The generic continuum approximated by finite graphs with confluent epimorphisms

Aleksandra Kwiatkowska

joint work with Włodzimierz Charatonik and Robert Roe

July 29, 2022

A topological graph K is a graph (V(K), E(K)), whose domain V(K) is a 0-dimensional, compact, second-countable (thus has a metric) space and E(K) is a closed, reflexive and symmetric subset of $V(K)^2$.

• • = • • = •

A topological graph K is a graph (V(K), E(K)), whose domain V(K) is a 0-dimensional, compact, second-countable (thus has a metric) space and E(K) is a closed, reflexive and symmetric subset of $V(K)^2$.

Definition

- A continuous function f: L → K is a homomorphism if (a, b) ∈ E(L) implies (f(a), f(b)) ∈ E(K).
- A homomorphism f is an epimorphism if it is moreover surjective on both vertices and edges.

伺 ト イヨ ト イヨト

Let \mathcal{F} be a countable class of finite graphs with a fixed class of epimorphisms between the graphs in \mathcal{F} . We say that \mathcal{F} is a projective Fraïssé class if

- epimorphisms are closed under composition and each identity map is an epimorphism;
- ② for $B, C \in \mathcal{F}$ there exist $D \in \mathcal{F}$ and epimorphisms $f: D \rightarrow B$ and $g: D \rightarrow C$; and
- for A, B, C ∈ F and for every two epimorphisms f: B → A and g: C → A, there exist D ∈ F and epimorphisms f₀: D → B and g₀: D → C such that f ∘ f₀ = g ∘ g₀.

• • = • • = •

Amalgamation property

For $A, B, C \in \mathcal{F}$ and for every two epimorphisms $f: B \to A$ and $g: C \to A$, there exist $D \in \mathcal{F}$ and epimorphisms $f_0: D \to B$ and $g_0: D \to C$ such that $f \circ f_0 = g \circ g_0$.

Theorem (Irwin-Solecki)

Let \mathcal{F} be a projective Fraïssé class with a fixed class of epimorphisms between the graphs in \mathcal{F} . There exists a unique topological graph \mathbb{F} (called the projective Fraïssé limit) such that

- **(**) for each $A \in \mathcal{F}$, there exists an epimorphism from \mathbb{F} onto A;
- ② for $A, B \in \mathcal{F}$ and epimorphisms $f : \mathbb{F} \to A$ and $g : B \to A$ there exists an epimorphism $h : \mathbb{F} \to B$ such that $f = g \circ h$.
- **③** For every $\varepsilon > 0$ there is a graph $G \in \mathcal{F}$ and an epimorphism $f : \mathbb{F} \to G$ such that f is an ε -map.

Proposition

Let \mathcal{F} be a projective Fraïssé class. Then there exist an inverse sequence $\{A_n, \alpha_n\}$ in \mathcal{F} such that:

• for each $A \in \mathcal{F}$, $n \in \mathbb{N}$, and epimorphism $f : A \to A_n$, there exists $m \ge n$ and an epimorphism $g : A_m \to A$ such that $fg = \alpha_n^m$.

In that case the inverse limit of $\{A_n, \alpha_n\}$ is isomorphic to the projective Fraïssé limit \mathbb{F} of \mathcal{F} .

Such a sequence we call a Fraïssé sequence.

Let $\mathbb F$ be a projective Fraïssé limit of a projective Fraïssé class of finite connected graphs.

- Then |𝔅| = 𝔅/𝔅(𝔅) (the topological realization of 𝔅) is a one-dimensional continuum.

◊ (Irwin-Solecki) pseudo-arc

 $\mathcal{F} = \{ \text{finite linear graphs, all epimorphisms} \}$

As a consequence Irwin and Solecki obtained:

Theorem

- (Mioduszewski) Each chainable continuum is a continuous image of the pseudo-arc.
- 2 Let X be a chainable continuum with a metric d on it. If f₁, f₂ are continuous surjections from the pseudo-arc onto X, then for any ε > 0 there exists a homeomorphism h of the pseudo-arc such that d(f₁(x), f₂ ◦ h(x)) < ε for all x.</p>

Example

- (Bartošová-Kwiatkowska) Lelek fan
 - $\mathcal{F} = \{ \text{rooted trees, all epimorphisms} \}$
- (Charatonik-Roe) Ważewski dendrite D_3 $\mathcal{F} = \{$ finite trees, monotone epimorphisms $\}$
- (Codenotti-Kwiatkowska) all generalized Ważewski dendrites D_P, P ⊆ {3,4,...,ω}
 F_P = {finite trees, weakly coherent epimorphisms}

A subset *S* of a topological graph *G* is disconnected if there are two nonempty closed subsets *P* and *Q* of *S* such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset *S* of *G* is connected if it is not disconnected.

A subset *S* of a topological graph *G* is disconnected if there are two nonempty closed subsets *P* and *Q* of *S* such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset *S* of *G* is connected if it is not disconnected.

Definition

- (continua) Let K, L be continua. A continuous map f: L → K is called monotone if for every subcontinuum M of K, f⁻¹(M) is connected.
- (graphs) Let G, H be topological graphs. An epimorphism
 f: G → H is called monotone if for every closed connected
 subset Q of H, f⁻¹(Q) is connected.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- (continua) Let K, L be continua. A continuous map f: L → K is called confluent if for every subcontinuum M of K and every component C of f⁻¹(M) we have f(C) = M.
- (graphs) Let G, H be topological graphs. An epimorphism
 f: G → H is called confluent if for every closed connected
 subset Q of H and every component C of f⁻¹(Q) we have
 f(C) = Q.

Proposition (Charatonik-Roe)

Given two finite graphs G and H, the following conditions are equivalent for an epimorphism $f: G \rightarrow H$:

- I is confluent;
- for every edge P ∈ E(H) and every component C of $f^{-1}(P)$ there is an edge E in C such that f(E) = P.

Proposition (Charatonik-Roe)

The class G of finite connected graphs with confluent epimorphisms is a projective Fraissé class.

- Let G denote the projective Fraïssé limit. Then E(G) is an equivalence relation with only single and double equivalence classes.
- Let $|\mathbb{G}|$ denote the topological realization. This is a one-dimensional continuum.

Theorem (Charatonik-K-Roe)

- $|\mathbb{G}|$ has the following properties:
 - it is not homogeneous;
 - *it is pointwise self-homeomorphic;*
 - it is an indecomposable continuum;
 - all arc components are dense;
 - **o** each point is the top of the Cantor fan;
 - it is hereditarily unicoherent, in particular, the circle S¹ does not embed in it;
 - the pseudo-arc and solenoids embed in it;
 - 3 it is a Kelley continuum.

Let G and H be finite topological graphs and let $f: G \to H$ be a confluent epimorphism. Let $A \subseteq H$ be an arc with an end-vertex a and let $b \in G$ be a vertex such that f(b) = a. Then there is an arc $B \subseteq G$ with one of the end-vertices equal to b such that $f|_B: B \to A$ is a monotone epimorphism.

Let G and H be finite topological graphs and let $f: G \to H$ be a confluent epimorphism. Let $A \subseteq H$ be an arc with an end-vertex a and let $b \in G$ be a vertex such that f(b) = a. Then there is an arc $B \subseteq G$ with one of the end-vertices equal to b such that $f|_B: B \to A$ is a monotone epimorphism.

Theorem

Each arc component of \mathbb{G} is dense in \mathbb{G} .

Corollary

The continuum $|\mathbb{G}|$ has all arc-components dense.

Theorem

The pseudo-arc can be embedded in $|\mathbb{G}|$.

Theorem

The pseudo-arc can be embedded in $|\mathbb{G}|$.

This follows from the following lemma and from the work of Irwin-Solecki.

Lemma

Let $\{I_n, \beta_n\}$, where β_n 's are epimorphisms (not necessarily confluent) and I_n 's are arcs, be an inverse sequence with the following property: For every arc J, k > 0, and monotone epimorphism $g: J \rightarrow I_k$, there is l > k and an epimorphism (not necessarily confluent) $f: I_l \rightarrow J$ with $g \circ f = \beta_k^l$. Then the inverse limit of $\{I_n, \beta_n\}$ can be embedded in \mathbb{G} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Embedding solenoids and non-homogeneity

Theorem

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid.

• • = • • = •

Embedding solenoids and non-homogeneity

Theorem

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid.

Theorem

There are of points in $|\mathbb{G}|$ that do not belong to a solenoid.

• • = • • = •

Embedding solenoids and non-homogeneity

Theorem

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid.

Theorem

There are of points in $|\mathbb{G}|$ that do not belong to a solenoid.

Corollary

The continuum $|\mathbb{G}|$ is not homogeneous.

伺 ト イヨト イヨト

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

• • = • • = •

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Definition

Confluent epimorphism between cycles we call wrapping maps.

伺 ト イヨト イヨト

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Definition

Confluent epimorphism between cycles we call wrapping maps.

Definition

The winding number of a wrapping map f is n if for every (equivalently: some) $c \in C$, $f^{-1}(c)$ has exactly n components.

くロト く得ト くほト くほとう

Wrapping maps

æ

The class C of all cycles with confluent epimorphisms is a projective Fraïssé class.

• • = • • = •

The class C of all cycles with confluent epimorphisms is a projective Fraïssé class.

Example

Let p_1, p_2, \ldots, p_k be prime numbers and let \mathcal{D} be the class of cycles having an even number of vertices and with confluent epimorphisms whose winding numbers are of the form $p_1^{n_1}p_2^{n_2}\ldots p_k^{n_k}$, where $n_1, n_2, \ldots, n_k \in \mathbb{N}$. Then \mathcal{D} is a projective Fraïssé class.

Let $A, B \in \mathcal{G}$ and let $f : B \to A$ be a confluent epimorphism. Let $C = (c_0, c_1, \ldots, c_n = c_0)$ be a cycle in A. Then there is an induced subgraph D of B such that D is a cycle, f(D) = C, and $f|_D$ is a wrapping map.

伺 ト イヨ ト イヨト

The inverse limit of an inverse sequence of cycles $\{C_n, p_n\}$, where p_n are confluent epimorphisms, is a graph-solenoid if for infinitely many n the winding number of p_n is greater than 1 and for every $x \in V(C_n)$ every component of $p_n^{-1}(x)$ contains at least 2 vertices.

The inverse limit of an inverse sequence of cycles $\{C_n, p_n\}$, where p_n are confluent epimorphisms, is a graph-solenoid if for infinitely many n the winding number of p_n is greater than 1 and for every $x \in V(C_n)$ every component of $p_n^{-1}(x)$ contains at least 2 vertices.

Theorem

Let \mathcal{D} be a projective Fraïssé class of cycles with confluent epimorphisms such that its projective Fraïssé limit \mathbb{D} is a graph-solenoid. Then the topological realization $|\mathbb{D}|$ exists and is a solenoid.

By the result of Hagopian we have to show that the topological realization is homogeneous and that every proper non-degenerate subcontinuum is an arc.

Hereditary unicoherence

Definition

- A continuum X is called hereditarily unicoherent if for every two subcontinua P and Q of X the intersection P ∩ Q is connected.
- A topological graph G is called hereditarily unicoherent if for every two closed connected subsets P and Q of G the intersection P ∩ Q is connected.

Hereditary unicoherence

Definition

- A continuum X is called hereditarily unicoherent if for every two subcontinua P and Q of X the intersection P ∩ Q is connected.
- A topological graph G is called hereditarily unicoherent if for every two closed connected subsets P and Q of G the intersection P ∩ Q is connected.

Theorem

 $\mathbb G$ is hereditarily unicoherent.

Theorem

|G| is hereditarily unicoherent.

Given a topological graph G a quadruple $\langle H, K, C, D \rangle$ is called a *cycle division in G* if the following conditions are satisfied:

- H and K are closed connected subsets of G;
- *C* and *D* are nonempty subsets of *G* which are closed in *H* ∪ *K*;

$$O C \cap D = \emptyset;$$

● if $c \in C$ and $d \in D$ then $(c, d) \notin E(G)$,

Note that Condition (4) follows from Condition (5).

Cycle division 2

Lemma

Suppose \mathcal{F} is a Fraïssé class of graphs such that for each graph $F \in \mathcal{F}$ and for each cycle division $\langle H, K, C, D \rangle$ in F there is a graph $G \in \mathcal{F}$ and a confluent epimorphism $f : G \to F$ such that no cycle division in G is mapped onto $\langle H, K, C, D \rangle$. Then the projective Fraïssé limit \mathbb{F} of \mathcal{F} is hereditarily unicoherent.

ь « Эь « Эь

Cycle division 2

Lemma

Suppose \mathcal{F} is a Fraïssé class of graphs such that for each graph $F \in \mathcal{F}$ and for each cycle division $\langle H, K, C, D \rangle$ in F there is a graph $G \in \mathcal{F}$ and a confluent epimorphism $f : G \to F$ such that no cycle division in G is mapped onto $\langle H, K, C, D \rangle$. Then the projective Fraïssé limit \mathbb{F} of \mathcal{F} is hereditarily unicoherent.

с, ^р, к, н

References:

Włodzimierz J. Charatonik, Aleksandra Kwiatkowska, Robert Roe, *Projective Fraïssé limits of graphs with confluent epimorphisms* arXiv:2206.12400, 06.2022.

Thank you!

æ

A B M A B M