Orderable groups and semigroup compactifications

Michael Megrelishvili

Bar-Ilan University, Israel

Dedicated to Eli Glasner on the occasion of his 75th birthday

Prague, TopoSym 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dedicated to Eli Glasner on the occasion of his 75th birthday

Most related references:

- E. Glasner and M. Megrelishvili, *Circular orders, ultra-homogeneous order structures and their automorphism groups*, AMS book series v. "Topology, Geometry, and Dynamics: Rokhlin-100", Contemp. Math. 77, 133–154 (2021).
- E. Glasner and M. Megrelishvili, *Circularly ordered dynamical systems*, Monatsh. Math. 185, 415–441 (2018).
- 3. N. Hindman and R.D. Kopperman, *Order Compactifications of Discrete Semigroups*, Topology Proceedings 27 (2003), 479–496.
- 4. M. Megrelishvili, Orderable groups and semigroup compactifications, 2022, arXiv:2112.14615.
- 5. M. Megrelishvili, *Topological Group Actions and Banach Representations*, unpublished book, 2022. Available on my homepage.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dedicated to Eli Glasner on the occasion of his 75th birthday

Most related references:

- E. Glasner and M. Megrelishvili, *Circular orders, ultra-homogeneous order structures and their automorphism groups*, AMS book series v. "Topology, Geometry, and Dynamics: Rokhlin-100", Contemp. Math. **77**, 133–154 (2021).
- E. Glasner and M. Megrelishvili, *Circularly ordered dynamical systems*, Monatsh. Math. 185, 415–441 (2018).
- 3. N. Hindman and R.D. Kopperman, Order Compactifications of Discrete Semigroups, Topology Proceedings 27 (2003), 479–496.
- 4. M. Megrelishvili, Orderable groups and semigroup compactifications, 2022, arXiv:2112.14615.
- 5. M. Megrelishvili, *Topological Group Actions and Banach Representations*, unpublished book, 2022. Available on my homepage.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our aim is to study some links between linear (circular) orderability of groups and topological dynamics.

Main tools:

- Circularly (linearly) ordered compact G-spaces
- Enveloping semigroup of compact dynamical systems
- Compact right topological semigroup compactifications

• A group G is *left linearly orderable* iff there exists a linear order \leq on G such that the standard left action of G on itself preserves the order:

$$x \leq y \text{ iff } gx \leq gy \quad \forall \ g, x, y \in G$$

Notation $G \in L$ -Ord.

• If left and right action both are order preserving (wrt the same order) on G, we say that G is *orderable*; notation: $G \in \text{Ord}$.

Circular (cyclic) order

Definition ([Huntington], [Cech], ...)

Circular order on a set X is a ternary relation $R \subset X^3$ on X s.t. :

- 1. Cyclicity: $[a, b, c] \Rightarrow [b, c, a];$
- 2. Asymmetry: $[a, b, c] \Rightarrow (a, c, b) \notin R;$
- 3. Transitivity: $\begin{cases} [a, b, c] \\ [a, c, d] \end{cases} \Rightarrow [a, b, d];$
- 4. Totality: if $a, b, c \in X$ are distinct, then [a, b, c] or [a, c, b].

Examples

- ▶ circle \mathbb{T}
- ▶ finite cycles C_n
- ▶ Linear order \leq naturally induces a circular order \circ_{\leq} (e.g., [0, 1) defines \mathbb{T}).

• c-order-preserving action of G on a circularly ordered set (X, \circ)

 $[x, y, z] \Leftrightarrow [gx, gy, gz] \quad \forall \ g \in G, \ x, y, z \in X.$

If X = G then say left circularly orderable group. Abbr.: L-COrd
circularly orderable groups. Abbr.: COrd.

$$[x, y, z] \Leftrightarrow [g_1 x g_2, g_1 y g_2, g_1 z g_2] \quad \forall g_1, g_2 \in G, \ x, y, z \in X.$$

A D N A 目 N A E N A E N A B N A C N

- ▶ Every L-Ord group is L-COrd and every Ord group is COrd.
- A finite group is L-COrd iff it is a cyclic group iff it is COrd.
- ▶ The circle group T is COrd but not Ord.

Two known important facts:

- *G* is L-Ord iff *G* faithfully acts on a linearly ordered set by linear order preserving transformations iff *G* is embedded algebraically into $Aut(X, \leq)$.
- *G* is L-COrd iff *G* faithfully acts on a circularly ordered set by circular order preserving transformations iff *G* is embedded algebraically into $Aut(X, \circ)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Topology of a circular order (X, R)

• For distinct $a, b \in X$ define the (oriented) *intervals*:

$$(a,b)_R := \{x \in X : [a,x,b]\}.$$

• For every c-order R on X the family of intervals

$$\{(a,b)_R: a,b\in X\}$$

forms a base for a Hausdorff topology τ_R on X (for every $|X| \ge 3$). • Topological space is said to be circularly ordered topological space (COTS) if its topology is τ_R for some circular order R.

A D N A 目 N A E N A E N A B N A C N

Circularly ordered dynamical systems

Definition

A compact G-system (X, τ) is circularly orderable if there exists a τ -compatible circular order R on X such that X is COTS and every g-translation $\tilde{g} : X \to X$ is C-OP.

 $\begin{array}{l} \mathsf{Proposition} \\ \mathsf{LODS} \subset \mathsf{CODS} \end{array}$

For every linearly (circularly) ordered **compact** space X and every topological subgroup $G \le H_+(X)$, with its compact-open topology, the corresponding action $G \curvearrowright X$ defines a linearly (circularly) ordered *G*-system.

(c)-orderly topological groups

The following definition is a natural topological generalization of (left) linear and circular orderability of abstract groups

Definition (Glasner-Me)

A topological group G is c-orderly (orderly) if G topologically can be embedded into the topological group $H_+(K)$ for some compact circularly (linearly) ordered space K.

Question

Which topological groups are orderly ? c-orderly ?

- Immediate examples: The Polish groups $H_+(\mathbb{T})$ and $H_+[0,1]$.
- Every orderly (c-orderly) topological group is L-Ord (L-COrd).
- Every orderly group is c-orderly.
- The completion of an orderly topological group (G, au) is orderly

(c)-orderly topological groups

The following definition is a natural topological generalization of (left) linear and circular orderability of abstract groups

Definition (Glasner-Me)

A topological group G is c-orderly (orderly) if G topologically can be embedded into the topological group $H_+(K)$ for some compact circularly (linearly) ordered space K.

Question

Which topological groups are orderly ? c-orderly ?

- \bullet Immediate examples: The Polish groups $\mathsf{H}_+(\mathbb{T})$ and $\mathsf{H}_+[0,1].$
- Every orderly (c-orderly) topological group is L-Ord (L-COrd).
- Every orderly group is c-orderly.
- The completion of an orderly topological group (G, τ) is orderly.

Let (X, \circ) $((X, \leq))$ be a circularly (linearly) ordered set and G be a subgroup of Aut (X, \circ) $(Aut (X, \leq))$ with the pointwise topology. Then G is a c-orderly (orderly) topological group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary The Polish group $G = Aut(\mathbb{Q}/\mathbb{Z}, \circ)$ is c-orderly The Polish group $G = Aut(\mathbb{Q}, \leq)$ is orderly.

Let (X, \circ) $((X, \leq))$ be a circularly (linearly) ordered set and G be a subgroup of Aut (X, \circ) $(Aut (X, \leq))$ with the pointwise topology. Then G is a c-orderly (orderly) topological group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

The Polish group $G = \operatorname{Aut}(\mathbb{Q}/\mathbb{Z}, \circ)$ is c-orderly. The Polish group $G = \operatorname{Aut}(\mathbb{Q}, \leq)$ is orderly.

Let (X, \circ) be a c-ordered set and G is a subgroup of Aut (X) with the pointwise topology. Then there exist: a c-ordered compact zero-dimensional space X_{∞} such that

- 1. $X_{\infty} = \varprojlim(X_F, I)$ is the inverse limit of finite c-ordered sets X_F , where $F \in I = P_{fin}(X)$.
- X_∞ is a compact c-ordered G-space and ν: X → X_∞ is a dense topological G-embedding of a discrete set X such that ν is a c-order-preserving map.

3. If X is countable then X_{∞} is a metrizable compact space.

Linear order version is also true.

Sketch

Let $F := \{t_1, t_2, \dots, t_m\} \in Cycl(X)$ be an *m*-cycle on *X*. (We have a natural equivalence "modulo-*m*" between *m*-cycles) Define the corresponding finite disjoint covering cov_F of *X*

$$cov_F := \{t_1, (t_1, t_2)_o, t_2, (t_2, t_3)_o, \cdots, t_m, (t_m, t_1)_o\}.$$

Moreover, cov_F naturally defines also a finite c-ordered set X_F by "gluing the points" of the interval $(t_i, t_{i+1})_o$ (whenever it is nonempty) and a c-order preserving onto map $X \to X_F$.

Sketch

Cycl(X) is a directed poset.

We have c-order preserving onto bonding maps $f_{F_2,F_1}: X_{F_2} \to X_{F_1}$ between finite c-ordered sets and an inverse system

$$f_{F_2,F_1} \colon X_{F_2} \to X_{F_1}, \quad F_1 \le F_2$$
$$X_{\infty} := \varprojlim \{X_F, \ Cycl(X)\} \subset \prod_{F \in I} X_F$$

• X_{∞} is zero-dimensional compact and carries a circular order. • $(X, \tau_{discrete}) \hookrightarrow X_{\infty}$ is a topological *G*-embedding and c-embedding.

A thread $u = (u_F) \in X_{\infty}$ represents an element $x \in X$ iff there exists $F \in Cycl(X)$

• $G \curvearrowright X$ can be naturally extended to a c-order preserving action $G \curvearrowright X_{\infty}$ which is continuous. • $(\mathbb{Q}, \leq) = X \hookrightarrow X_{\infty}$ is the *maximal G-compactification* for the *G*-space $(\mathbb{Q}, \tau_{discr})$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Sketch

Cycl(X) is a directed poset.

We have c-order preserving onto bonding maps $f_{F_2,F_1}: X_{F_2} \to X_{F_1}$ between finite c-ordered sets and an inverse system

$$f_{F_2,F_1} \colon X_{F_2} \to X_{F_1}, \quad F_1 \le F_2$$
$$X_{\infty} := \varprojlim \{X_F, \ Cycl(X)\} \subset \prod_{F \in I} X_F$$

- X_{∞} is zero-dimensional compact and carries a circular order.
- $(X, \tau_{discrete}) \hookrightarrow X_{\infty}$ is a topological *G*-embedding and c-embedding.

A thread $u = (u_F) \in X_{\infty}$ represents an element $x \in X$ iff there exists $F \in Cycl(X)$ such that $u_F = t_i = x$ for some $t_i \in F$.

• $G \curvearrowright X$ can be naturally extended to a c-order preserving action $G \curvearrowright X_{\infty}$ which is continuous. • $(\mathbb{Q}, \leq) = X \hookrightarrow X_{\infty}$ is the *maximal G-compactification* for the *G*-space $(\mathbb{Q}, \tau_{discr})$.

Remark about universal minimal systems

Theorem ([Glasner-Me 2021]) $M(\operatorname{Aut}(\mathbb{Q}_{\circ}) = Split(\mathbb{T}; \mathbb{Q}_{\circ}) = X_{\infty} \setminus X$, where $X := \mathbb{Q}_{\circ}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Starting point was Pestov's well known result: $M(\operatorname{Aut}(\mathbb{Q}_{\leq})) = \{*\}$

Remark about universal minimal systems

Theorem ([Glasner-Me 2021]) $M(\operatorname{Aut}(\mathbb{Q}_{\circ}) = Split(\mathbb{T}; \mathbb{Q}_{\circ}) = X_{\infty} \setminus X$, where $X := \mathbb{Q}_{\circ}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Starting point was Pestov's well known result:

 $M(\operatorname{Aut}(\mathbb{Q}_{\leq})) = \{*\}$

Let G be an abstract group. TFAE:

- 1. G is L-Ord (L-COrd);
- 2. (G, τ_{discr}) is orderly (c-orderly);
- 3. G algebraically is embedded into the group Aut(X) for some linearly ordered set (X, \leq) (c-ordered (X, \circ)).

In (2) we can suppose, in addition, that dim K = 0.

▶ (1) \leftrightarrow (3) is well known.

▶ Every orderly topological group is left ordered as an abstract group. The converse, as expected, is not true. Take $G = (\mathbb{Z}, d_p)$ (Corollary on the next page).

Let G be an abstract group. TFAE:

- 1. G is L-Ord (L-COrd);
- 2. (G, τ_{discr}) is orderly (c-orderly);
- G algebraically is embedded into the group Aut (X) for some linearly ordered set (X, ≤) (c-ordered (X, ○)).

In (2) we can suppose, in addition, that dim K = 0.

▶ (1) \leftrightarrow (3) is well known.

▶ Every orderly topological group is left ordered as an abstract group. The converse, as expected, is not true. Take $G = (\mathbb{Z}, d_p)$ (Corollary on the next page).

Definition

Let G be a topological group. We say $g \in G$ is weakly topologically torsion (wtt) if $e \in cl(\{g^n : n \in \mathbb{N}\})$.

Proposition

Let G be an orderly topological group. Then the neutral element is the only weakly topologically torsion element in G.

Corollary

The topological group $G = (\mathbb{Z}, d_p)$ of all integers with the p-adic metric is not orderly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: $\lim p^n x = 0$.

Remark

D. Dikranjan's reformulation of wtt: an element $g \in G$ is wtt if and only if the cyclic subgroup $\langle g \rangle$ of G is either finite or infinite and non-discrete.

This immediately implies that in every orderly topological group G all cyclic subgroups are necessarily discrete and infinite (essentially strengthens that Corollary).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recall: every (c-)ordered compact G-space K is a tame DS and if K is metrizable then E(K) is a separable Rosenthal compact.

Results of Todorčević and Argyros–Dodos–Kanellopoulos about separable Rosenthal compacta, lead to a hierarchy of tame metric dynamical systems (see [GI-Me, Trans AMS, 2022]) according to topological properties of corresponding enveloping semigroups. In view of this hierarchy we ask the following

Question

Which (c-)orderly topological groups G admit an effective (c-)ordered continuous action on a compact metrizable space K such that the enveloping semigroup E(K) is: a) metrizable? b) hereditarily separable? c) first countable?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall: every (c-)ordered compact G-space K is a tame DS and if K is metrizable then E(K) is a separable Rosenthal compact.

Results of Todorčević and Argyros–Dodos–Kanellopoulos about separable Rosenthal compacta, lead to a hierarchy of tame metric dynamical systems (see [GI-Me, Trans AMS, 2022]) according to topological properties of corresponding enveloping semigroups. In view of this hierarchy we ask the following

Question

Which (c-)orderly topological groups G admit an effective (c-)ordered continuous action on a compact metrizable space K such that the enveloping semigroup E(K) is: a) metrizable? b) hereditarily separable? c) first countable?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

If (a) holds, we say that G is Asplund-orderly

(the reason: by [Gl-Me-Uspenskij08] result this is equivalent to say that the action is Asplund representable.]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark

True for $G = \mathbb{Z}^n$ $H_+[0,1]$ is orderly but not Asplund orderly; $H_+(\mathbb{T})$ is c-orderly but not Asplund c-orderly. • lexicographic product $X_{\circ} \times L_{<}$ of a c-ordered X_{\circ} and a linearly ordered $L_{<}$.

Figure: c-ordered lexicographic product (from Wikipedia)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Sturmian systems are circularly ordered

Example

Sturmian like symbolic system $X_{lpha} \subset \{0,1\}^{\mathbb{Z}}$

(rotation by angle α , dividing $\mathbb{T} = I_0 \cup I_1$ into two disjoint subintervals and getting the induced 1-0 bisequence $\in \{0, 1\}^{\mathbb{Z}}$)

is a **circularly ordered** \mathbb{Z} -system $X_{\alpha} = Split(\mathbb{T}; < Rot(\alpha) >)$ (split any point of the dense orbit of 0 on \mathbb{T}) embedded into the c-ordered lexicographic order $\mathbb{T}_{\mathbb{T}} := \mathbb{T} \times \{-,+\}$ "double circle"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Sturmian system

split the points of the orbit <Rot(⊲)> in T

Enveloping semigroup of Sturmian systems is also circularly ordered

Example

Moreover, the enveloping semigroup

 $E(X_{\alpha}) = \mathbb{T}_{\mathbb{T}} \cup \mathbb{Z} \quad \subset \mathbb{T} \times \{-, 0, +\}$ (lexic. prod.)

is also a **circularly ordered** system (not metrizable). It contains $\mathbb{T}_{\mathbb{T}}$ as its unique minimal \mathbb{Z} -subspace. Every point of \mathbb{Z} in *E* is isolated.

$$\begin{split} E &= \mathbb{T}_{\mathbb{T}} \cup \{\sigma^{n} : n \in \mathbb{Z}\}, \text{ where } (\mathbb{T}_{\mathbb{T}}, \sigma) \text{ is Ellis' double circle cascade:} \\ \mathbb{T}_{\mathbb{T}} &= \{\beta^{\pm} : \beta \in \mathbb{T} = [0, 1)\}, \beta^{-} = n\alpha^{-}, \beta^{+} = n\alpha^{+} \text{ and } \sigma \circ \beta^{\pm} = (\beta + \alpha)^{\pm}, \\ \beta_{1}^{+} \circ \beta_{2}^{\pm} = (\beta_{1} + \beta_{2})^{+} \qquad \beta_{1}^{-} \circ \beta_{2}^{\pm} = (\beta_{1} + \beta_{2})^{-} \\ E &= \mathbb{T}_{\mathbb{T}} \cup \mathbb{Z} \subset \mathbb{T} \times \{-, 0, +\} \text{ c-ordered lexicographic order} \\ [n\alpha^{-}, \sigma^{n}, n\alpha^{+}] \Rightarrow \text{ the interval } (n\alpha^{-}, n\alpha^{+}) \subset E \text{ contains only the single element } \sigma^{n} \\ \text{(so, isolated)} \end{split}$$

Enveloping semigroup of Sturmian systems is also circularly ordered

Example

Moreover, the enveloping semigroup

 $E(X_{\alpha}) = \mathbb{T}_{\mathbb{T}} \cup \mathbb{Z} \quad \subset \mathbb{T} \times \{-, 0, +\}$ (lexic. prod.)

is also a **circularly ordered** system (not metrizable).

It contains $\mathbb{T}_{\mathbb{T}}$ as its unique minimal $\mathbb{Z}\text{-subspace}.$ Every point of \mathbb{Z} in E is isolated.

$$\begin{split} & E = \mathbb{T}_{\mathbb{T}} \cup \{ \sigma^n : n \in \mathbb{Z} \}, \text{ where } (\mathbb{T}_{\mathbb{T}}, \sigma) \text{ is Ellis' double circle cascade:} \\ & \mathbb{T}_{\mathbb{T}} = \{ \beta^{\pm} : \beta \in \mathbb{T} = [0, 1) \}, \beta^- = n\alpha^-, \beta^+ = n\alpha^+ \text{ and } \sigma \circ \beta^{\pm} = (\beta + \alpha)^{\pm}. \\ & \beta_1^+ \circ \beta_2^\pm = (\beta_1 + \beta_2)^+ \quad \beta_1^- \circ \beta_2^\pm = (\beta_1 + \beta_2)^- \\ & E = \mathbb{T}_{\mathbb{T}} \cup \mathbb{Z} \subset \mathbb{T} \times \{ -, 0, + \} \text{ c-ordered lexicographic order} \\ & [n\alpha^-, \sigma^n, n\alpha^+] \Rightarrow \text{ the interval } (n\alpha^-, n\alpha^+) \subset E \text{ contains only the single element } \sigma^n \\ & \text{ (so, isolated)} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Enveloping semigroup of Sturmian like systems

Ordered enveloping semigroup compactifications

Definition

Let S be a compact right topological (in short: crt) semigroup. We say that S is a *linearly ordered crt-semigroup* if there exists a bi-invariant linear order on S such that the interval topology is just the given topology.

- (OSC) A crt-semigroup compactification $\gamma: G \hookrightarrow S$ of a **topological group** G with a bi-invariant order is an *ordered semigroup compactification* if S is a linearly ordered crt-semigroup such that γ is an order compactification.
 - (DO) G is dynamically orderable if it admits a proper order semigroup compactification (i.e., $\gamma: G \hookrightarrow S$ is a topological embedding and order embedding).
 - (M) If, S is metrizable in (DO), then G is an M-group.

Example

(N. Hindman and R.D. Kopperman 2003) For every linearly ordered group (G, \leq) with the discrete topology, there exist proper linearly ordered rts-compactifications. Moreover, between them there exists the greatest (typically nonmetrizable) compactification $G \hookrightarrow \mu G$, which, in fact, is the Nachbin's compactification of (G, τ_{discr}, \leq) .

 \blacktriangleright Every dynamically orderable topological group G is orderly as a topological group and orderable as an abstract group.

- 1. Let G be a topological group with a linear order \leq_G and (K, \leq) be a linearly ordered compact effective G-system such that every orbit map $\tilde{x}: G \to X, g \mapsto gx$ is order preserving. Then the Ellis semigroup E(K) is a linearly ordered semigroup and the Ellis compactification $j: G \to E(K)$ is an injective linearly ordered semigroup compactification.
- 2. If, in addition, G is separable then E(K) is hereditarily separable and first countable.
- 3. If $\tilde{x}: G \to X$ is a topological embedding for some $x \in X$ then $j: G \to E(K)$ is a topological embedding.

Remark

By a result of Ostaszewski 74 and its reformulation by Marciszewski 08

for S there exist: a closed subset $X \subset [0,1]$ and a subset $A \subset K$ such that $S \approx X_A = (X \times \{0\} \cup (A \times \{1\}))$ (endowed with the corresponding lexicographic order inherited from $X \times \{0,1\}$). X_A is metrizable if and only if A is countable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let G be an abstract discrete group.

- 1. The following are equivalent:
 - (a) G is orderable;
 - (b) G is dynamically orderable
- 2. If G is countable then one may choose S such that, in addition, S is first countable and hereditarily separable.

Question

Which countable ordered discrete groups G are: M-groups?

Positive Example: \mathbb{Z}^n

Using lexicographic order, there exists a a cont. action $\mathbb{Z}^n \curvearrowright K$ on a **countable** ordered compact space K (so, $E(K) \subset K^K$ is metrizable) such that we can apply Theorem 0.10.3.

Let (G, τ) be an abstract discrete group. The following are equivalent:

- 1. *G* is circularly orderable;
- G is dynamically c-orderable (i.e., G admits a c-order proper semigroup compactification γ: G ↔ S).

Using Scwierczkowski's thm: every c-ordered group G is embedded into a lexicographic order $\mathbb{T}\otimes_c L$, where L is a linearly ordered group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you!