On entropies in quasi-uniform spaces

Olivier Olela Otafudu School of Mathematical Sciences North-West University (Potch Campus)

Joint work with Paulus Haihambo

Topology Symposium 2022, Prague, Czech Republic

July 29, 2022

イロト イヨト イヨト イヨト

Outline

Introduction Quasi-uniform entropy on a guasi-uniform space Quasi-uniform entropy following Kimura's approach

2 Quasi-uniform entropy on a quasi-uniform space

3 Quasi-uniform entropy following Kimura's approach

イロン 不同 とくほど 不同 とう

Outline Introduction

Quasi-uniform entropy on a quasi-uniform space Quasi-uniform entropy following Kimura's approach

Introduction

Definition

A quasi-uniformity \mathcal{U} on a set X is a filter on $X \times X$ such that

- (a) Every member U ∈ U contains the diagonal Δ := {(x, x) : x ∈ X} (where confusion might occur, we specify which set X we are referring to by writing Δ_X),
- (b) For each $U \in U$ there is a $V \in U$ such that $V^2 \subseteq U$ (Here $V^2 = V \circ V$ and \circ is the usual composition of binary relations).

The ordered pair (X, U) is called a quasi-uniform space.

The members $U \in U$ are called the entourages of U. The elements of X are called points.

Outline

Each quasi-uniformity \mathcal{U} on a set X induces a topology $\tau(\mathcal{U})$ as follows: For each $x \in X$ and $U \in \mathcal{U}$ set $U(x) = \{y \in X : (x, y) \in U\}$. A subset $G \subseteq X$ belongs to $\tau(\mathcal{U})$ if and only if it satisfies the following condition: For each $x \in G$ there exists $U \in \mathcal{U}$ such that $U(x) \subseteq G$.

If \mathcal{U} is a quasi-uniformity on a set X, then the filter $\mathcal{U}^{-1} = \{U^{-1} : U \in \mathcal{U}\}$ on $X \times X$ is also a quasi-uniformity on X. (Here U^{-1} is the inverse of the binary relation U on X.)

The quasi-uniformity \mathcal{U}^{-1} is called the conjugate of \mathcal{U} . A quasi-uniformity that is equals to its conjugate is called a uniformity.

イロト イボト イヨト イヨト

If $U \in \mathcal{U}$, we define $U^s = U \cap U^{-1}$. The union of a quasi-uniformity \mathcal{U} and its conjugate \mathcal{U}^{-1} yields a subbase of the coarsest uniformity finer than both \mathcal{U} and \mathcal{U}^{-1} . It will be denoted by \mathcal{U}^s . It must be observed that $U^s \in \mathcal{U}^s$, whenever $U \in \mathcal{U}$.

Outline

A map $f : (X, U) \to (Y, V)$ between two quasi-uniform spaces (X, U) and (Y, V) is called uniformly continuous provided that for each $V \in V$ there is $U \in U$ such that $(f \times f)(U) \subseteq V$. Here $f \times f$ is the product map from $X \times X$ to $Y \times Y$ defined by $(f \times f)(x, x') = (f(x), f(x'))$ $(x, x' \in X)$.

For a subset Y of a quasi-uniform space (X, U), we set

$$\mathcal{U}_{Y} = \{ U \cap (Y \times Y) : U \in \mathcal{U} \}.$$

Outline

Then (Y, U_Y) is also a quasi-uniform space. The quasi-uniform space (Y, U_Y) is called a subspace of the quasi-uniform space (X, U).

For every quasi-uniform space (X, U) and any subset Y of X, the formula $i_Y(y) = y$ defines a uniformly continuous mapping $i_Y : (Y, U_Y) \to (X, U)$, the mapping i_Y is called the embedding of the subspace (Y, U_Y) in the space (X, U).

A D D A B D A B D A B D

Quasi-uniform entropy on a quasi-uniform space

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. For $V \in U$, $x \in X$ and $n \in \mathbb{N}_+$, we set

$$D_n(x, V, \psi) = \bigcap_{k=0}^{n-1} \psi^{-k}(V(\psi^k(x)))$$

and

$$D_n(x, V^s, \psi) = D_n(x, V, \psi) \cap D_n(x, V^{-1}, \psi).$$

It follows that

$$\mathcal{D}_n(x, V^s, \psi) \subseteq \mathcal{D}_n(x, V, \psi) ext{ and } \mathcal{D}_n(x, V^s, \psi) \subseteq \mathcal{D}_n(x, V^{-1}, \psi).$$

We write $D_n^{\mathcal{U}}(x, V, \psi)$ and $D_n^{\mathcal{U}}(x, V^s, \psi)$ if we need to emphasise on the quasi-uniformity \mathcal{U} used.

イロン イヨン イヨン

Let $\mathcal{K}(X)$ be the collection of all nonempty compact subsets of X with respect to the topology $\tau(\mathcal{U})$. We define

$$r_n(V, K, \psi) := \min \left\{ |F| : F \subseteq X \text{ and } K \subseteq \bigcup_{x \in F} D_n(x, V, \psi) \right\},$$

whenever $K \in \mathcal{K}(X)$. A subset F of X is said to be (n, V)-supseparated with respect to ψ if $D_n(x, V^s, \psi) \cap D_n(y, V^s, \psi) = \emptyset$ for any $x, y \in F$ with $x \neq y$. For each $K \in \mathcal{K}(X)$, we set

 $s_n(V, K, \psi) := \max\{|F| : F \subseteq K \text{ and } F \text{ is } (n, V) - \text{supseparated with respect to } \psi\}.$

Observe that since K is compact, then the quantities $r_n(V, K, \psi)$ and $s_n(V, K, \psi)$ are finite and well defined.

イロン イヨン イヨン イヨン

Moreover, for every $V \in \mathcal{U}$ we define:

$$r(V, K, \psi) = \lim_{n \to \infty} \sup \frac{\log r_n(V, K, \psi)}{n}$$

and

$$s(V, K, \psi) = \lim_{n \to \infty} \sup \frac{\log s_n(V, K, \psi)}{n}$$

Then, the quantities $h_r(K, \psi)$ and $h_s(K, \psi)$ are defined by

 $h_r(K,\psi) = \sup\{r(V,K,\psi): V \in \mathcal{U}\} \text{ and } h_s(K,\psi) = \sup\{s(V,K,\psi): V \in \mathcal{U}\}.$

We write

 $r_n(V, K, \psi, U), s_n(V, K, \psi, U), r(V, K, \psi, U), s(V, K, \psi, U), h_r(K, \psi, U)$ and $h_s(K, \psi, U)$ if we need to emphasise on the quasi-uniformity U used.

イロト イポト イヨト イヨト 二日

Observations

Let (X, \mathcal{U}) be a quasi-uniform space and $\psi : (X, \mathcal{U}) \to (X, \mathcal{U})$ be a uniformly continuous map. If $U, V \in \mathcal{U}$ such that $U \subseteq V$, then for each $n \in \mathbb{N}_+$ and $x \in X$, we have that:

- (i) $D_n(x, U, \psi) \subseteq D_n(x, V, \psi)$, and
- (ii) $D_n(x, U^s, \psi) \subseteq D_n(x, V^s, \psi).$

Let (X, q) be a quasi-metric space. For each $\epsilon > 0$, we define

$$V_{\epsilon} = \{(x, y) \in X \times X : q(x, y) < \epsilon\}.$$

It is well known that $\{V_{\epsilon} : \epsilon > 0\}$ form a base of a quasi-uniformity on X, called the quasi-uniformity induced by q on X and denoted by \mathcal{U}_q . In this case $\psi : (X, q) \to (X, q)$ is uniformly continuous if and only if $\psi : (X, \mathcal{U}_q) \to (X, \mathcal{U}_q)$ is uniformly continuous. Also for each $\epsilon > 0$, we have that $V_{\epsilon}(x) = B_q(x, \epsilon)$ for each $x \in X$. Therefore $\tau(q) = \tau(\mathcal{U}_q)$.

Let (X, q) be a quasi-metric space, \mathcal{U}_q the quasi-uniformity induced by q on Xand $\psi : (X, q) \to (X, q)$ a uniformly continuous map. Let $\epsilon > 0$. If $F \subseteq X$, $K \in \mathcal{K}(X)$ and $n \in \mathbb{N}_+$, we have that

(i) F is (n, V_ε)-supseparated with respect to ψ if and only if F is (n, ε)-supseparated with respect to ψ in the sense of [4].

(ii)
$$K \subseteq \bigcup_{x \in F} D_n^{\mathcal{U}_q}(x, V_{\epsilon}, \psi)$$
 if and only if $K \subseteq \bigcup_{x \in F} D_n^q(x, \epsilon, \psi)$.

Lemma

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. Let $K \in \mathcal{K}(X)$ and $V \in U$. If $n \in \mathbb{N}_+$ and $F \subseteq K$ such that $s_n(V, K, \psi) = |F|$, then $K \subseteq \bigcup_{x \in F} D_n(x, V^s, \psi)$.

イロン イヨン イヨン

Lemma

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. For each $n \in \mathbb{N}_+$ and each $K \in \mathcal{K}(X)$ we have:

(i) Let $V, U \in \mathcal{U}$ such that $U^s \circ U^s \subseteq V^s$. Then

 $r_n(V, K, \psi) \leq s_n(V, K, \psi) \leq r_n(U, K, \psi).$

(ii) If $V_1, V_2 \in \mathcal{U}$ such that $V_1 \subseteq V_2$. Then

 $r_n(V_2, K, \psi) \leq r_n(V_1, K, \psi)$ and $s_n(V_2, K, \psi) \leq s_n(V_1, K, \psi)$.

(日) (四) (三) (三) (三) (三)

Outline Introduction

Quasi-uniform entropy on a quasi-uniform space Quasi-uniform entropy following Kimura's approach

Corollary

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. Let $V \in U$ and K be a non-empty join-compact subset of X. Since $V^s = V \cap V^{-1}$, then $V^s \subseteq V$. Now we have that:

(1) $r_n(V, K, \psi) \leq r_n(V^s, K, \psi)$ for each $n \in \mathbb{N}_+$.

(2) $s_n(V, K, \psi) \leq s_n(V^s, K, \psi)$ for each $n \in \mathbb{N}_+$.

(日) (四) (三) (三) (三) (三)

Let (X, \mathcal{U}) be a quasi-uniform space, $\psi : (X, \mathcal{U}) \to (X, \mathcal{U})$ be a uniformly continuous map and $K \in \mathcal{K}(X)$.

$$h_{QU}(K,\psi) = h_r(K,\psi) = h_s(K,\psi),$$

is the quasi-uniform entropy of ψ with respect to K. Furthermore, we define the quasi-uniform entropy $h_{QU}(\psi)$ of ψ by

$$h_{QU}(\psi) = \sup_{K \in \mathcal{K}(X)} h_{QU}(K, \psi).$$

We write $h_{QU}(K, \psi, U)$ and $h_{QU}(\psi, U)$ if we need to emphasise on the quasi-uniformity U used.

Example

If (X, U) is a quasi-uniform space and $id_X : (X, U) \to (X, U)$ is the identity map, then $h_{QU}(id_X) = 0$.

イロン イヨン イヨン イヨン

Let (X, q) be a quasi-metric space and \mathcal{U}_q be the quasi-uniformity induced by q on X. If $\psi : (X, q) \to (X, q)$ is a uniformly continuous map, then

 $h_{QU}(\psi, q) = h_{QU}(\psi, \mathcal{U}_q).$

Definition

Two quasi-uniformities \mathcal{U}_1 and \mathcal{U}_2 on a set X are uniformly equivalent if $id_X : (X, \mathcal{U}_1) \to (X, \mathcal{U}_2)$ and $id_X : (X, \mathcal{U}_2) \to (X, \mathcal{U}_1)$ are both uniformly continuous maps of quasi-uniform spaces. In this case $\psi : (X, \mathcal{U}_1) \to (X, \mathcal{U}_1)$ is uniformly continuous if and only if $\psi : (X, \mathcal{U}_2) \to (X, \mathcal{U}_2)$ is uniformly continuous.

イロン イヨン イヨン

If U_1 and U_2 are uniformly equivalent quasi-uniformities on X and ψ : $(X, U_1) \rightarrow (X, U_1)$ is uniformly continuous, then

 $h_{QU}(\psi, \mathcal{U}_1) = h_{QU}(\psi, \mathcal{U}_2).$

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map, then

$$h_{QU}(\psi^m) = mh_{QU}(\psi)$$

for each $m \in \mathbb{N} = \mathbb{N}_+ \cup \{0\}$.

A D D A B D A B D A B D

Definition (Willard, Definition 37, Chapter 9)

If X_1 and X_2 are sets and $X = X_1 \times X_2$. For $\alpha = 1, 2$, the α^{th} biprojection is the map $P_{\alpha} : X \times X \to X_{\alpha} \times X_{\alpha}$ defined by

$$P_{\alpha}(x,y) = (\pi_{\alpha}(x),\pi_{\alpha}(y))$$
 for each $(x,y) \in X \times X$,

where $\pi_{\alpha} : X \to X_{\alpha}$ is the α^{th} projection map. It must be noted that elements of X has the form $x = (x_1, x_2)$, where $x_1 \in X_1$ and $x_2 \in X_2$.

Let (X_1, U_1) and (X_2, U_2) be quasi-uniform spaces. If $X = X_1 \times X_2$ and $P_\alpha : X \times X \to X_\alpha \times X_\alpha$ is the α^{th} biprojection map for $\alpha = 1, 2$. Then

 $\mathcal{U} = \{ U \subseteq X \times X : P_1^{-1}(U_1) \cap P_2^{-1}(U_2) \subseteq U \text{ for some } U_1 \in \mathcal{U}_1 \text{ and } U_2 \in \mathcal{U}_2 \}$

is a quasi-uniformity on X, which we call the product quasi-uniformity.

Let $(X_1, \mathcal{U}_1), (X_2, \mathcal{U}_2)$ be quasi-uniform spaces and \mathcal{U} be the product quasi-uniformity on $X = X_1 \times X_2$. If $\psi_1 : (X_1, \mathcal{U}_1) \to (X_1, \mathcal{U}_1)$ and $\psi_2 : (X_2, \mathcal{U}_2) \to (X_2, \mathcal{U}_2)$ are both uniformly continuous maps, then $\psi : (X, \mathcal{U}) \to (X, \mathcal{U})$ is uniformly continuous, where $\psi = \psi_1 \times \psi_2$ and it is defined by $\psi(x) = (\psi_1(x_1), \psi_2(x_2))$ for each $x \in X$.

Let $(X_1, \mathcal{U}_1), (X_2, \mathcal{U}_2)$ be quasi-uniform spaces and \mathcal{U} be the product quasi-uniformity on $X = X_1 \times X_2$. Let $U_1 \in \mathcal{U}_1$ and $U_2 \in \mathcal{U}_2$. If $U = P_1^{-1}(U_1) \cap P_2^{-1}(U_2) \in \mathcal{U}, \psi_1 : (X_1, \mathcal{U}_1) \to (X_1, \mathcal{U}_1)$ and $\psi_2 : (X_2, \mathcal{U}_2) \to (X_2, \mathcal{U}_2)$ are both uniformly continuous, then for each $x, y \in X$ we have that:

a)
$$U(x) = U_1(x_1) \times U_2(x_2)$$
 and $U^s(x) = (U_1)^s(x_1) \times (U_2)^s(x_2)$,
b) If $\psi = \psi_1 \times \psi_2$ and $n \in \mathbb{N}_+$, then
(i) $D_n^{\mathcal{U}}(x, U, \psi) = \prod_{\alpha=1}^2 D_n^{\mathcal{U}_\alpha}(x_\alpha, U_\alpha, \psi_\alpha)$,
(ii) $D_n^{\mathcal{U}}(x, U^s, \psi) = \prod_{\alpha=1}^2 D_n^{\mathcal{U}_\alpha}(x_\alpha, (U_\alpha)^s, \psi_\alpha)$, and
(iii) $D_n^{\mathcal{U}}(x, U^s, \psi) \cap D_n^{\mathcal{U}}(y, U^s, \psi)$
 $= \prod_{\alpha=1}^2 \left(D_n^{\mathcal{U}_\alpha}(x_\alpha, (U_\alpha)^s, \psi_\alpha) \cap D_n^{\mathcal{U}_\alpha}(y_\alpha, (U_\alpha)^s, \psi_\alpha) \right)$.
c) $\bigcup_{x_1 \in F_1} D_n^{\mathcal{U}_1}(x_1, U_1, \psi_1) \times \bigcup_{x_2 \in F_2} D_n^{\mathcal{U}_2}(x_2, U_2, \psi_2) \subseteq \bigcup_{x_2 \in F_1 \times F_2} D_n^{\mathcal{U}}(x, U, \psi)$
Q, Olela Otafudu On entropies in quasi-uniform spaces

Theorem

Let (X_1, U_1) and (X_2, U_2) be quasi-uniform spaces. Suppose

$$\psi_1: (X_1, \mathcal{U}_1)
ightarrow (X_1, \mathcal{U}_1)$$
 and $\psi_2: (X_2, \mathcal{U}_2)
ightarrow (X_2, \mathcal{U}_2)$

are uniformly continuous maps. If \mathcal{U} is the product quasi-uniformity on the set $X = X_1 \times X_2$ and $\psi : (X, \mathcal{U}) \to (X, \mathcal{U})$ is the uniformly continuous map, defined by $\psi = \psi_1 \times \psi_2$, then $h_{QU}(\psi, \mathcal{U}) \le h_{QU}(\psi_1, \mathcal{U}_1) + h_{QU}(\psi_2, \mathcal{U}_2)$. Furthermore, if X_1 or X_2 is compact, then $h_{QU}(\psi, \mathcal{U}) = h_{QU}(\psi_1, \mathcal{U}_1) + h_{QU}(\psi_2, \mathcal{U}_2)$.

Let
$$(X, U)$$
 be a quasi-uniform space. Then
(i) $\psi : (X, U) \to (X, U)$ is uniformly continuous if and only if
 $\psi : (X, U^{-1}) \to (X, U^{-1})$ is uniformly continuous.
(ii) if $\psi : (X, U) \to (X, U)$ is uniformly continuous, then
 $\psi : (X, U^s) \to (X, U^s)$ is uniformly continuous. The converse does
not hold in general.

Let (X, U) be a quasi-uniform space and ψ : $(X, U) \to (X, U)$ be a uniformly continuous function. Then

 $h_{QU}(\psi, \mathcal{U}) \leq h_U(\psi, \mathcal{U}^s).$

<ロ> (四) (四) (三) (三) (三) (三)

Quasi-uniform entropy following Kimura's approach

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. For $V \in U$, $x \in X$ and $n \in \mathbb{N}_+$, we know

$$D_n(x, V, \psi) = \bigcap_{k=0}^{n-1} \psi^{-k}(V(\psi^k(x))).$$

Let $\mathcal{T}(X)$ denotes the collection of all nonempty totally bounded subsets of X.

We define the finite number $r_n(V, K, \psi)$ for every $K \in \mathcal{T}(X)$ as we did above by

$$r(V, K, \psi) = \lim_{n \to \infty} \sup \frac{\log r_n(V, K, \psi)}{n}$$

Let $h_{QUK}(K, \psi) = \sup\{r(V, K, \psi) : V \in \mathcal{U}\}$. Then the notion of quasi-uniform *K*-entropy $h_{QUK}(\psi)$ of ψ is given by

$$h_{QUK}(\psi) = \sup\{h_{QUK}(K,\psi) : K \in \mathcal{T}(X)\}.$$

(日) (四) (三) (三) (三) (三)

Lemma (compare Kimura, Basic fact 3.4)

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. If $K, K' \in \mathcal{T}(X)$ such that $K \subseteq K'$ and $V \in U$, then

 $r_n(V, K, \psi) \leq r_n(V, K', \psi)$, for each $n \in \mathbb{N}_+$.

(日) (四) (三) (三) (三) (三)

By the definition of quasi-uniform entropy, it is clear that for a uniformly continuous self-map ψ on a quasi-uniform space (X, U) we have

 $h_{QU}(\psi) = \sup\{h_{QUK}(K,\psi) : K \text{ is a nonempty compact subset of X}\}.$

Theorem

Let (X, U) be a complete quasi-uniform space and $\psi : (X, U) \to (X, U)$ be a uniformly continuous map. Then

 $h_{QU}(\psi) = h_{QUK}(\psi).$

イロン イヨン イヨン イヨン

Let (X, U) be a quasi-uniform space and ψ : $(X, U) \to (X, U)$ be a uniformly continuous map. Then

 $h_{QUK}(\psi, \mathcal{U}) \leq h_{K}(\psi, \mathcal{U}^{s}).$

Let (X, q) be a quasi-metric space and \mathcal{U}_q be the quasi-uniformity induced by q on X. If $\psi : (X, q) \to (X, q)$ is a uniformly continuous map, then

a) $h_{\mathcal{Q}\mathcal{U}}(\psi,q) \leq h_{\mathcal{Q}\mathcal{U}\mathcal{K}}(\psi,\mathcal{U}_q),$

b) $h_{QU}(\psi, q) = h_{QUK}(\psi, U_q)$, provided that (X, q) is bicomplete.

イロン イヨン イヨン イヨン

Let ψ be a self-mapping on a set X. Then a subset Y of X is ψ -invariant if $\psi(Y) \subseteq Y$.

Lemma

Let (X, U) be a quasi-uniform space, $\psi : (X, U) \to (X, U)$ a uniformly continuous function and let Y be an ψ -invariant subset of X. For each $n \in \mathbb{N}_+$ and $U \in U$ we have that

) If
$$y \in Y$$
, then
 $D_n^{\mathcal{U}_Y}(y, U \cap (Y \times Y), \psi|_Y) = D_n^{\mathcal{U}}(y, U, \psi) \cap Y$

and

 $D_n^{\mathcal{U}_Y}(y, (U \cap (Y \times Y))^s, \psi|_Y) = D_n^{\mathcal{U}}(y, U^s, \psi) \cap Y.$ (ii) $r_n(U \cap (Y \times Y), K, \psi|_Y, \mathcal{U}_Y) = r_n(U, K, \psi, \mathcal{U})$ for each $K \in \mathcal{K}(Y).$

イロト イポト イヨト イヨト

Let (X, U) be a quasi-uniform space, $\psi : (X, U) \to (X, U)$ a uniformly continuous function and let Y be an ψ -invariant subset of X. Then

 $h_{\mathcal{Q}\mathcal{U}}(\psi|_{Y},\mathcal{U}_{Y}) \leq h_{\mathcal{Q}\mathcal{U}}(\psi,\mathcal{U}).$

Theorem (Compare Theorem 5.2, Kimura)

Let (X, U) be a quasi-uniform space and $\psi : (X, U) \to (X, U)$ a uniformly continuous function. If (\tilde{X}, \tilde{U}) , is the bicompletion of (X, U) and $\tilde{\psi}$ is the uniformly continuous extension of ψ over \tilde{X} . Then

 $h_{QU}(\psi, \mathcal{U}) \leq h_{QU}(\widetilde{\psi}, \widetilde{\mathcal{U}}).$

Theorem (Compare Theorem 5.3, Kimura)

Let (X, \mathcal{U}) be a join-compact quasi-uniform space and $\psi : (X, \mathcal{U}) \to (X, \mathcal{U})$ a uniformly continuous function. If $(\widetilde{X}, \widetilde{\mathcal{U}})$ is the bicompletion of (X, \mathcal{U}) and $\widetilde{\psi}$ is the uniformly continuous extension of ψ over \widetilde{X} . Then

$$h_{QU}(\psi, \mathcal{U}) = h_{QU}(\widetilde{\psi}, \widetilde{\mathcal{U}}).$$

A D A A B A A B A A B A

References

- B.M. Hood, Topological Entropy and Uniform Spaces, J. London Math. Soc. 8 (1974) 633–641.
- R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971) 401–414.
- R. Bowen, Erratum to "Entropy for group endomorphisms and homogeneous spaces", Trans. Amer. Math. Soc. 181 (1973) 509–510.
- O. Olela Otafudu, P. Haihambo, On entropies in quasi-metric spaces, Topology Appl.(Under review).
- D. Dikranjan, M. Sanchis, S. Virili, New and old facts about entropy in uniform spaces and topological groups, Topology Appl. 159 (2012) 1916–1942.
 - T. Kimura, Completion theorem for uniform entropy. Comment. Math. Univ. Carolin. 39 (1998) 389–399.

D. Dikranjan, A. Giordano Bruno, The connection between topological and algebraic entropy, Topology Appl. 159 (2012) 2980–2989

Thank you for your attention

イロン イヨン イヨン イヨン

臣