

On zero-dimensional subspaces of Eberlein compacta and a characterization of ω -Corson compacta

Witold Marciszewski

University of Warsaw

13th Prague Symposium on General Topology and its Relations to Modern Analysis and Algebra Prague, July 25–29, 2022

W. Marciszewski (UW)

2

イロト イヨト イヨト イヨト

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

< 回 > < 三 > < 三 >

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

Every countable compact space is zero-dimensional.

< 回 > < 三 > < 三 >

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

Every countable compact space is zero-dimensional.

Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

Every countable compact space is zero-dimensional.

Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight?

B + 4 B +

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

Every countable compact space is zero-dimensional.

Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight? Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

< 回 > < 三 > < 三 >

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

Every countable compact space is zero-dimensional.

Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight? Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

Several consistent examples giving a negative answer to the second question (Fedorchuk 1975, Rudin-Zenor 1976, Plebanek 2020).

A topological space X is zero-dimensional if it has a base consisting of clopen (i.e., closed and open) sets.

Every countable compact space is zero-dimensional.

Every uncountable metrizable compact space contains a closed uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem

Does every compact space contain a closed zero-dimensional subspace of the same weight? Does every nonmetrizable compact space contain a closed nonmetrizable, zero-dimensional subspace?

Several consistent examples giving a negative answer to the second question (Fedorchuk 1975, Rudin-Zenor 1976, Plebanek 2020).

Example (Koszmider 2016)

There exists (in ZFC) a nonmetrizable compact space without nonmetrizable zero-dimensional closed subspaces.

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

< 同 ト < 三 ト < 三 ト

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space *K* is an Eberlein compactum if *K* can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

$$c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite}\},$$

for some set Γ.

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space *K* is an Eberlein compactum if *K* can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

$$c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite}\},$$

for some set Γ.

All metrizable compacta are Eberlein compact spaces.

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space *K* is an Eberlein compactum if *K* can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

$$c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite}\},$$

for some set Γ.

All metrizable compacta are Eberlein compact spaces.

Continuous images, closed subspaces, countable products of Eberlein compacta are Eberlein compact spaces.

Let *K* be an Eberlein compact space of weight κ . Does *K* contain a closed zero-dimensional subspace *L* of the same weight?

< ロ > < 同 > < 回 > < 回 >

Let *K* be an Eberlein compact space of weight κ . Does *K* contain a closed zero-dimensional subspace *L* of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a closed nonmetrizable zero-dimensional subspace L?

・ロト ・ 四ト ・ ヨト ・ ヨト …

Let *K* be an Eberlein compact space of weight κ . Does *K* contain a closed zero-dimensional subspace *L* of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a closed nonmetrizable zero-dimensional subspace L?

We will show that the negative answer to this problem is consistent with ZFC.

・ロト ・ 四ト ・ ヨト ・ ヨト

Let *K* be an Eberlein compact space of weight κ . Does *K* contain a closed zero-dimensional subspace *L* of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a closed nonmetrizable zero-dimensional subspace L?

We will show that the negative answer to this problem is consistent with ZFC.

We do not know if the affirmative answer is also consistent with ZFC.

Proposition

Let x be a nonisolated point of an Eberlein compact space K such that the character $\chi(K, x) = \kappa$. Then K contains a copy of a one point compactification $\alpha(\kappa)$ of a discrete space of cardinality κ with x as its point at infinity.

< 回 > < 三 > < 三 >

Proposition

Let x be a nonisolated point of an Eberlein compact space K such that the character $\chi(K, x) = \kappa$. Then K contains a copy of a one point compactification $\alpha(\kappa)$ of a discrete space of cardinality κ with x as its point at infinity.

Corollary

Let K be an Eberlein compact space with a point of character κ . Then K contains a closed zero-dimensional subspace L of weight κ . In particular, each Eberlein compact space of uncountable character contains a closed nonmetrizable zero-dimensional subspace L.

イロト イ団ト イヨト イヨト

Proposition

Let x be a nonisolated point of an Eberlein compact space K such that the character $\chi(K, x) = \kappa$. Then K contains a copy of a one point compactification $\alpha(\kappa)$ of a discrete space of cardinality κ with x as its point at infinity.

Corollary

Let K be an Eberlein compact space with a point of character κ . Then K contains a closed zero-dimensional subspace L of weight κ . In particular, each Eberlein compact space of uncountable character contains a closed nonmetrizable zero-dimensional subspace L.

Corollary

Let K be an Eberlein compact space of weight > 2^{κ} . Then K contains a closed zero-dimensional subspace L of weight κ^+ . In particular, each Eberlein compact space K of weight (cardinality) > 2^{ω} contains a closed nonmetrizable zero-dimensional subspace L. A subset *L* of a Polish space *X* without isolated points is called a Luzin set if *L* is uncountable and, for every meager subset *A* of *X*, the intersection $X \cap L$ is countable.

< ロ > < 同 > < 回 > < 回 >

Recall the construction of the Aleksandrov duplicate AD(K) of a compact space K.

A (10) A (10)

Recall the construction of the Aleksandrov duplicate AD(K) of a compact space K.

 $AD(K) = K \times 2$, points (x, 1), for $x \in K$, are isolated in AD(K) and basic neighborhoods of a point (x, 0) have the form $(U \times 2) \setminus \{(x, 1)\}$, where U is an open neighborhood of x in K.

Recall the construction of the Aleksandrov duplicate AD(K) of a compact space K.

 $AD(K) = K \times 2$, points (x, 1), for $x \in K$, are isolated in AD(K) and basic neighborhoods of a point (x, 0) have the form $(U \times 2) \setminus \{(x, 1)\}$, where U is an open neighborhood of x in K.

Proposition

The Aleksandrov duplicate AD(K) of an Eberlein compact space K is Eberlein compact.

Example

Assume that there exists a Luzin set in \mathbb{R} . Then, for each $n \in \omega$ $(n = \infty)$, there exists an *n*-dimensional nonmetrizable Eberlein compact space K_n such that any closed nonmetrizable subspace *L* of K_n has dimension *n*.

< 回 > < 回 > < 回 >

Example

Assume that there exists a Luzin set in \mathbb{R} . Then, for each $n \in \omega$ $(n = \infty)$, there exists an *n*-dimensional nonmetrizable Eberlein compact space K_n such that any closed nonmetrizable subspace *L* of K_n has dimension *n*.

Corollary

Assuming the existence of a Luzin set, there exists a nonmetrizable Eberlein compact space K without closed nonmetrizable zero-dimensional subspaces.

イロト 不得 トイヨト イヨト

A subset A of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

A subset *A* of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

 $\mathbf{b} = \min\{|\mathbf{A}| : \mathbf{A} \text{ is an unbounded subset of } \omega^{\omega}\}.$

It is well known that the statement $\mathfrak{b} > \omega_1$ is consistent with ZFC.

A subset *A* of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

 $\mathbf{b} = \min\{|\mathbf{A}| : \mathbf{A} \text{ is an unbounded subset of } \omega^{\omega}\}.$

It is well known that the statement $b > \omega_1$ is consistent with ZFC.

Theorem

Assuming that $\mathfrak{b} > \omega_1$, each Eberlein compact space K of weight $> \omega_1$ contains a closed nonmetrizable, zero-dimensional subspace L.

A subset *A* of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

 $\mathbf{b} = \min\{|\mathbf{A}| : \mathbf{A} \text{ is an unbounded subset of } \omega^{\omega}\}.$

It is well known that the statement $b > \omega_1$ is consistent with ZFC.

Theorem

Assuming that $\mathfrak{b} > \omega_1$, each Eberlein compact space K of weight $> \omega_1$ contains a closed nonmetrizable, zero-dimensional subspace L.

Problem

Is it consistent that every Eberlein compact space K of weight ω_1 contains a closed zero-dimensional subspace L of the same weight?

A D A A B A A B A A B A B B

A subset *A* of ω^{ω} is called unbounded if it is unbounded with respect to this preorder.

 $\mathbf{b} = \min\{|\mathbf{A}| : \mathbf{A} \text{ is an unbounded subset of } \omega^{\omega}\}.$

It is well known that the statement $b > \omega_1$ is consistent with ZFC.

Theorem

Assuming that $\mathfrak{b} > \omega_1$, each Eberlein compact space K of weight $> \omega_1$ contains a closed nonmetrizable, zero-dimensional subspace L.

Problem

Is it consistent that every Eberlein compact space K of weight ω_1 contains a closed zero-dimensional subspace L of the same weight?

Problem

Does there exist in ZFC a compact space of weight ω_1 without nonmetrizable zero-dimensional closed subspaces?

W. Marciszewski (UW)

A compact space *K* is Corson compact if, for some set Γ , *K* is homeomorphic to a subset of the Σ -product of real lines

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0} \}| \leq \omega \}.$$

< ロ > < 同 > < 回 > < 回 >

A compact space K is Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0} \}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

< ロ > < 同 > < 回 > < 回 >

A compact space K is Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0} \}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

Let κ be an infinite cardinal number. A compact space K is κ -Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ_{κ} -product of real lines

$$\boldsymbol{\Sigma}_{\kappa}(\mathbb{R}^{\mathsf{\Gamma}}) = \{\boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| < \kappa\}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

A compact space K is Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0} \}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

Let κ be an infinite cardinal number. A compact space K is κ -Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ_{κ} -product of real lines

$$\boldsymbol{\Sigma}_{\kappa}(\mathbb{R}^{\mathsf{\Gamma}}) = \{\boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| < \kappa\}.$$

Obviously, the class of Corson compact spaces coincides with the class of ω_1 -Corson compact spaces.

A compact space K is Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0} \}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

Let κ be an infinite cardinal number. A compact space K is κ -Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ_{κ} -product of real lines

$$\boldsymbol{\Sigma}_{\kappa}(\mathbb{R}^{\mathsf{\Gamma}}) = \{\boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| < \kappa\}.$$

Obviously, the class of Corson compact spaces coincides with the class of ω_1 -Corson compact spaces.

For $\kappa = \omega$, $\Sigma_{\kappa}(\mathbb{R}^{\Gamma}) = \sigma(\mathbb{R}^{\Gamma})$ - the σ -product of real lines.

A family \mathcal{U} of subsets of a space X is T_0 -separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A family \mathcal{U} of subsets of a space X is T_0 -separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.

Given a family \mathcal{U} of subsets of a space X, a point $x \in X$, and an infinite cardinal κ , we write $ord(x, \mathcal{U}) < \kappa$ if $|\{U \in \mathcal{U} : x \in U\}| < \kappa$.

イロト イポト イモト イモト 一日

- A family \mathcal{U} of subsets of a space X is T_0 -separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.
- Given a family \mathcal{U} of subsets of a space X, a point $x \in X$, and an infinite cardinal κ , we write $ord(x, \mathcal{U}) < \kappa$ if $|\{U \in \mathcal{U} : x \in U\}| < \kappa$. We say that \mathcal{U} is point-finite if $ord(x, \mathcal{U}) < \omega$ for all $x \in X$.

4 D N 4 B N 4 B N 4 B N

A family \mathcal{U} of subsets of a space X is T_0 -separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.

Given a family \mathcal{U} of subsets of a space X, a point $x \in X$, and an infinite cardinal κ , we write $ord(x, \mathcal{U}) < \kappa$ if $|\{U \in \mathcal{U} : x \in U\}| < \kappa$. We say that \mathcal{U} is point-finite if $ord(x, \mathcal{U}) < \omega$ for all $x \in X$.

Proposition (Bonnet, Kubiś, Todorčević)

Let κ be an uncountable cardinal number. For a compact space K, the following conditions are equivalent:

- K is κ-Corson;
- **•** There exists a family \mathcal{U} consisting of cozero subsets of K which is T_0 -separating, and $ord(x, \mathcal{U}) < \kappa$ for all $x \in K$.

An analogous characterization for ω -Corson compacta does not work:

An analogous characterization for ω -Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- There exists a T₀-separating, point-finite family U consisting of cozero subsets of K;
- K is a scattered Eberlein compact space.

4 3 5 4 3 5 5

An analogous characterization for ω -Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- There exists a T₀-separating, point-finite family U consisting of cozero subsets of K;
- K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.

(B)

An analogous characterization for ω -Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- There exists a T₀-separating, point-finite family U consisting of cozero subsets of K;
- K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.

Proposition (M., Plebanek, Zakrzewski)

Every ω -Corson compact space is Eberlein compact and strongly countably dimensional.

3

An analogous characterization for ω -Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- There exists a T₀-separating, point-finite family U consisting of cozero subsets of K;
- K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.

Proposition (M., Plebanek, Zakrzewski)

Every ω -Corson compact space is Eberlein compact and strongly countably dimensional.

All metrizable, strongly countably dimensional compact spaces are $\omega\text{-}\mathsf{Corson}.$

э

An analogous characterization for ω -Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- There exists a T₀-separating, point-finite family U consisting of cozero subsets of K;
- K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a countable union of closed finite-dimensional subspaces.

Proposition (M., Plebanek, Zakrzewski)

Every ω -Corson compact space is Eberlein compact and strongly countably dimensional.

All metrizable, strongly countably dimensional compact spaces are $\omega\text{-}\mathsf{Corson}.$

All scattered Eberlein compacta are ω -Corson.

W. Marciszewski (UW)

On 0-dimensional subspaces

A family A of subsets of a space X is closure preserving if, for any subfamily $A' \subseteq A$, we have

$$\bigcup \mathcal{A}' = \bigcup \{ \overline{\mathcal{A}} : \mathcal{A} \in \mathcal{A}' \} \,.$$

TOPOSYM 2022 12/13

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A family \mathcal{A} of subsets of a space X is closure preserving if, for any subfamily $\mathcal{A}' \subseteq \mathcal{A}$, we have

$$\bigcup \mathcal{A}' = \bigcup \{ \overline{\mathcal{A}} : \mathcal{A} \in \mathcal{A}' \} \,.$$

A space X is metacompact if every open cover of X has a point-finite open refinement.

A family \mathcal{A} of subsets of a space X is closure preserving if, for any subfamily $\mathcal{A}' \subseteq \mathcal{A}$, we have

$$\overline{\bigcup \mathcal{A}'} = \bigcup \{ \overline{\mathcal{A}} : \mathcal{A} \in \mathcal{A}' \} \,.$$

A space X is metacompact if every open cover of X has a point-finite open refinement.

Theorem (M., Plebanek, Zakrzewski)

For a compact space K, the following conditions are equivalent:

- **a** K is ω -Corson;
- K has a closure preserving cover consisting of finite dimensional metrizable compacta;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open separable, metrizable, finite dimensional subspace U.

< ロ > < 同 > < 回 > < 回 >

For a compact space K, the following conditions are equivalent:

- K is Eberlein compact;
- **(a)** K^2 is hereditarily σ -metacompact;
- **(a)** $K^2 \setminus \Delta$ is σ -metacompact.

For a compact space K, the following conditions are equivalent:

- K is Eberlein compact;
- **(b)** K^2 is hereditarily σ -metacompact;
- **(a)** $K^2 \setminus \Delta$ is σ -metacompact.

Example (M., Plebanek, Zakrzewski)

There exist a zero-dimensional Eberlein compact space *K* such that K^2 is hereditarily metacompact, but *K* is not ω -Corson.

For a compact space K, the following conditions are equivalent:

- K is Eberlein compact;
- **(b)** K^2 is hereditarily σ -metacompact;
- **(a)** $K^2 \setminus \Delta$ is σ -metacompact.

Example (M., Plebanek, Zakrzewski)

There exist a zero-dimensional Eberlein compact space K such that K^2 is hereditarily metacompact, but K is not ω -Corson.

The class of ω -Corson compact spaces is clearly stable under taking closed subspaces and finite products, but is not stable under taking continuous images, as the Hilbert cube is a continuous image of the Cantor set 2^{ω} .

For a compact space K, the following conditions are equivalent:

- K is Eberlein compact;
- **(b)** K^2 is hereditarily σ -metacompact;
- **(a)** $K^2 \setminus \Delta$ is σ -metacompact.

Example (M., Plebanek, Zakrzewski)

There exist a zero-dimensional Eberlein compact space *K* such that K^2 is hereditarily metacompact, but *K* is not ω -Corson.

The class of ω -Corson compact spaces is clearly stable under taking closed subspaces and finite products, but is not stable under taking continuous images, as the Hilbert cube is a continuous image of the Cantor set 2^{ω} .

Theorem (M., Plebanek, Zakrzewski)

Assuming that $b > \omega_1$, each nonmetrizable ω -Corson space K contains a closed nonmetrizable zero-dimensional subspace L.