Generic Polish metric spaces

Wiesław Kubiś

Institute of Mathematics, CAS

TOPOSYM 2022 July 25 – 29

Joint work with Christian Bargetz, Adam Bartoš, and Franz Luggin.

After infinitely many steps we can look at the completion M_{∞} of the union of this chain, namely

$$M_{\infty} := \bigcup_{n \in \omega} M_n.$$

After infinitely many steps we can look at the completion M_∞ of the union of this chain, namely

$$M_{\infty}:=\bigcup_{n\in\omega}M_n.$$

We say that a Polish space V is generic over \mathcal{M} if the second player has a strategy making M_{∞} isometric to V. Denote this game by BM (\mathcal{M}, V) .

After infinitely many steps we can look at the completion M_∞ of the union of this chain, namely

$$M_{\infty}:=\bigcup_{n\in\omega}M_n.$$

We say that a Polish space V is generic over \mathcal{M} if the second player has a strategy making M_{∞} isometric to V. Denote this game by BM (\mathcal{M}, V) .

Proposition

A generic space for a given class is determined uniquely (but it may not exist at all).

The Urysohn space is the unique Polish space \mathbb{U} that is injective over finite metric spaces, namely, given finite metric spaces $A \subseteq B$, every isometric embedding of A into \mathbb{U} extends to an isometric embedding of B.

The Urysohn space is the unique Polish space \mathbb{U} that is injective over finite metric spaces, namely, given finite metric spaces $A \subseteq B$, every isometric embedding of A into \mathbb{U} extends to an isometric embedding of B.

Theorem (Urysohn 1927)

The Urysohn space \mathbb{U} exists, is determined uniquely, up to isometry. Furthermore, \mathbb{U} contains all separable metric spaces and is homogeneous, namely, every isometry between finite subsets of \mathbb{U} extends to a bijective isometry of \mathbb{U} .

The Urysohn space is the unique Polish space \mathbb{U} that is injective over finite metric spaces, namely, given finite metric spaces $A \subseteq B$, every isometric embedding of A into \mathbb{U} extends to an isometric embedding of B.

Theorem (Urysohn 1927)

The Urysohn space \mathbb{U} exists, is determined uniquely, up to isometry. Furthermore, \mathbb{U} contains all separable metric spaces and is homogeneous, namely, every isometry between finite subsets of \mathbb{U} extends to a bijective isometry of \mathbb{U} .

Proposition

The Urysohn space is generic over the class of all finite metric spaces.

Ultrametric spaces

An **ultrametric** is a metric ρ satisfying a stronger variant of the triangle inequality:

 $\varrho(x,y) \leq \max\{\varrho(x,z), \varrho(z,y)\}.$

An **ultrametric** is a metric ρ satisfying a stronger variant of the triangle inequality:

$$\varrho(x,y) \leq \max\{\varrho(x,z), \varrho(z,y)\}.$$

Proposition

There is no generic space over the class of all finite ultrametric spaces.

An **ultrametric** is a metric ρ satisfying a stronger variant of the triangle inequality:

$$\varrho(x,y) \leq \max\{\varrho(x,z), \varrho(z,y)\}.$$

Proposition

There is no generic space over the class of all finite ultrametric spaces.

Proposition

Given a countable linearly ordered set D with the minimal element 0, there exists a generic space over the class of all finite ultrametric spaces with distances in D.

Theorem (Kwiatkowska, Malicki, K.)

There exists a generic ultrametric space \mathbb{A} , in the sense of the Banach-Mazur game, where the two players build both the spaces and the distances. The space \mathbb{A} is homogeneous.

A metric space M is

(H0) homogeneous if every isometry between finite subsets of V extends to a bijective isometry of V.

A metric space M is

- (H0) homogeneous if every isometry between finite subsets of V extends to a bijective isometry of V.
- (H1) approximately homogeneous if every isometry of finite subsets of V can be approximated by bijective isometries of V.

A metric space M is

- (H0) homogeneous if every isometry between finite subsets of V extends to a bijective isometry of V.
- (H1) approximately homogeneous if every isometry of finite subsets of V can be approximated by bijective isometries of V.

Proposition

 $(H0) \implies (H1).$

Given a metric space M, its age is the class Age(M) consisting of all finite metric spaces isometric to subspaces of M.

Given a metric space M, its age is the class Age(M) consisting of all finite metric spaces isometric to subspaces of M.

Theorem

An approximately homogeneous Polish space is generic over its age.

Example

Take the rational Urysohn space $\mathbb{U}_{\mathbb{Q}}$ (the variant of \mathbb{U} , allowing rational distances only) and let $V = \mathbb{U}_{\mathbb{Q}} \times \{0, \sqrt{2}\}$ with the ℓ_1 -metric, namely,

$$\varrho(\langle x,i\rangle,\langle y,j\rangle)=\varrho(x,y)+|i-j|,$$

for every $x, y \in \mathbb{U}_{\mathbb{Q}}$, $i, j \in \{0, \sqrt{2}\}$.

Let \mathcal{F} be the class of all finite metric spaces isometric to subsets of V. Clearly, V is homogeneous. On the other hand, if \overline{V} denotes the completion of V, then obviously $Age(\overline{V})$ is the class of all finite metric spaces and \overline{V} is far from being approximately homogeneous.

Tree-like spaces

A metric tree is a metric space coming from a connected cycle-free weighted graph, where the distance is the total weight of the unique shortest path.

A metric tree is a metric space coming from a connected cycle-free weighted graph, where the distance is the total weight of the unique shortest path.

A metric space is tree-like if it embeds into a metric tree.

A metric tree is a metric space coming from a connected cycle-free weighted graph, where the distance is the total weight of the unique shortest path.

A metric space is tree-like if it embeds into a metric tree.

A rational tree-like space is a tree-like metric spaces whose set of distances is contained in \mathbb{Q} . Denote by $\mathcal{T}^{\mathbb{Q}}$ the class of all finite rational tree-like metric spaces.

A metric tree is a metric space coming from a connected cycle-free weighted graph, where the distance is the total weight of the unique shortest path.

A metric space is tree-like if it embeds into a metric tree.

A rational tree-like space is a tree-like metric spaces whose set of distances is contained in \mathbb{Q} . Denote by $\mathcal{T}^{\mathbb{Q}}$ the class of all finite rational tree-like metric spaces.

Theorem

There exists a Polish space \mathbb{T} , generic over $\mathcal{T}^{\mathbb{Q}}$. It is approximately homogeneous but not homogeneous.

Weak amalgamations

Let \mathcal{M} be a class of finite metric spaces. We say that \mathcal{M} has the approximate weak amalgamation property if for every $A \in \mathcal{M}$, for every $\varepsilon > 0$ there exists an embedding $e: A \to A'$ such that for every embeddings $f: A' \to X$, $g: A' \to Y$ there are embeddings $f': X \to B$, $g': Y \to B$ satisfying

 $\varrho(f' \circ f \circ e, g' \circ g \circ e) < \varepsilon.$

Let \mathcal{M} be a class of finite metric spaces. We say that \mathcal{M} has the approximate weak amalgamation property if for every $A \in \mathcal{M}$, for every $\varepsilon > 0$ there exists an embedding $e: A \to A'$ such that for every embeddings $f: A' \to X$, $g: A' \to Y$ there are embeddings $f': X \to B$, $g': Y \to B$ satisfying

$$\varrho(f' \circ f \circ e, g' \circ g \circ e) < \varepsilon.$$

Theorem

Every class of finite metric spaces admitting a generic space has the approximate weak amalgamation property.

The proper statement

Theorem (cf. Krawczyk, K. 2021)

Let \mathcal{M} be a class of finite metric spaces. Consider the modified game BM $(\mathcal{M}, \mathcal{U})$, where the second player wins if the resulting space embeds into some space from the class \mathcal{U} .

If $|\mathcal{U}| < 2^{\aleph_0}$ and the second player has a winning strategy in BM $(\mathcal{M}, \mathcal{U})$, then \mathcal{M} has the approximate weak amalgamation property.

Proposition

Let \mathcal{M} be a hereditary class of finite metric spaces with distances $\{0, 1, 2\}$, that has the weak amalgamation property and the joint embedding property. Then there exists an \mathcal{M} -generic space.

Proposition

Let \mathcal{M} be a hereditary class of finite metric spaces with distances $\{0, 1, 2\}$, that has the weak amalgamation property and the joint embedding property. Then there exists an \mathcal{M} -generic space.

Question

How about more complicated examples?

A Banach space \mathbb{E} is generic over over a class \mathcal{F} of finite-dimensional spaces if the second player has a winning strategy in BM (\mathcal{F}, \mathbb{E}), playing with linear isometric embeddings.

The age of a Banach space V is the class Age(V) consisting of all

finite-dimensional spaces linearly isometric to subspaces of V.

A Banach space \mathbb{E} is generic over over a class \mathcal{F} of finite-dimensional spaces if the second player has a winning strategy in BM (\mathcal{F}, \mathbb{E}), playing with linear isometric embeddings.

The age of a Banach space V is the class Age(V) consisting of all finite-dimensional spaces linearly isometric to subspaces of V.

Theorem

The Gurarii space is generic over the class of all finite-dimensional spaces. It is approximately homogeneous, but not homogeneous.

A Banach space \mathbb{E} is generic over over a class \mathcal{F} of finite-dimensional spaces if the second player has a winning strategy in BM (\mathcal{F}, \mathbb{E}), playing with linear isometric embeddings.

The age of a Banach space V is the class Age(V) consisting of all finite-dimensional spaces linearly isometric to subspaces of V.

Theorem

The Gurarii space is generic over the class of all finite-dimensional spaces. It is approximately homogeneous, but not homogeneous.

Proposition

The separable Hilbert space is generic over the class of all Euclidean spaces. It is homogeneous.

Theorem (Viscardi 2017, still unpublished)

Let \mathcal{F} be the smallest class of all finite-dimensional normed spaces obtained by using the following two operations:

- Making the standard amalgamation.
- Selecting a subspace.

Then the Gurarii space is generic over \mathcal{F} .

References

- A. Krawczyk, W. Kubiś, Games on finitely generated structures, Annals of Pure and Applied Logic 172 (2021), no. 10, Paper No. 103016
- W. Kubiś, *Game-theoretic characterization of the Gurarii space*, Archiv der Mathematik 110 (2018) 53–59