On zero-dimensional subspaces of Eberlein compacta and a characterization of ω-Corson compacta

Witold Marciszewski

University of Warsaw
13th Prague Symposium on General Topology and its Relations to Modern Analysis and Algebra

Prague, July 25-29, 2022

All topological spaces are Tikhonov.

All topological spaces are Tikhonov.
A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

All topological spaces are Tikhonov.
A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.

All topological spaces are Tikhonov.

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.
Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

All topological spaces are Tikhonov.

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.
Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight?

All topological spaces are Tikhonov.

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.
Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight?
Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

All topological spaces are Tikhonov.

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.
Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight?
Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

Several consistent examples giving a negative answer to the second question (Fedorchuk 1975, Rudin-Zenor 1976, Plebanek 2020).

All topological spaces are Tikhonov.

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.
Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight?
Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

Several consistent examples giving a negative answer to the second question (Fedorchuk 1975, Rudin-Zenor 1976, Plebanek 2020).
Example (Koszmider 2016)
There exists (in ZFC) a nonmetrizable compact space without nonmetrizable zero-dimensional closed subspaces.

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space K is an Eberlein compactum if K can be embedded in the following subspace of the product $\mathbb{R}^{\ulcorner }$:

$$
c_{0}(\Gamma)=\left\{x \in \mathbb{R}^{\Gamma}: \text { for every } \varepsilon>0 \text { the set }\{\gamma:|x(\gamma)|>\varepsilon\} \text { is finite }\right\},
$$

for some set Γ.

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space K is an Eberlein compactum if K can be embedded in the following subspace of the product $\mathbb{R}^{\ulcorner }$:

$$
c_{0}(\Gamma)=\left\{x \in \mathbb{R}^{\Gamma}: \text { for every } \varepsilon>0 \text { the set }\{\gamma:|x(\gamma)|>\varepsilon\} \text { is finite }\right\},
$$

for some set Γ.
All metrizable compacta are Eberlein compact spaces.

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space K is an Eberlein compactum if K can be embedded in the following subspace of the product $\mathbb{R}^{\ulcorner }$:

$$
c_{0}(\Gamma)=\left\{x \in \mathbb{R}^{\Gamma}: \text { for every } \varepsilon>0 \text { the set }\{\gamma:|x(\gamma)|>\varepsilon\} \text { is finite }\right\},
$$

for some set Γ.
All metrizable compacta are Eberlein compact spaces.
Continuous images, closed subspaces, countable products of Eberlein compacta are Eberlein compact spaces.

Problem (Joel Alberto Aguilar)

Let K be an Eberlein compact space of weight κ. Does K contain a closed zero-dimensional subspace L of the same weight?

Problem (Joel Alberto Aguilar)

Let K be an Eberlein compact space of weight κ. Does K contain a closed zero-dimensional subspace L of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a closed nonmetrizable zero-dimensional subspace L ?

Problem (Joel Alberto Aguilar)

Let K be an Eberlein compact space of weight κ. Does K contain a closed zero-dimensional subspace L of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a closed nonmetrizable zero-dimensional subspace L ?

We will show that the negative answer to this problem is consistent with ZFC.

Problem (Joel Alberto Aguilar)

Let K be an Eberlein compact space of weight κ. Does K contain a closed zero-dimensional subspace L of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a closed nonmetrizable zero-dimensional subspace L ?

We will show that the negative answer to this problem is consistent with ZFC.
We do not know if the affirmative answer is also consistent with ZFC.

Proposition

Let x be a nonisolated point of an Eberlein compact space K such that the character $\chi(K, x)=\kappa$. Then K contains a copy of a one point compactification $\alpha(\kappa)$ of a discrete space of cardinality κ with x as its point at infinity.

Proposition

Let x be a nonisolated point of an Eberlein compact space K such that the character $\chi(K, x)=\kappa$. Then K contains a copy of a one point compactification $\alpha(\kappa)$ of a discrete space of cardinality κ with x as its point at infinity.

Corollary

Let K be an Eberlein compact space with a point of character κ. Then K contains a closed zero-dimensional subspace L of weight κ. In particular, each Eberlein compact space of uncountable character contains a closed nonmetrizable zero-dimensional subspace L.

Proposition

Let x be a nonisolated point of an Eberlein compact space K such that the character $\chi(K, x)=\kappa$. Then K contains a copy of a one point compactification $\alpha(\kappa)$ of a discrete space of cardinality κ with x as its point at infinity.

Corollary

Let K be an Eberlein compact space with a point of character κ. Then K contains a closed zero-dimensional subspace L of weight κ. In particular, each Eberlein compact space of uncountable character contains a closed nonmetrizable zero-dimensional subspace L.

Corollary

Let K be an Eberlein compact space of weight $>2^{\kappa}$. Then K contains a closed zero-dimensional subspace L of weight κ^{+}.
In particular, each Eberlein compact space K of weight (cardinality)
$>2^{\omega}$ contains a closed nonmetrizable zero-dimensional subspace L.

A subset L of a Polish space X without isolated points is called a Luzin set if L is uncountable and, for every meager subset A of X, the intersection $X \cap L$ is countable.

A subset L of a Polish space X without isolated points is called a Luzin set if L is uncountable and, for every meager subset A of X, the intersection $X \cap L$ is countable. It is known that, the existence of a Luzin set in X is equivalent with the existence of a Luzin set in the real line \mathbb{R}, and it is independent of ZFC.

A subset L of a Polish space X without isolated points is called a Luzin set if L is uncountable and, for every meager subset A of X, the intersection $X \cap L$ is countable. It is known that, the existence of a Luzin set in X is equivalent with the existence of a Luzin set in the real line \mathbb{R}, and it is independent of ZFC.

Recall the construction of the Aleksandrov duplicate $A D(K)$ of a compact space K.

A subset L of a Polish space X without isolated points is called a Luzin set if L is uncountable and, for every meager subset A of X, the intersection $X \cap L$ is countable. It is known that, the existence of a Luzin set in X is equivalent with the existence of a Luzin set in the real line \mathbb{R}, and it is independent of $Z F C$.

Recall the construction of the Aleksandrov duplicate $A D(K)$ of a compact space K.
$A D(K)=K \times 2$, points $(x, 1)$, for $x \in K$, are isolated in $A D(K)$ and basic neighborhoods of a point $(x, 0)$ have the form $(U \times 2) \backslash\{(x, 1)\}$, where U is an open neighborhood of x in K.

A subset L of a Polish space X without isolated points is called a Luzin set if L is uncountable and, for every meager subset A of X, the intersection $X \cap L$ is countable. It is known that, the existence of a Luzin set in X is equivalent with the existence of a Luzin set in the real line \mathbb{R}, and it is independent of ZFC.
Recall the construction of the Aleksandrov duplicate $A D(K)$ of a compact space K.
$A D(K)=K \times 2$, points $(x, 1)$, for $x \in K$, are isolated in $A D(K)$ and basic neighborhoods of a point $(x, 0)$ have the form $(U \times 2) \backslash\{(x, 1)\}$, where U is an open neighborhood of x in K.

Proposition

The Aleksandrov duplicate $A D(K)$ of an Eberlein compact space K is Eberlein compact.

Example

Assume that there exists a Luzin set in \mathbb{R}. Then, for each $n \in \omega$ ($n=\infty$), there exists an n-dimensional nonmetrizable Eberlein compact space K_{n} such that any closed nonmetrizable subspace L of K_{n} has dimension n.

Example

Assume that there exists a Luzin set in \mathbb{R}. Then, for each $n \in \omega$ ($n=\infty$), there exists an n-dimensional nonmetrizable Eberlein compact space K_{n} such that any closed nonmetrizable subspace L of K_{n} has dimension n.

Corollary

Assuming the existence of a Luzin set, there exists a nonmetrizable Eberlein compact space K without closed nonmetrizable zero-dimensional subspaces.

Recall that the preorder \leq^{*} on ω^{ω} is defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely $n \in \omega$.

Recall that the preorder \leq^{*} on ω^{ω} is defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely $n \in \omega$.
A subset A of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

Recall that the preorder \leq^{*} on ω^{ω} is defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely $n \in \omega$.
A subset A of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.
$\mathfrak{b}=\min \left\{|A|: A\right.$ is an unbounded subset of $\left.\omega^{\omega}\right\}$.
It is well known that the statement $\mathfrak{b}>\omega_{1}$ is consistent with ZFC.

Recall that the preorder \leq^{*} on ω^{ω} is defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely $n \in \omega$.
A subset A of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.
$\mathfrak{b}=\min \left\{|A|: A\right.$ is an unbounded subset of $\left.\omega^{\omega}\right\}$.
It is well known that the statement $\mathfrak{b}>\omega_{1}$ is consistent with ZFC.

Theorem

Assuming that $\mathfrak{b}>\omega_{1}$, each Eberlein compact space K of weight $>\omega_{1}$ contains a closed nonmetrizable, zero-dimensional subspace L.

Recall that the preorder \leq^{*} on ω^{ω} is defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely $n \in \omega$.
A subset A of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.
$\mathfrak{b}=\min \left\{|\boldsymbol{A}|: A\right.$ is an unbounded subset of $\left.\omega^{\omega}\right\}$.
It is well known that the statement $\mathfrak{b}>\omega_{1}$ is consistent with ZFC.

Theorem

Assuming that $\mathfrak{b}>\omega_{1}$, each Eberlein compact space K of weight $>\omega_{1}$ contains a closed nonmetrizable, zero-dimensional subspace L.

Problem

Is it consistent that every Eberlein compact space K of weight ω_{1} contains a closed zero-dimensional subspace L of the same weight?

Recall that the preorder \leq^{*} on ω^{ω} is defined by $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely $n \in \omega$.
A subset A of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

$$
\mathfrak{b}=\min \left\{|A|: A \text { is an unbounded subset of } \omega^{\omega}\right\} .
$$

It is well known that the statement $\mathfrak{b}>\omega_{1}$ is consistent with ZFC.

Theorem

Assuming that $\mathfrak{b}>\omega_{1}$, each Eberlein compact space K of weight $>\omega_{1}$ contains a closed nonmetrizable, zero-dimensional subspace L.

Problem

Is it consistent that every Eberlein compact space K of weight ω_{1} contains a closed zero-dimensional subspace L of the same weight?

Problem

Does there exist in ZFC a compact space of weight ω_{1} without nonmetrizable zero-dimensional closed subspaces?

A compact space K is Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ-product of real lines

$$
\Sigma\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}| \leq \omega\right\} .
$$

A compact space K is Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ-product of real lines

$$
\Sigma\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}| \leq \omega\right\} .
$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

A compact space K is Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ-product of real lines

$$
\Sigma\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}| \leq \omega\right\} .
$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.
Let κ be an infinite cardinal number. A compact space K is κ-Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ_{κ}-product of real lines

$$
\Sigma_{\kappa}\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}|<\kappa\right\} .
$$

A compact space K is Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ-product of real lines

$$
\Sigma\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}| \leq \omega\right\} .
$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.
Let κ be an infinite cardinal number. A compact space K is κ-Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ_{κ}-product of real lines

$$
\Sigma_{\kappa}\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}|<\kappa\right\} .
$$

Obviously, the class of Corson compact spaces coincides with the class of ω_{1}-Corson compact spaces.

A compact space K is Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ-product of real lines

$$
\Sigma\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}| \leq \omega\right\} .
$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.
Let κ be an infinite cardinal number. A compact space K is κ-Corson compact if, for some set Γ, K is homeomorphic to a subset of the Σ_{κ}-product of real lines

$$
\Sigma_{\kappa}\left(\mathbb{R}^{\ulcorner }\right)=\left\{x \in \mathbb{R}^{\ulcorner }:|\{\gamma: x(\gamma) \neq 0\}|<\kappa\right\} .
$$

Obviously, the class of Corson compact spaces coincides with the class of ω_{1}-Corson compact spaces.
For $\kappa=\omega, \Sigma_{\kappa}\left(\mathbb{R}^{\Gamma}\right)=\sigma\left(\mathbb{R}^{\Gamma}\right)$ - the σ-product of real lines.

A family \mathcal{U} of subsets of a space X is T_{0}-separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.

A family \mathcal{U} of subsets of a space X is T_{0}-separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.
Given a family \mathcal{U} of subsets of a space X, a point $x \in X$, and an infinite cardinal κ, we write $\operatorname{ord}(x, \mathcal{U})<\kappa$ if $|\{U \in \mathcal{U}: x \in U\}|<\kappa$.

A family \mathcal{U} of subsets of a space X is T_{0}-separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.
Given a family \mathcal{U} of subsets of a space X, a point $x \in X$, and an infinite cardinal κ, we write $\operatorname{ord}(x, \mathcal{U})<\kappa$ if $|\{U \in \mathcal{U}: x \in U\}|<\kappa$. We say that \mathcal{U} is point-finite if $\operatorname{ord}(x, \mathcal{U})<\omega$ for all $x \in X$.

A family \mathcal{U} of subsets of a space X is T_{0}-separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.
Given a family \mathcal{U} of subsets of a space X, a point $x \in X$, and an infinite cardinal κ, we write $\operatorname{ord}(x, \mathcal{U})<\kappa$ if $|\{U \in \mathcal{U}: x \in U\}|<\kappa$. We say that \mathcal{U} is point-finite if $\operatorname{ord}(x, \mathcal{U})<\omega$ for all $x \in X$.

Proposition (Bonnet, Kubiś, Todorčević)

Let κ be an uncountable cardinal number. For a compact space K, the following conditions are equivalent:
(a) K is κ-Corson;
(b) There exists a family \mathcal{U} consisting of cozero subsets of K which is T_{0}-separating, and ord $(x, \mathcal{U})<\kappa$ for all $x \in K$.
ω-Corson compact spaces
An analogous characterization for ω-Corson compacta does not work:

ω-Corson compact spaces

An analogous characterization for ω-Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:
(3) There exists a T_{0}-separating, point-finite family \mathcal{U} consisting of cozero subsets of K;
(0) K is a scattered Eberlein compact space.

ω-Corson compact spaces

An analogous characterization for ω-Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:
(3) There exists a T_{0}-separating, point-finite family \mathcal{U} consisting of cozero subsets of K;
(0) K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.

ω-Corson compact spaces

An analogous characterization for ω-Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:
(3) There exists a T_{0}-separating, point-finite family \mathcal{U} consisting of cozero subsets of K;
(0) K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.
Proposition (M., Plebanek, Zakrzewski)
Every ω-Corson compact space is Eberlein compact and strongly countably dimensional.

ω-Corson compact spaces

An analogous characterization for ω-Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:
(3) There exists a T_{0}-separating, point-finite family \mathcal{U} consisting of cozero subsets of K;
(0) K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.
Proposition (M., Plebanek, Zakrzewski)
Every ω-Corson compact space is Eberlein compact and strongly countably dimensional.

All metrizable, strongly countably dimensional compact spaces are ω-Corson.

ω-Corson compact spaces

An analogous characterization for ω-Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:
(3) There exists a T_{0}-separating, point-finite family \mathcal{U} consisting of cozero subsets of K;
(0) K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.
Proposition (M., Plebanek, Zakrzewski)
Every ω-Corson compact space is Eberlein compact and strongly countably dimensional.

All metrizable, strongly countably dimensional compact spaces are ω-Corson.
All scattered Eberlein compacta are ω-Corson.

A family \mathcal{A} of subsets of a space X is closure preserving if, for any subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$, we have

$$
\overline{\bigcup \mathcal{A}^{\prime}}=\bigcup\left\{\bar{A}: A \in \mathcal{A}^{\prime}\right\}
$$

A family \mathcal{A} of subsets of a space X is closure preserving if, for any subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$, we have

$$
\overline{\bigcup \mathcal{A}^{\prime}}=\bigcup\left\{\bar{A}: A \in \mathcal{A}^{\prime}\right\}
$$

A space X is metacompact if every open cover of X has a point-finite open refinement.

A family \mathcal{A} of subsets of a space X is closure preserving if, for any subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$, we have

$$
\overline{\bigcup \mathcal{A}^{\prime}}=\bigcup\left\{\bar{A}: A \in \mathcal{A}^{\prime}\right\}
$$

A space X is metacompact if every open cover of X has a point-finite open refinement.

Theorem (M., Plebanek, Zakrzewski)
For a compact space K, the following conditions are equivalent:
(3) K is ω-Corson;
(0) K has a closure preserving cover consisting of finite dimensional metrizable compacta;
(c) K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open separable, metrizable, finite dimensional subspace U.

Theorem (Gruenhage)

For a compact space K, the following conditions are equivalent:
(3) K is Eberlein compact;
(0) K^{2} is hereditarily σ-metacompact;
(c) $K^{2} \backslash \Delta$ is σ-metacompact.

Theorem (Gruenhage)

For a compact space K, the following conditions are equivalent:
(3) K is Eberlein compact;
(0) K^{2} is hereditarily σ-metacompact;
(0) $K^{2} \backslash \Delta$ is σ-metacompact.

Example (M., Plebanek, Zakrzewski)
There exist a zero-dimensional Eberlein compact space K such that K^{2} is hereditarily metacompact, but K is not ω-Corson.

Theorem (Gruenhage)

For a compact space K, the following conditions are equivalent:
(0) K is Eberlein compact;
(0) K^{2} is hereditarily σ-metacompact;
(0) $K^{2} \backslash \Delta$ is σ-metacompact.

Example (M., Plebanek, Zakrzewski)

There exist a zero-dimensional Eberlein compact space K such that K^{2} is hereditarily metacompact, but K is not ω-Corson.

The class of ω-Corson compact spaces is clearly stable under taking closed subspaces and finite products, but is not stable under taking continuous images, as the Hilbert cube is a continuous image of the Cantor set 2^{ω}.

Theorem (Gruenhage)

For a compact space K, the following conditions are equivalent:
(0) K is Eberlein compact;
(0) K^{2} is hereditarily σ-metacompact;
(c) $K^{2} \backslash \Delta$ is σ-metacompact.

Example (M., Plebanek, Zakrzewski)

There exist a zero-dimensional Eberlein compact space K such that K^{2} is hereditarily metacompact, but K is not ω-Corson.

The class of ω-Corson compact spaces is clearly stable under taking closed subspaces and finite products, but is not stable under taking continuous images, as the Hilbert cube is a continuous image of the Cantor set 2^{ω}.
Theorem (M., Plebanek, Zakrzewski)
Assuming that $\mathfrak{b}>\omega_{1}$, each nonmetrizable ω-Corson space K contains a closed nonmetrizable zero-dimensional subspace L.

