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Normal numbers

A sequence (xn) of real numbers is uniformly distributed mod 1 if
for all intervals I ⊂ [0, 1),

lim
n→∞

#{i ∈ {1, 2, . . . , n} : {xi} ∈ I}
n

= λ(I ).

Let Tb : R → [0, 1) be defined by

Tb(x) = bx (mod 1).

A real number x is normal in base b if (T n
b (x)) is uniformly

distributed mod 1. Let N(b) denote the set of numbers normal in
base b.
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Normal numbers

Borel proved in 1909 that
⋂

b≥2N(b) has full Lebesgue measure.
However, N(b) is meagre.

No rational number is normal in any base.

0.1 2 3 4 5 6 7 8 9 10 11 12 . . .

is normal in base 10 (Champernowne, 1933)

0.2 3 5 7 11 13 17 19 23 29 31 . . .

is normal in base 10 (Copeland and Erdós, 1946)

What about π, e,
√
2, . . .?
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Normal numbers

Let T : R\Q → (0, 1)\Q be defined by

T (x) = 1/x (mod 1).

Define the probability measure µ on [0, 1) by

µ(I ) =
1

log 2

∫
I

dx

1 + x
.

Then x is continued fraction normal if the sequence (T n(x)) is
µ-uniformly distributed mod 1. Lebesgue-almost every real number
is continued fraction normal, but no quadratic irrationals are.
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The Borel Hierarchy

The setting:

Let X be a Polish space: a separable completely metrizable
topological space. That is, X is homeomorphic to a complete
metric space that has a countable dense subset.

Examples:

R, 2N, bN, 2N×N
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The Borel Hierarchy

In any topological space X , the collection of Borel sets B(X ) is the
smallest σ-algebra containing the open sets. They are stratified
into levels, the Borel hierarchy, by defining Σ0

1 = the open sets,
Π0

1 = ¬Σ0
1 = {X − A : A ∈ Σ0

1} = the closed sets, and for α < ω1

we let Σ0
α be the collection of countable unions A =

⋃
n An where

each An ∈ Π0
αn

for some αn < α. We also let Π0
α = ¬Σ0

α.
Alternatively, A ∈ Π0

α if A =
⋂

n An where An ∈ Σ0
αn

where each
αn < α. We also set ∆0

α = Π0
α ∩Σ0

α, in particular ∆0
1 is the

collection of clopen sets. For any topological space,
B(X ) =

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α. All of the collections ∆0

α, Σ
0
α,

Π0
α are pointclasses, that is, they are closed under inverse images

of continuous functions.

For example, Σ0
2 consists of Fσ sets and Π0

2 consists of Gδ sets. Π0
3

contains the sets which are intersections of Fσ sets.
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The Borel Hierarchy

A fundamental result of Suslin says that in any Polish space
B(X ) = ∆1

1 = Σ1
1 ∩Π1

1, where Π1
1 = ¬Σ1

1, and Σ1
1 is the

pointclass of continuous images of Borel sets. Equivalently,
A ∈ Σ1

1 iff A can be written as x ∈ a ↔ ∃y (x , y) ∈ B where
B ⊆ X × Y is Borel (for some Polish space Y ). Similarly, A ∈ Π1

1

iff it is of the form x ∈ A ↔ ∀y (x , y) ∈ B for a Borel B. The Σ1
1

sets are also called the analytic sets, and Π1
1 the co-analytic sets.

We also have Σ1
1 ̸= Π1

1 for any uncountable Polish space.
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The Borel Hierarchy
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The Borel Hierarchy

A basic fact is that for any uncountable Polish space X , there is no
collapse in the levels of the Borel hierarchy, that is, all the various
pointclasses ∆0

α, Σ
0
α, Π

0
α, for α < ω1, are all distinct. Thus, these

levels of the Borel hierarch can be used to calibrate the descriptive
complexity of a set. We say a set A ⊆ X is Σ0

α (resp. Π0
α) hard if

A /∈ Π0
α (resp. A /∈ Σ0

α). This says A is “no simpler” than a Σ0
α

set. We say A is Σ0
α-complete if A ∈ Σ0

α −Π0
α, that is, A ∈ Σ0

α

and A is Σ0
α hard. This says A is exactly at the complexity level

Σ0
α. Likewise, A is Π0

α-complete if A ∈ Π0
α −Σ0

α.
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Examples

In R, (a, b) ∈ Σ0
1, [a, b] ∈ Π0

1, and R ∈ ∆0
1.

Q ∈ Σ0
2,R\Q ∈ Π0

2, and ∅ = Q ∩ R\Q ∈ ∆0
2.

Note that Q is Σ0
2-complete, R\Q is Π0

2-complete, but ∅ ∈ ∆0
1.

Let X = C ([0, 1]) with the sup norm. If
S = {f ∈ X : f is nowhere differentiable}, then S ∈ Π1

1\Σ1
1 (R. D.

Mauldin 1979).
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Examples with normal numbers

Let N(b) be the set of numbers normal in base b. The following
resolve questions of Kechris.

The set N(b) is Π0
3-complete (Ki and Linton 1994).

The set
⋂

b N(b) is also Π0
3-complete (Becher, Heiber, and Slaman

2014).

Moreover,
⋃

b N(b) is Σ0
4-complete (Becher, Slaman 2014).

Let

N⊥(b) = {y : ∀x ∈ N(b) (x + y) ∈ N(b)}.

be the set of numbers that preserve normality in base b under
addition. The set N⊥(b) is Π0

3-complete (Airey, Jackson, M.
2016).
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Some questions

Recall the tent map given by

T (x) =

{
2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 < x ≤ 1

.

Sharkovsky and Sivak showed that if µ is any Borel probability
measure invariant for the tent map, then the set of generic points
for the tent map is a Π0

3 set and asked if it is Π0
3-complete (in

other language).
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Some questions

A topological dynamical system is a pair (X , f ) where X is a
compact metric space and f ∈ C (X ,X ) is a continuous map of X
to itself. Limit sets and backward limit sets provide some of the
most important tools in understanding the behavior of a
topological dynamical system, since they provide information about
the long-term behavior of the orbits of the system. One notion, in
particular, of a backward limit set is the notion of a special α-limit
set, which has played an important role in one-dimensional
dynamics.
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Some questions

The α-limit set of a backward orbit, denoted α((xn)
∞
n=0), consists

of all accumulation points of a single backward orbit, i.e. a
sequence (xn)n∈N, where f (xn+1) = xn for all n. The special
α-limit set of a point, denoted sα(x), is the union

⋃
α((xn)

∞
n=0)

taken over all backward orbits of x , i.e. sequences (xn)n∈N such
that f (xn+1) = xn for all n and x0 = x .

Kolyada, Misiurewicz, and Snoha pointed out that special α-limit
sets need not be closed, and asked whether they are necessarily
Borel or even analytic. The difficulty arises when x has
uncountably many backward orbit branches, since we are then
taking an uncountable union of their (closed) accumulation sets. If
X = [0, 1], then sα(x) is always Fσ and Gδ.

It can be the case that sα(x) is not even Borel (Jackson, M.,
Roth)! In fact, sα(x) are always analytic, but may be complete at
any level lower in the Borel hierarchy (in preparation Jackson, M.,
Roth).

Bill Mance Applications of descriptive set theory



Some questions

The α-limit set of a backward orbit, denoted α((xn)
∞
n=0), consists

of all accumulation points of a single backward orbit, i.e. a
sequence (xn)n∈N, where f (xn+1) = xn for all n. The special
α-limit set of a point, denoted sα(x), is the union

⋃
α((xn)

∞
n=0)

taken over all backward orbits of x , i.e. sequences (xn)n∈N such
that f (xn+1) = xn for all n and x0 = x .

Kolyada, Misiurewicz, and Snoha pointed out that special α-limit
sets need not be closed, and asked whether they are necessarily
Borel or even analytic. The difficulty arises when x has
uncountably many backward orbit branches, since we are then
taking an uncountable union of their (closed) accumulation sets. If
X = [0, 1], then sα(x) is always Fσ and Gδ.

It can be the case that sα(x) is not even Borel (Jackson, M.,
Roth)! In fact, sα(x) are always analytic, but may be complete at
any level lower in the Borel hierarchy (in preparation Jackson, M.,
Roth).

Bill Mance Applications of descriptive set theory



Some questions

The α-limit set of a backward orbit, denoted α((xn)
∞
n=0), consists

of all accumulation points of a single backward orbit, i.e. a
sequence (xn)n∈N, where f (xn+1) = xn for all n. The special
α-limit set of a point, denoted sα(x), is the union

⋃
α((xn)

∞
n=0)

taken over all backward orbits of x , i.e. sequences (xn)n∈N such
that f (xn+1) = xn for all n and x0 = x .

Kolyada, Misiurewicz, and Snoha pointed out that special α-limit
sets need not be closed, and asked whether they are necessarily
Borel or even analytic. The difficulty arises when x has
uncountably many backward orbit branches, since we are then
taking an uncountable union of their (closed) accumulation sets. If
X = [0, 1], then sα(x) is always Fσ and Gδ.

It can be the case that sα(x) is not even Borel (Jackson, M.,
Roth)! In fact, sα(x) are always analytic, but may be complete at
any level lower in the Borel hierarchy (in preparation Jackson, M.,
Roth).

Bill Mance Applications of descriptive set theory



Continued fractions

Vandehey showed that the set of numbers that are continued
fraction normal, but not normal in any base b ≥ 2 is uncountable,
by assuming the generalized Riemann hypothesis. Hausdorff
dimension of difference sets is often computed to argue that in
some ways the notions are independent.

Jackson, M., and Vandehey showed that the set of numbers that
are continued fraction normal, but not normal in a fixed base b is
D2(Π

0
3)-complete. The set of numbers that is continued fraction

normal, but not normal in any base b is D2(Π
0
3)-hard.
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Wadge reduction

Let X and Y be Polish spaces and let A ⊆ X and B ⊆ Y along
with a continuous function f : Y → X where f −1(A) = B. Then if
B is Σ0

α-complete (resp. Π0
α-complete), then A is Σ0

α-hard
(Π0

α-hard).

The function f reduces the question of membership in A to
membership in B.
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Setup

If A is a finite or countable set, which we call the alphabet, then
the full shift space over A is the pair (Aω, σ) where Aω is endowed
with the product topology induced by the discrete topology on A,
and σ stands for the shift map, which is given for (xn)n∈ω ∈ Aω by
σ(x)n = xn+1. By a subshift of Aω (or over A) we mean a pair
(X , σ), where X is a nonempty closed shift-invariant subset of Aω,
and σ is the shift map restricted to X .
Recall that a Borel probability measure µ on Aω is shift-invariant if
µ(A) = µ(σ−1(A)) for every Borel set A ⊂ Aω. We say that µ is a
shift-invariant measure is an invariant measure for a subshift X if
X contains the support of µ. An invariant measure is ergodic if for
every Borel set A ⊂ Aω the condition σ−1(A) ⊂ A implies
µ(A) ∈ {0, 1}. For n ≥ 1 and a block w ∈ An, by [w ] we denote
the cylinder consisting of those x ∈ Aω with xi = wi for 1 ≤ i ≤ n.
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Setup

We say that a finite block w ∈ An appears in x ∈ Aω at the
position ℓ ∈ ω if xℓ+i−1 = wi for each 1 ≤ i ≤ n. Let e(w , x ,N) be
the number of times w appears in x at a position ℓ < N. Let X be
a subshift over A and µ be its invariant measure. A point x ∈ X is
generic for µ if for every finite block w ∈ An the set of positions at
which w appears in x has the frequency equal to the measure of
the set of all sequences starting with w , that is, if

lim
N→∞

e(w , x ,N)

N
= µ([w ]),

where [w ] = {z ∈ Aω : z0 = w1, . . . , zn−1 = wn}. By the
shift-invariance of µ the measure of [w ] is equal to the
µ-probability of the occurrence of w at any fixed position ℓ ∈ ω,
that is,

µ([w ]) = µ({z ∈ Aω : zℓ = w1, . . . , zℓ+n−1 = wn}).
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Setup

For a shift space X ⊆ Aω and integer n ≥ 1, we write Ln(X ) ⊆ An

for the set of n-blocks appearing in X , that is w ∈ Ln(X ) if and
only if there exists some x ∈ X and ℓ ∈ ω such that xℓ+i−1 = wi

for all 1 ≤ i ≤ n. The length of a block w over A is the number of
symbols in w and it is denoted by |w |. We agree that A0 consists
of a single element, called the empty word, that is, A0 contains
only the unique block over A of length 0. By A<ω we denote the
set of all finite blocks over A (including the empty word). We let
L(X ) =

⋃
n≥1Ln(X ) and call L(X ) the language of X .
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Specification

A shift space X over an at most countable alphabet A has the
specification property if there is a nonnegative integer N such that
if wi ∈ L(X ) for i = 1, . . . , n then there are vi ∈ AN for
i = 1, . . . , n − 1 such that u = w1v1w2v2 . . . vn−1wn ∈ L(X ).
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Specification

Let dH stand for the normalised Hamming distance, that is, given
two blocks u = u1 . . . un and w = w1 . . .wn of equal length we set
dH(u,w) = |{1 ≤ j ≤ n : uj ̸= wj}|/n.

We say that a subshift X has the right feeble specification property
if there exists a set G ⊆ L(X ) satisfying:

1. a concatenation of words in G stays in G, that is, if u, v ∈ G,
then uv ∈ G;

2. for any ϵ > 0 there is an N = N(ϵ) such that for every u ∈ G
and v ∈ L(X ) with |v | ≥ N, there are s, v ′ ∈ A<ω satisfying
|v ′| = |v |, 0 ≤ |s| ≤ ϵ|v |, dH(v , v ′) < ε, and usv ′ ∈ G.
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Irregular set

Given w ∈ L(X ) we define Iw (X ) to be the set of all x ∈ X such
that the set of positions at which w appears in x does not have a
frequency, that is

lim inf
N→∞

e(w , x ,N)

N
< lim sup

N→∞

e(w , x ,N)

N
.

Let I (X ) be the irregular set for X , that is, the union of sets Iw (X )
over all w ∈ L(X ). The quasi-regular set for X is the complement
of I (X ), that is, Q(X ) = X \ I (X ). Both sets are obviously Borel
and belong to the third level of the Borel hierarchy.
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Main Theorem

Note that we are considering subshifts which are not necessarily
compact. It forces us to assume that there are at least two
shift-invariant measures on X . This condition is automatically
fulfilled if X is compact.

Theorem Assume that A is at most countable and X is a subshift
over A with the right feeble specification property. If X has at
least two invariant measures, then for every shift-invariant measure
µ on X the set of generic points Gµ is Π0

3-complete. Furthermore,
the quasi-regular set Q(X ) is Π0

3-complete and the irregular set
I (X ) is Σ0

3-complete.
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compact. It forces us to assume that there are at least two
shift-invariant measures on X . This condition is automatically
fulfilled if X is compact.
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Corollaries

Corollary The set of normal numbers for the b-ary expansions,
β-expansions, regular continued fraction expansion, and
generalized GLS expansions are all Π0

3-complete.

Corollary If µ is a Borel probability measure invariant for the tent
map T , then the set of points that generate µ (also known as as
the statistical basin for µ) is a Π0

3-complete set. The set of
irregular points is Σ0

3-complete.
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