 $\operatorname{CH}_{\mathbf{A}}(C(\alpha))$ are minimal non-trivial CHC subcategories of \mathbf{A}

$\mathbf{Z}\mathbf{D}\subseteq \mathbf{A}\subseteq \mathbf{Tych}$

• sequential cardinal: κ is sequential if there exists a sequentially continuous non-continuous map $f: D_2^{\kappa} \to \mathbb{R}$

- sequential cardinal: κ is sequential if there exists a sequentially continuous non-continuous map $f: D_2^{\kappa} \to \mathbb{R}$
- assume that sequential cardinals do not exist

- sequential cardinal: κ is sequential if there exists a sequentially continuous non-continuous map $f: D_2^{\kappa} \to \mathbb{R}$
- assume that sequential cardinals do not exist
- the CHC subcategory generated by $C(\alpha)$ is $\mathbf{Top}(\alpha)$ such spaces that the intersection of less than α open subsets is open

- sequential cardinal: κ is sequential if there exists a sequentially continuous non-continuous map $f: D_2^{\kappa} \to \mathbb{R}$
- assume that sequential cardinals do not exist
- the CHC subcategory generated by $C(\alpha)$ is $\mathbf{Top}(\alpha)$ such spaces that the intersection of less than α open subsets is open
- the only CHC subcategories of **A** are **Dis** and **Top**(α)

- sequential cardinal: κ is sequential if there exists a sequentially continuous non-continuous map $f: D_2^{\kappa} \to \mathbb{R}$
- assume that sequential cardinals do not exist
- the CHC subcategory generated by $C(\alpha)$ is $\mathbf{Top}(\alpha)$ such spaces that the intersection of less than α open subsets is open
- the only CHC subcategories of **A** are **Dis** and **Top**(α)
- Top(α) ⊆ Top(β) for β ≤ α, therefore there are no minimal non-trivial CHC subcategories

Thank you for your attention!