Title

On pseudoarc and dynamics

Piotr Oprocha (based on joint works with Jan Boroński and Jernej Činč)

AGH University of Science and Technology, Kraków, Poland – and – IT4Innovations, University of Ostrava, Ostrava, Czech Republic

TOPOSYM 2022, Prague, Czech Republic, Jul 26, 2022

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Image: A math

- J. Boroński, J. Činč, P.O., Beyond 0 and ?: A solution to the Barge Entropy Conjecture, preprint,
- J. Činč, P.O., Parametrized family of pseudo-arc attractors: physical measures and prime end rotations, Proc. London Math. Soc., to appear

The pseudo-arc - the beginnings

Knaster 1922: the first example of a nondegenerate hereditarily indecomposable¹ continuum.

¹*K* decomposable: $\exists A \neq B \subset K$ proper subcontinua so that $A \cup B = K$. ²*K* homogeneous: $\forall x, y \in K \exists$ homeomorphism $h : K \to K$ s.t. $h(x) = y \ge x \ge x \otimes x$. Piotr Oprocha (AGH & UO) On pseudoarc and dynamics Prague, Jul 2022 3/31

The pseudo-arc - the beginnings

Knaster 1922: the first example of a nondegenerate hereditarily indecomposable¹ continuum.

Moise 1948: a new example homeomorphic to all of its non-degenerate subcontinua (hence "pseudo-arc").

¹*K* decomposable: $\exists A \neq B \subset K$ proper subcontinua so that $A \cup B = K$. ²*K* homogeneous: $\forall x, y \in K \exists$ homeomorphism $h: K \to K$ s.t. $h(x) = y \ge x \ge x \otimes x$. Piotr Oprocha (AGH & UO) On pseudoarc and dynamics Prague, Jul 2022 3/31

The pseudo-arc - the beginnings

Knaster 1922: the first example of a nondegenerate hereditarily indecomposable¹ continuum.

Moise 1948: a new example homeomorphic to all of its non-degenerate subcontinua (hence "pseudo-arc").

Bing, 1948: a new example of a homogeneous² continuum.

¹*K* decomposable: $\exists A \neq B \subset K$ proper subcontinua so that $A \cup B = K$. ²*K* homogeneous: $\forall x, y \in K \exists$ homeomorphism $h: K \rightarrow K$ s.t. $h(x) = y \equiv k \equiv 0$ or R. Piotr Oprocha (AGH & UO) On pseudoarc and dynamics Prague, Jul 2022 3 / 31

The pseudo-arc

 Bing 1951: all three examples (of Knaster, Moise, and Bing) are homeomorphic

Theorem (Bing, 1951)

In \mathbb{R}^n most of continua are pseudo-arcs (form a residual set in the space of all continua with Hausdorff metric).

Theorem (Hoehn & Oversteegen, 2016)

There are exactly 3 topologically distinct homogeneous planar continua:

- circle;
- pseudo-arc;
- circle of pseudo-arcs.

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Possible tools of construction

Janiszewski-Knaster Buckethandle Continuum

- $inverse limit \mathbb{X} = \varprojlim \{f, X\} = \\ \{(x_0, x_1, \ldots) : x_i \in X, f(x_{i+1}) = x_i\}$
 - Shift homeomorphism - $\sigma_f(x_0, x_1, \ldots) = (f(x_0), x_0, x_1, \ldots)$
 - σ_f shares many dynamical properties of f (including entropy)
 - Knaster-Janiszewski continuum is inverse limit of tent map.

Structure of continuum can affect the dynamics

Consider tent family and related Knaster continua K_s , for $s \in [1, 2]$

$$f_{s}(x) = \min\{sx, s(1-x)\}, \qquad K_{s} = \varprojlim([0,1], f_{s}).$$

Theorem (Bruin & Štimac, 2012)

Fix an $s \in [1, 2]$. Any homeomorphism on K_s has topological entropy equal to nlog(s) for some integer $n \ge 0$.

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 6 / 31

Structure of continuum can affect the dynamics

Consider tent family and related Knaster continua K_s , for $s \in [1,2]$

$$f_s(x) = \min\{sx, s(1-x)\}, \qquad K_s = \varprojlim([0,1], f_s).$$

Theorem (Bruin & Štimac, 2012)

Fix an $s \in [1,2]$. Any homeomorphism on K_s has topological entropy equal to nlog(s) for some integer $n \ge 0$.

Theorem (Cook, 1967)

There is a continuum C such that the only non-constant continuous map on C is the identity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Crookedness and the pseudo-arc

• We say that $f \in C(I)$ is δ -crooked between a and b if,

- for every two points $c, d \in I$ such that f(c) = a and f(d) = b,
- there is a point c' between c and d and there is a point d' between c' and d
- such that $|b f(c')| < \delta$ and $|a f(d')| < \delta$.
- We say that f is δ-crooked if it is δ-crooked between every pair of points.

Rysunek: Map f is $(\frac{1}{5} + \varepsilon)$ -crooked.

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

- **(1)** It is clear that continuous f can be crooked only up to some δ .
- e However crookedness can increase with iterations.
- This enables the following technique.

Theorem (Minc & Transue, 1991)

Let $f \in C(I)$ be a map with the property that,

- for every $\delta > 0$ there is an integer n > 0
- such that f^n is δ -crooked.

Then \mathbb{X} is the pseudoarc.

Visualizing pseudoarc is problematic

DRAWING THE PSEUDO-ARC

FIGURE 5. Two more "graphs" of σ_{200}

W. Lewis & P. Minc

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 9 / 31

э

< 17 ▶

< 3 >

15

Pseudo-arc as Inverse Limit

Henderson's interval map (approx.) with 0 topological entropy, such that $\lim(f, [0, 1])$ is a pseudo-arc.

Approximation of an interval map with positive topological entropy, such that $\lim(f, [0, 1])$ is a pseudo-arc (Minc&Lewis)

▶ < ≧ ▶ < ≧ ▶ ∃ Prague, Jul 2022

10 / 31

Image: A match a ma

Theorem (Kennedy, 1989)

If C is a Cantor set in a pseudoarc P, such that C meets each composant of P in at most one point, then each homeomorphism of C onto C extends to a homeomorphism of P onto P.

• Cook showed that no such C can intersect every composant of X

Theorem (Kennedy, 1991)

A transitive homeomorphism of the pseudo-arc semi-conjugate to the full tent map.

 Method of Minc and Transue provides yet another, effective way of construction of transitive (or even topologically mixing) homeomorphisms of pseudo-arc.

< ロ > < 同 > < 回 > < 回 > < 回 >

Theorem (Block, Keesling & Uspenskij, 2000)

Homeomorphisms on the pseudo-arc, that are conjugate to shifts on inverse limit of arcs, have topological entropy greater than $\log(2)/2$, if positive.

Theorem (Block, Keesling & Uspenskij, 2000)

Homeomorphisms on the pseudo-arc, that are conjugate to shifts on inverse limit of arcs, have topological entropy greater than $\log(2)/2$, if positive.

Theorem (Mouron, 2012)

Homeomorphisms on the pseudo-arc that are:

- shifts on the inverse limit of arcs or
- extensions of interval maps

have topological entropy either 0 or ∞ .

- The above is a special case of Mouron's theorem. In fact the infinite entropy is a consequence of strong form of stretching in these map.
- From the above it follows that transitive homeomorphisms of Kennedy, and Minc-Transue have infinite entropy

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Theorem (Lewis, 1980)

For every n there exists a period n homeomorphism of the pseudo-arc that extends to a kind of rotation of the plane. The constructed homeomorphism has all points of period n except one fixed point.

• Extension to the plane is obtained be a version of (Brown-)Barge-Martin technique from 1990 (inverse limit)

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 13 / 31

(B)

Infinite minimal set and zero entropy

Remark

By symmetry in Lewis construction we also obtain, for every n, the pseudo-arc branched n-to-1 cover of itself, with one branching point.

• This way we obtain a homeomorphism of pseudo-arc with:

- Unique fixed point;
- Each other point in an odometer (e.g. 2-adic).

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

A result with Jan and Jernej

Question (Brage, 1989)

Does there exists for every $r \in [0, \infty]$ a homeomorphism of pseudo-arc with entropy r?

Theorem (Boroński, Činč, O., 2019)

For every $r \in [0, \infty)$ there exists a pseudo-arc homeomorphism $f : P \to P$ such that $h_{top}(f) = r$. Entropy comes from product of unique measure of entropy r of some Cantor set homeomorphism $g : C \to C$ (embedded in the fibers) and Haar measure (for some odometer).

- The idea originates from a paper by Béguin-Crovisier-Le Roux, who extended Rees-Denjoy technique on manifolds.
- It's execution on the pseudo-arc is very delicate, and is obtained by combining with inverse limit techniques.
- The map on P extends "Lewis map with odometers".

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Inverse limits with natural measure - space $C_{\lambda}(I)$

- λ the Lebesgue measure on I = [0, 1].
- 2 main space

 $C_{\lambda}(I) = \{f \in C(I); \forall A \subset [0,1], A \text{ Borel} : \lambda(A) = \lambda(f^{-1}(A))\}.$

- we endow the set C_λ(I) with the metric ρ of uniform convergence.
 (C_λ(I), ρ) is a complete metric space.
- **③** a property *P* is typical in $(C_{\lambda}(I), \rho) \equiv$ the set of all maps with the property *P* is residual, maps bearing a typical property are called generic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

J. Bobok, S. Troubetzkoy, *Typical properties of interval maps preserving the Lebesgue measure*, Nonlinearity (33)(2020), 6461–6501.

• $C_{\lambda}(I)$ typical map

- is weakly mixing with respect to λ ,
- is locally eventually onto,
- satisfies the periodic specification property,
- 4 has infinite topological entropy,
- **()** has its graph of Hausdorff dimension = lower Box dimension = 1.
- and its graph upper Box dimension = 2
 [J. Schmeling, R. Winkler, *Typical dimension of the graph of certain functions*, Monatsh. Math. **119** (1995), 303–320].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Standard examples do not preserve λ

Henderson's interval map (approx.) with 0 topological entropy, such that $\lim(f, [0, 1])$ is a pseudo-arc.

Approximation of an interval map with positive topological entropy, such that $\lim(f, [0, 1])$ is a pseudo-arc (Minc&Lewis)

Prague, Jul 2022 18 / 31

< 47 ▶

Yet another typical property in $C_{\lambda}(I)$

For typical $f \in C_{\lambda}(I)$ the inverse limit $\lim_{l \to \infty} (I, f)$ is the pseudoarc.

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 19 / 31

Barge & Martin paper

 M. Barge, J. Martin, *The construction of global attractors*. Proc. Amer. Math. Soc. **110** (1990), 523–525.

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 20 / 31

Image: A matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

< 4³ ►

3

By Brown's approx. thm. $\hat{D} = \varprojlim(D, H)$ is a topological disk. Furthermore, \hat{I} is embedded in \hat{D} , $\hat{H}|_{\hat{I}} = \sigma_f : \hat{I} \to \hat{I}$.

Piotr Oprocha (AGH & UO)

Prague, Jul 2022

By Brown's approx. thm. $\hat{D} = \varprojlim(D, H)$ is a topological disk. Furthermore, \hat{I} is embedded in \hat{D} , $\hat{H}|_{\hat{I}} = \sigma_f : \hat{I} \to \hat{I}$. Outcome: Homeomorphism of a topological disk with the unique global attractor homeomorphic to \hat{I} and action on it conjugate to σ_f .

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Boyland, de Carvalho, Hall (2016 BLMS, 2019 DCDS, 2021 G&T): Parametrized version of BBM's. Complete understanding of dynamics of BBM embeddings $\{\Lambda_s\}_{s \in [\sqrt{2},2]}$ of parametrized family of core tent maps $\{T_s\}_{s \in [\sqrt{2},2]}$ and their measure-theoretic properties. In particular, prime end rotation number of $\{\Lambda_s\}_{s \in [\sqrt{2},2]}$ varies continuously with *s*.

Anušić, Činc (2019, Diss. Math.): Reproducing topological results from BdCH 2021 using different techniques and completely characterizing types of accessible points of $\{\Lambda_s\}_{s \in [\sqrt{2},2]}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

. . .

There exists a dense G_{δ} set of maps $A \subset \mathfrak{T} \subset C_{\lambda}(I)$ and a parametrized family of homeomorphisms $\{\Phi_f\}_{f \in A} \subset \mathfrak{H}(D, D)$ with Φ_f -invariant pseudo-arc attractors $\Lambda_f \subset D$ for every $f \in A$ so that

- (a) $\Phi_f|_{\Lambda_f}$ is topologically conjugate to $\sigma_f : \hat{I}_f \to \hat{I}_f$.
- (b) The attractors $\{\Lambda_f\}_{f\in A}$ vary continuously in Hausdorff metric.

(f) The attractor Λ_f preserves induced weakly mixing measure μ_f invariant for Φ_f for any $f \in A$. Measures μ_f vary continuously in the weak* topology on $\mathcal{M}(D)$.

イロト 不得下 イヨト イヨト 二日

Invariant measure for shift homeomorphism

- In what follows X is a compact Euclidean space with Lebesgue measure λ , and $f : X \to X$ be surjective and continuous.
- **2** Let μ be an *f*-invariant measure on $\mathcal{B}(X)$.
- **3** B_{μ} is a basin of μ for f if for all $g \in C(X)$ and $x \in B_{\mu}$:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}g(f^i(x))=\int gd\mu.$$

- We call measure µ physical for f if there exists a basin B_µ of µ for f and a Borel set B so that B ⊂ B_µ and λ(B) > 0.
- An invariant measure ν for the natural extension σ_f : X̂ → X̂ is called inverse limit physical measure if ν has a basin B_ν so that λ(π₀(B_ν)) > 0.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Lebesgue measure gives an advantage

Thm (Kennedy, Raines, Stockman 2010): If *B* is a basin of μ for *f* then $B_{\nu} := \pi_0^{-1}(B)$ is a basin of the measure ν induced by μ for σ_f (and vice versa). If μ is a physical measure for $f : X \to X$ then the induced measure ν on inverse limit \hat{X} is an inverse limit physical measure for σ_f (and vice versa).

Unique physical measure construction

The figure shows how maps G and H transform D. Namely, the map G switches to a different unwrapping which moves the Cantor set C_1 presumably away from the radial lines drawn in the picture. However, the map H places this Cantor set C_1 to the appropriate position.

Piotr Oprocha (AGH & UO)

< □ > < 同 > < 三 > < 三 >

Dynamically equivalent embeddings

- Let X and Y be metric spaces. Suppose that
- $F: X \rightarrow X$ and $G: Y \rightarrow Y$ are homeomorphisms and
- $E: X \to Y$ is an embedding.
- If E ∘ F = G ∘ E we say that the embedding E is a dynamical embedding of (X, F) into (Y, G).
- If E, resp. E', are dynamical embeddings of (X, F) resp. (X', F') into (Y, G), resp. (Y', G'), and
 - there is a homeomorphism $H: Y \to Y'$ so that H(E(X)) = E'(X')
 - which conjugates $G|_{E(X)}$ with $G'|_{E'(X')}$ we say that
 - the embeddings E and E' are dynamically equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

A family $\{f_t\}_{t \in [0,1]} \subset \mathcal{T}$

For any $t \in I$ let \overline{f}_t be defined $\overline{f}_t(\frac{2}{7}) = \overline{f}_t(\frac{4}{7}) = \overline{f}_t(\frac{17}{21}) = \overline{f}_t(1) = 0$ and $\bar{f}_t(\frac{3}{7}) = \bar{f}_t(\frac{5}{7}) = \bar{f}_t(\frac{19}{21}) = 1$ and piecewise linear between these points on $\bar{f}_{t}(x) = \begin{cases} 7(x - t\frac{4}{21}); & x \in [0, \frac{2}{7}] \text{ let:} \\ 7(x - t\frac{4}{21}); & x \in (1 - t)[0, \frac{1}{7}] + t\frac{4}{21}, \\ 1 - 7(x - \frac{1}{7}(1 - t) - t\frac{4}{21}); & x \in (1 - t)[\frac{1}{7}, \frac{2}{7}] + t\frac{4}{21}, \\ \frac{21}{2}(x - t\frac{2}{21}); & x \in t[\frac{2}{21}, \frac{4}{21}], \\ 1 - \frac{21}{2}x; & x \in t[0, \frac{2}{21}], \\ \frac{21}{2}(x - \frac{2}{7}); & x \in [\frac{2}{7} - t\frac{2}{21}, \frac{2}{7}]. \end{cases}$ Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 29 / 31

Dynamically different embeddings

Theorem

There is a parametrized family of interval maps $\{f_t\}_{t\in[0,1]} \subset \mathcal{T} \subset C_{\lambda}(I)$ and a parametrized family of homeomorphisms $\{\Phi_t\}_{t\in[0,1]} \subset \mathcal{H}(D,D)$ with Φ_t -invariant pseudo-arc attractors $\Lambda_t \subset D$ for every $t \in [0,1]$ so that (a) $\Phi_t|_{\Lambda_t}$ is topologically conjugate to $\sigma_{f_t} : \hat{I}_{f_t} \to \hat{I}_{f_f}$.

- (b) The attractors $\{\Lambda_t\}_{t\in[0,1]}$ vary continuously in the Hausdorff metric. ...
- (d) There are uncountably many dynamically non-equivalent planar embeddings of the pseudo-arc in the family $\{(\Phi_t, \Lambda_t)\}_{t \in [0,1]}$.

Question

Are for every $t \neq t' \in [0, 1]$ the attractors Λ_t and $\Lambda_{t'}$ (non)-equivalently embedded?

Piotr Oprocha (AGH & UO)

Thank you!

Piotr Oprocha (AGH & UO)

On pseudoarc and dynamics

Prague, Jul 2022 31 / 31

2

< □ > < □ > < □ > < □ > < □ >