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Main idea of this talk

Our aim is to study some links between linear (circular) orderability
of groups and topological dynamics.

Main tools:

• Circularly (linearly) ordered compact G -spaces
• Enveloping semigroup of compact dynamical systems
• Compact right topological semigroup compactifications



Left linearly orderable

• A group G is left linearly orderable iff there exists a linear order
≤ on G such that the standard left action of G on itself preserves
the order:

x ≤ y iff gx ≤ gy ∀ g , x , y ∈ G

Notation G ∈ L-Ord.

• If left and right action both are order preserving (wrt the same
order) on G , we say that G is orderable; notation: G ∈ Ord.



Circular (cyclic) order

Definition ([Huntington], [Cech], ...)

Circular order on a set X is a ternary relation R ⊂ X 3 on X s.t. :

1. Cyclicity: [a, b, c]⇒ [b, c , a];

2. Asymmetry: [a, b, c]⇒ (a, c , b) /∈ R;

3. Transitivity:

{
[a, b, c]

[a, c , d ]
⇒ [a, b, d ];

4. Totality: if a, b, c ∈ X are distinct, then [a, b, c] or [a, c , b].

Examples
▶ circle T
▶ finite cycles Cn

▶ Linear order ≤ naturally induces a circular order ◦≤ (e.g., [0, 1) defines T).



• c-order-preserving action of G on a circularly ordered set (X , ◦)

[x , y , z ]⇔ [gx , gy , gz ] ∀ g ∈ G , x , y , z ∈ X .

• If X = G then say left circularly orderable group. Abbr.: L-COrd
• circularly orderable groups. Abbr.: COrd.

[x , y , z ]⇔ [g1xg2, g1yg2, g1zg2] ∀ g1, g2 ∈ G , x , y , z ∈ X .

▶ Every L-Ord group is L-COrd and every Ord group is COrd.
▶ A finite group is L-COrd iff it is a cyclic group iff it is COrd.
▶ The circle group T is COrd but not Ord.



Two known important facts:

• G is L-Ord iff G faithfully acts on a linearly ordered set by linear
order preserving transformations iff G is embedded algebraically
into Aut (X ,≤).

• G is L-COrd iff G faithfully acts on a circularly ordered set by
circular order preserving transformations iff G is embedded
algebraically into Aut (X , ◦).



Topology of a circular order (X ,R)

• For distinct a, b ∈ X define the (oriented) intervals:

(a, b)R := {x ∈ X : [a, x , b]}.

• For every c-order R on X the family of intervals

{(a, b)R : a, b ∈ X}

forms a base for a Hausdorff topology τR on X (for every |X | ≥ 3).
• Topological space is said to be circularly ordered topological
space (COTS) if its topology is τR for some circular order R.



Circularly ordered dynamical systems

Definition
A compact G -system (X , τ) is circularly orderable if there exists a
τ -compatible circular order R on X such that X is COTS and
every g -translation g̃ : X → X is C-OP.

CODS := {circularly ordered compact G -systems}.
LODS := {linearly ordered compact G -systems}.

Proposition

LODS ⊂ CODS

For every linearly (circularly) ordered compact space X and every
topological subgroup G ≤ H+(X ), with its compact-open topology,
the corresponding action G ↷ X defines a linearly (circularly)
ordered G -system.



(c)-orderly topological groups

The following definition is a natural topological generalization of
(left) linear and circular orderability of abstract groups

Definition (Glasner-Me)

A topological group G is c-orderly (orderly) if G topologically can
be embedded into the topological group H+(K ) for some compact
circularly (linearly) ordered space K .

Question
Which topological groups are orderly ? c-orderly ?

• Immediate examples: The Polish groups H+(T) and H+[0, 1].
• Every orderly (c-orderly) topological group is L-Ord (L-COrd).
• Every orderly group is c-orderly.
• The completion of an orderly topological group (G , τ) is orderly.
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Theorem
Let (X , ◦) ((X ,≤)) be a circularly (linearly) ordered set and G be
a subgroup of Aut (X , ◦) (Aut (X ,≤)) with the pointwise
topology. Then G is a c-orderly (orderly) topological group.

Corollary

The Polish group G = Aut (Q/Z, ◦) is c-orderly.
The Polish group G = Aut (Q,≤) is orderly.



Theorem
Let (X , ◦) ((X ,≤)) be a circularly (linearly) ordered set and G be
a subgroup of Aut (X , ◦) (Aut (X ,≤)) with the pointwise
topology. Then G is a c-orderly (orderly) topological group.

Corollary

The Polish group G = Aut (Q/Z, ◦) is c-orderly.
The Polish group G = Aut (Q,≤) is orderly.



Theorem
Let (X , ◦) be a c-ordered set and G is a subgroup of Aut (X ) with
the pointwise topology. Then there exist: a c-ordered compact
zero-dimensional space X∞ such that

1. X∞ = lim←−(XF , I ) is the inverse limit of finite c-ordered sets

XF , where F ∈ I = Pfin(X ).

2. X∞ is a compact c-ordered G -space and ν : X → X∞ is a
dense topological G -embedding of a discrete set X such that
ν is a c-order-preserving map.

3. If X is countable then X∞ is a metrizable compact space.

Linear order version is also true.



Sketch

Let F := {t1, t2, · · · , tm} ∈ Cycl(X ) be an m-cycle on X .
(We have a natural equivalence ”modulo-m” between m-cycles)

Define the corresponding finite disjoint covering covF of X

covF := {t1, (t1, t2)o , t2, (t2, t3)o , · · · , tm, (tm, t1)o}.

Moreover, covF naturally defines also a finite c-ordered set XF by
“gluing the points” of the interval (ti , ti+1)o (whenever it is nonempty)

and a c-order preserving onto map X → XF .



Sketch

Cycl(X ) is a directed poset.
We have c-order preserving onto bonding maps fF2,F1 : XF2 → XF1

between finite c-ordered sets and an inverse system

fF2,F1 : XF2 → XF1 , F1 ≤ F2

X∞ := lim←−{XF , Cycl(X )} ⊂
∏
F∈I

XF

• X∞ is zero-dimensional compact and carries a circular order.
• (X , τdiscrete) ↪→ X∞ is a topological G -embedding and
c-embedding.
A thread u = (uF ) ∈ X∞represents an element x ∈ X iff there exists F ∈ Cycl(X )

such that uF = ti = x for some ti ∈ F .

• G ↷ X can be naturally extended to a c-order preserving action
G ↷ X∞ which is continuous.
• (Q,≤) = X ↪→ X∞ is the maximal G -compactification for the G -space (Q, τdiscr ).
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Remark about universal minimal systems

Theorem ([Glasner-Me 2021])
M(Aut (Q◦) = Split(T;Q◦) = X∞ \ X , where X := Q◦.

Starting point was Pestov’s well known result:

M(Aut (Q≤)) = {∗}
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Theorem
Let G be an abstract group. TFAE:

1. G is L-Ord (L-COrd);

2. (G , τdiscr ) is orderly (c-orderly);

3. G algebraically is embedded into the group Aut (X ) for some
linearly ordered set (X ,≤) (c-ordered (X , ◦)).

In (2) we can suppose, in addition, that dimK = 0.

▶ (1) ↔ (3) is well known.
▶ Every orderly topological group is left ordered as an abstract
group. The converse, as expected, is not true. Take G = (Z, dp)
(Corollary on the next page).
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Definition
Let G be a topological group. We say g ∈ G is weakly
topologically torsion (wtt) if e ∈ cl({gn : n ∈ N}).

Proposition

Let G be an orderly topological group. Then the neutral element is
the only weakly topologically torsion element in G .

Corollary

The topological group G = (Z, dp) of all integers with the p-adic
metric is not orderly.

Proof: lim pnx = 0.



Remark
D. Dikranjan’s reformulation of wtt: an element g ∈ G is wtt if
and only if the cyclic subgroup ⟨g⟩ of G is either finite or infinite
and non-discrete.
This immediately implies that in every orderly topological group G
all cyclic subgroups are necessarily discrete and infinite (essentially
strengthens that Corollary).



Recall: every (c-)ordered compact G -space K is a tame DS and
if K is metrizable then E (K ) is a separable Rosenthal compact.

Results of Todorc̆ević and Argyros–Dodos–Kanellopoulos about
separable Rosenthal compacta, lead to a hierarchy of tame metric
dynamical systems (see [Gl-Me, Trans AMS, 2022]) according to
topological properties of corresponding enveloping semigroups. In
view of this hierarchy we ask the following

Question
Which (c-)orderly topological groups G admit an effective
(c-)ordered continuous action on a compact metrizable space K
such that the enveloping semigroup E (K ) is: a) metrizable? b)
hereditarily separable? c) first countable?
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Definition
If (a) holds, we say that G is Asplund-orderly
(the reason: by [Gl-Me-Uspenskij08] result this is equivalent to say that the action is

Asplund representable.]

Remark
True for G = Zn

H+[0, 1] is orderly but not Asplund orderly;
H+(T) is c-orderly but not Asplund c-orderly.



• lexicographic product X◦ × L<
of a c-ordered X◦ and a linearly ordered L<.

Figure: c-ordered lexicographic product (from Wikipedia)



Sturmian systems are circularly ordered

Example

Sturmian like symbolic system Xα ⊂ {0, 1}Z
(rotation by angle α, dividing T = I0 ∪ I1 into two disjoint subintervals and getting the

induced 1-0 bisequence ∈ {0, 1}Z)
is a circularly ordered Z-system Xα = Split(T;< Rot(α) >)
(split any point of the dense orbit of 0 on T) embedded into the
c-ordered lexicographic order TT := T× {−,+} “double circle”





Enveloping semigroup of Sturmian systems is also
circularly ordered

Example

Moreover, the enveloping semigroup

E (Xα) = TT ∪ Z ⊂ T× {−, 0,+} (lexic. prod.)

is also a circularly ordered system (not metrizable).
It contains TT as its unique minimal Z-subspace. Every point of Z
in E is isolated.

E = TT ∪ {σn : n ∈ Z}, where (TT, σ) is Ellis’ double circle cascade:
TT = {β± : β ∈ T = [0, 1)}, β− = nα−, β+ = nα+ and σ ◦ β± = (β + α)±.
β+
1 ◦ β±

2 = (β1 + β2)+ β−
1 ◦ β±

2 = (β1 + β2)−

E = TT ∪ Z ⊂ T× {−, 0,+} c-ordered lexicographic order

[nα−, σn, nα+] ⇒ the interval (nα−, nα+) ⊂ E contains only the single element σn

(so, isolated)
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Ordered enveloping semigroup compactifications

Definition
Let S be a compact right topological (in short: crt) semigroup.
We say that S is a linearly ordered crt-semigroup if there exists a
bi-invariant linear order on S such that the interval topology is just
the given topology.

(OSC) A crt-semigroup compactification γ : G ↪→ S of a topological
group G with a bi-invariant order is an ordered semigroup
compactification if S is a linearly ordered crt-semigroup such
that γ is an order compactification.

(DO) G is dynamically orderable if it admits a proper order
semigroup compactification (i.e., γ : G ↪→ S is a topological
embedding and order embedding).

(M) If, S is metrizable in (DO), then G is an M-group.



Example

(N. Hindman and R.D. Kopperman 2003) For every linearly ordered
group (G ,≤) with the discrete topology, there exist proper linearly
ordered rts-compactifications. Moreover, between them there
exists the greatest (typically nonmetrizable) compactification G ↪→ µG ,
which, in fact, is the Nachbin’s compactification of (G , τdiscr ,≤).

▶ Every dynamically orderable topological group G is orderly as a
topological group and orderable as an abstract group.



Theorem

1. Let G be a topological group with a linear order ≤G and
(K ,≤) be a linearly ordered compact effective G -system such
that every orbit map x̃ : G → X , g 7→ gx is order preserving.
Then the Ellis semigroup E (K ) is a linearly ordered semigroup
and the Ellis compactification j : G → E (K ) is an injective
linearly ordered semigroup compactification.

2. If, in addition, G is separable then E (K ) is hereditarily
separable and first countable.

3. If x̃ : G → X is a topological embedding for some x ∈ X then
j : G → E (K ) is a topological embedding.



Remark
By a result of Ostaszewski 74 and its reformulation by Marciszewski 08

for S there exist: a closed subset X ⊂ [0, 1] and a subset A ⊂ K
such that S ≈ XA = (X × {0} ∪ (A× {1})) (endowed with the
corresponding lexicographic order inherited from X × {0, 1}).
XA is metrizable if and only if A is countable.



Theorem
Let G be an abstract discrete group.

1. The following are equivalent:

(a) G is orderable;
(b) G is dynamically orderable

2. If G is countable then one may choose S such that, in
addition, S is first countable and hereditarily separable.

Question
Which countable ordered discrete groups G are: M-groups?

Positive Example: Zn

Using lexicographic order, there exists a a cont. action Zn ↷ K on a countable

ordered compact space K (so, E(K) ⊂ KK is metrizable) such that we can apply

Theorem 0.10.3.



Theorem
Let (G , τ) be an abstract discrete group. The following are
equivalent:

1. G is circularly orderable;

2. G is dynamically c-orderable
(i.e., G admits a c-order proper semigroup compactification
γ : G ↪→ S).

Using Scwierczkowski’s thm: every c-ordered group G is embedded
into a lexicographic order T⊗c L, where L is a linearly ordered
group.



Thank you!


