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Introduction

Definition

A quasi-uniformity U on a set X is a filter on X × X such that

(a) Every member U ∈ U contains the diagonal ∆ := {(x , x) : x ∈ X} (where
confusion might occur, we specify which set X we are referring to by
writing ∆X ),

(b) For each U ∈ U there is a V ∈ U such that V 2 ⊆ U (Here V 2 = V ◦ V
and ◦ is the usual composition of binary relations).

The ordered pair (X ,U) is called a quasi-uniform space.
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The members U ∈ U are called the entourages of U . The elements of X are
called points.

Each quasi-uniformity U on a set X induces a topology τ(U) as follows: For
each x ∈ X and U ∈ U set U(x) = {y ∈ X : (x , y) ∈ U}. A subset G ⊆ X
belongs to τ(U) if and only if it satisfies the following condition: For each
x ∈ G there exists U ∈ U such that U(x) ⊆ G .

If U is a quasi-uniformity on a set X , then the filter U−1 = {U−1 : U ∈ U} on
X × X is also a quasi-uniformity on X . (Here U−1 is the inverse of the binary
relation U on X .)
The quasi-uniformity U−1 is called the conjugate of U . A quasi-uniformity that
is equals to its conjugate is called a uniformity.
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If U ∈ U , we define Us = U ∩ U−1. The union of a quasi-uniformity U and its
conjugate U−1 yields a subbase of the coarsest uniformity finer than both U
and U−1. It will be denoted by U s . It must be observed that Us ∈ U s ,
whenever U ∈ U .

A map f : (X ,U) → (Y ,V) between two quasi-uniform spaces (X ,U) and
(Y ,V) is called uniformly continuous provided that for each V ∈ V there is
U ∈ U such that (f × f )(U) ⊆ V . Here f × f is the product map from X × X
to Y × Y defined by (f × f )(x , x ′) = (f (x), f (x ′)) (x , x ′ ∈ X ).
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For a subset Y of a quasi-uniform space (X ,U), we set

UY = {U ∩ (Y × Y ) : U ∈ U}.

Then (Y ,UY ) is also a quasi-uniform space. The quasi-uniform space (Y ,UY )
is called a subspace of the quasi-uniform space (X ,U).

For every quasi-uniform space (X ,U) and any subset Y of X , the formula
iY (y) = y defines a uniformly continuous mapping iY : (Y ,UY ) → (X ,U), the
mapping iY is called the embedding of the subspace (Y ,UY ) in the space
(X ,U).
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Quasi-uniform entropy on a quasi-uniform space

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. For V ∈ U , x ∈ X and n ∈ N+, we set

Dn(x ,V , ψ) =
n−1⋂
k=0

ψ−k(V (ψk(x)))

and
Dn(x ,V

s , ψ) = Dn(x ,V , ψ) ∩ Dn(x ,V
−1, ψ).

It follows that

Dn(x ,V
s , ψ) ⊆ Dn(x ,V , ψ) and Dn(x ,V

s , ψ) ⊆ Dn(x ,V
−1, ψ).

We write DU
n (x ,V , ψ) and DU

n (x ,V s , ψ) if we need to emphasise on the
quasi-uniformity U used.
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Let K(X ) be the collection of all nonempty compact subsets of X with respect
to the topology τ(U). We define

rn(V ,K , ψ) := min

{
|F | : F ⊆ X and K ⊆

⋃
x∈F

Dn(x ,V , ψ)

}
,

whenever K ∈ K(X ).
A subset F of X is said to be (n,V )-supseparated with respect to ψ if
Dn(x ,V

s , ψ) ∩ Dn(y ,V
s , ψ) = ∅ for any x , y ∈ F with x ̸= y . For each

K ∈ K(X ), we set

sn(V ,K , ψ) := max{|F | : F ⊆ K and F is (n,V )−supseparated with respect to ψ}.

Observe that since K is compact, then the quantities rn(V ,K , ψ) and
sn(V ,K , ψ) are finite and well defined.
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Moreover, for every V ∈ U we define:

r(V ,K , ψ) = lim
n→∞

sup
log rn(V ,K , ψ)

n

and

s(V ,K , ψ) = lim
n→∞

sup
log sn(V ,K , ψ)

n
.

Then, the quantities hr (K , ψ) and hs(K , ψ) are defined by

hr (K , ψ) = sup{r(V ,K , ψ) : V ∈ U} and hs(K , ψ) = sup{s(V ,K , ψ) : V ∈ U}.

We write
rn(V ,K , ψ,U), sn(V ,K , ψ,U), r(V ,K , ψ,U), s(V ,K , ψ,U), hr (K , ψ,U) and
hs(K , ψ,U) if we need to emphasise on the quasi-uniformity U used.

O. Olela Otafudu On entropies in quasi-uniform spaces



Outline
Introduction

Quasi-uniform entropy on a quasi-uniform space
Quasi-uniform entropy following Kimura’s approach

Observations

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. If U,V ∈ U such that U ⊆ V , then for each n ∈ N+ and
x ∈ X , we have that:

(i) Dn(x ,U, ψ) ⊆ Dn(x ,V , ψ), and

(ii) Dn(x ,U
s , ψ) ⊆ Dn(x ,V

s , ψ).

Let (X , q) be a quasi-metric space. For each ϵ > 0, we define

Vϵ = {(x , y) ∈ X × X : q(x , y) < ϵ}.

It is well known that {Vϵ : ϵ > 0} form a base of a quasi-uniformity on X ,
called the quasi-uniformity induced by q on X and denoted by Uq.
In this case ψ : (X , q) → (X , q) is uniformly continuous if and only if
ψ : (X ,Uq) → (X ,Uq) is uniformly continuous. Also for each ϵ > 0, we have
that Vϵ(x) = Bq(x , ϵ) for each x ∈ X . Therefore τ(q) = τ(Uq).
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Let (X , q) be a quasi-metric space, Uq the quasi-uniformity induced by q on X
and ψ : (X , q) → (X , q) a uniformly continuous map. Let ϵ > 0. If F ⊆ X ,
K ∈ K(X ) and n ∈ N+, we have that

(i) F is (n,Vϵ)-supseparated with respect to ψ if and only if F is
(n, ϵ)-supseparated with respect to ψ in the sense of [4].

(ii) K ⊆
⋃
x∈F

D
Uq
n (x ,Vϵ, ψ) if and only if K ⊆

⋃
x∈F

Dq
n (x , ϵ, ψ).

Lemma

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. Let K ∈ K(X ) and V ∈ U . If n ∈ N+ and F ⊆ K such that

sn(V ,K , ψ) = |F |, then K ⊆
⋃
x∈F

Dn(x ,V
s , ψ).
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Lemma

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. For each n ∈ N+ and each K ∈ K(X ) we have:

(i) Let V ,U ∈ U such that Us ◦ Us ⊆ V s . Then

rn(V ,K , ψ) ≤ sn(V ,K , ψ) ≤ rn(U,K , ψ).

(ii) If V1,V2 ∈ U such that V1 ⊆ V2. Then

rn(V2,K , ψ) ≤ rn(V1,K , ψ) and sn(V2,K , ψ) ≤ sn(V1,K , ψ).
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Corollary

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. Let V ∈ U and K be a non-empty join-compact subset of X .
Since V s = V ∩ V−1, then V s ⊆ V . Now we have that:

(1) rn(V ,K , ψ) ≤ rn(V
s ,K , ψ) for each n ∈ N+.

(2) sn(V ,K , ψ) ≤ sn(V
s ,K , ψ) for each n ∈ N+.
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Let (X ,U) be a quasi-uniform space, ψ : (X ,U) → (X ,U) be a uniformly
continuous map and K ∈ K(X ).

hQU(K , ψ) = hr (K , ψ) = hs(K , ψ),

is the quasi-uniform entropy of ψ with respect to K . Furthermore, we define
the quasi-uniform entropy hQU(ψ) of ψ by

hQU(ψ) = sup
K∈K(X )

hQU(K , ψ).

We write hQU(K , ψ,U) and hQU(ψ,U) if we need to emphasise on the
quasi-uniformity U used.

Example

If (X ,U) is a quasi-uniform space and idX : (X ,U) → (X ,U) is the identity
map, then hQU(idX ) = 0.
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Let (X , q) be a quasi-metric space and Uq be the quasi-uniformity induced by q on
X . If ψ : (X , q) → (X , q) is a uniformly continuous map, then

hQU(ψ, q) = hQU(ψ,Uq).

Definition

Two quasi-uniformities U1 and U2 on a set X are uniformly equivalent if
idX : (X ,U1) → (X ,U2) and idX : (X ,U2) → (X ,U1) are both uniformly
continuous maps of quasi-uniform spaces. In this case ψ : (X ,U1) → (X ,U1) is
uniformly continuous if and only if ψ : (X ,U2) → (X ,U2) is uniformly
continuous.
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If U1 and U2 are uniformly equivalent quasi-uniformities on X and ψ :
(X ,U1) → (X ,U1) is uniformly continuous, then

hQU(ψ,U1) = hQU(ψ,U2).

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a
uniformly continuous map, then

hQU(ψ
m) = mhQU(ψ)

for each m ∈ N = N+ ∪ {0}.
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Definition (Willard, Definition 37, Chapter 9)

If X1 and X2 are sets and X = X1 × X2. For α = 1, 2, the αth biprojection is
the map Pα : X × X → Xα × Xα defined by

Pα(x , y) = (πα(x), πα(y)) for each (x , y) ∈ X × X ,

where πα : X → Xα is the αth projection map. It must be noted that elements
of X has the form x = (x1, x2), where x1 ∈ X1 and x2 ∈ X2.
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Let (X1,U1) and (X2,U2) be quasi-uniform spaces. If X = X1×X2 and Pα : X×X →
Xα × Xα is the αth biprojection map for α = 1, 2. Then

U = {U ⊆ X × X : P−1
1 (U1) ∩ P−1

2 (U2) ⊆ U for some U1 ∈ U1 and U2 ∈ U2}

is a quasi-uniformity on X , which we call the product quasi-uniformity.

Let (X1,U1), (X2,U2) be quasi-uniform spaces and U be the product quasi-uniformity
on X = X1 × X2. If ψ1 : (X1,U1) → (X1,U1) and ψ2 : (X2,U2) → (X2,U2) are
both uniformly continuous maps, then ψ : (X ,U) → (X ,U) is uniformly continuous,
where ψ = ψ1 × ψ2 and it is defined by ψ(x) = (ψ1(x1), ψ2(x2)) for each x ∈ X .
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Let (X1,U1), (X2,U2) be quasi-uniform spaces and U be the product
quasi-uniformity on X = X1 × X2. Let U1 ∈ U1 and U2 ∈ U2 . If
U = P−1

1 (U1) ∩ P−1
2 (U2) ∈ U , ψ1 : (X1,U1) → (X1,U1) and

ψ2 : (X2,U2) → (X2,U2) are both uniformly continuous, then for each x , y ∈ X
we have that:

a) U(x) = U1(x1)× U2(x2) and Us(x) = (U1)
s(x1)× (U2)

s(x2),

b) If ψ = ψ1 × ψ2 and n ∈ N+, then

(i) DU
n (x ,U, ψ) =

2∏
α=1

DUα
n (xα,Uα, ψα),

(ii) DU
n (x ,Us , ψ) =

2∏
α=1

DUα
n (xα, (Uα)

s , ψα), and

(iii)
DU

n (x ,Us , ψ) ∩ DU
n (y ,Us , ψ)

=
2∏

α=1

(
DUα

n (xα, (Uα)
s , ψα)∩DUα

n (yα, (Uα)
s , ψα)

)
.

c) ⋃
x1∈F1

DU1
n (x1,U1, ψ1)×

⋃
x2∈F2

DU2
n (x2,U2, ψ2) ⊆

⋃
x∈F1×F2

DU
n (x ,U, ψ)

for each F1 ⊆ X1 and F2 ⊆ X2.O. Olela Otafudu On entropies in quasi-uniform spaces
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Theorem

Let (X1,U1) and (X2,U2) be quasi-uniform spaces. Suppose

ψ1 : (X1,U1) → (X1,U1) and ψ2 : (X2,U2) → (X2,U2)

are uniformly continuous maps. If U is the product quasi-uniformity on the set
X = X1 ×X2 and ψ : (X ,U) → (X ,U) is the uniformly continuous map, defined
by ψ = ψ1 × ψ2, then hQU(ψ,U) ≤ hQU(ψ1,U1) + hQU(ψ2,U2). Furthermore, if
X1 or X2 is compact, then hQU(ψ,U) = hQU(ψ1,U1) + hQU(ψ2,U2).
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Let (X ,U) be a quasi-uniform space. Then

(i) ψ : (X ,U) → (X ,U) is uniformly continuous if and only if
ψ : (X ,U−1) → (X ,U−1) is uniformly continuous.

(ii) if ψ : (X ,U) → (X ,U) is uniformly continuous, then
ψ : (X ,U s) → (X ,U s) is uniformly continuous. The converse does
not hold in general.

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous function. Then

hQU(ψ,U) ≤ hU(ψ,U s).
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Quasi-uniform entropy following Kimura’s approach

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. For V ∈ U , x ∈ X and n ∈ N+, we know

Dn(x ,V , ψ) =
n−1⋂
k=0

ψ−k(V (ψk(x))).

Let T (X ) denotes the collection of all nonempty totally bounded subsets of X .

We define the finite number rn(V ,K , ψ) for every K ∈ T (X ) as we did above
by

r(V ,K , ψ) = lim
n→∞

sup
log rn(V ,K , ψ)

n
.

Let hQUK (K , ψ) = sup{r(V ,K , ψ) : V ∈ U}. Then the notion of quasi-uniform
K -entropy hQUK (ψ) of ψ is given by

hQUK (ψ) = sup{hQUK (K , ψ) : K ∈ T (X )}.
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Lemma (compare Kimura, Basic fact 3.4)

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. If K ,K ′ ∈ T (X ) such that K ⊆ K ′ and V ∈ U , then

rn(V ,K , ψ) ≤ rn(V ,K
′, ψ), for each n ∈ N+.
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By the definition of quasi-uniform entropy, it is clear that for a uniformly con-
tinuous self-map ψ on a quasi-uniform space (X ,U) we have

hQU(ψ) = sup{hQUK (K , ψ) : K is a nonempty compact subset of X }.

Theorem

Let (X ,U) be a complete quasi-uniform space and ψ : (X ,U) → (X ,U) be a
uniformly continuous map. Then

hQU(ψ) = hQUK (ψ).
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Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) be a uniformly
continuous map. Then

hQUK (ψ,U) ≤ hK (ψ,U s).

Let (X , q) be a quasi-metric space and Uq be the quasi-uniformity induced by q on
X . If ψ : (X , q) → (X , q) is a uniformly continuous map, then

a) hQU(ψ, q) ≤ hQUK (ψ,Uq),

b) hQU(ψ, q) = hQUK (ψ,Uq), provided that (X , q) is bicomplete.

O. Olela Otafudu On entropies in quasi-uniform spaces
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Let ψ be a self-mapping on a set X . Then a subset Y of X is ψ−invariant if
ψ(Y ) ⊆ Y .

Lemma

Let (X ,U) be a quasi-uniform space, ψ : (X ,U) → (X ,U) a uniformly
continuous function and let Y be an ψ-invariant subset of X . For each n ∈ N+

and U ∈ U we have that

(i) If y ∈ Y , then

DUY
n (y ,U ∩ (Y × Y ), ψ|Y ) = DU

n (y ,U, ψ) ∩ Y

and

DUY
n (y , (U ∩ (Y × Y ))s , ψ|Y ) = DU

n (y ,Us , ψ) ∩ Y .

(ii) rn(U ∩ (Y × Y ),K , ψ|Y ,UY ) = rn(U,K , ψ,U) for each
K ∈ K(Y ).

O. Olela Otafudu On entropies in quasi-uniform spaces



Outline
Introduction

Quasi-uniform entropy on a quasi-uniform space
Quasi-uniform entropy following Kimura’s approach

Let (X ,U) be a quasi-uniform space, ψ : (X ,U) → (X ,U) a uniformly continu-
ous function and let Y be an ψ-invariant subset of X . Then

hQU(ψ|Y ,UY ) ≤ hQU(ψ,U).

Theorem (Compare Theorem 5.2, Kimura)

Let (X ,U) be a quasi-uniform space and ψ : (X ,U) → (X ,U) a uniformly

continuous function. If (X̃ , Ũ), is the bicompletion of (X ,U) and ψ̃ is the

uniformly continuous extension of ψ over X̃ . Then

hQU(ψ,U) ≤ hQU(ψ̃, Ũ).

Theorem (Compare Theorem 5.3, Kimura)

Let (X ,U) be a join-compact quasi-uniform space and ψ : (X ,U) → (X ,U) a
uniformly continuous function. If (X̃ , Ũ) is the bicompletion of (X ,U) and ψ̃ is

the uniformly continuous extension of ψ over X̃ . Then

hQU(ψ,U) = hQU(ψ̃, Ũ).
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