The Menger property is ℓ -invariant

Mikołaj Krupski

University of Warsaw

TOPOSYM 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General problem

Suppose that $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic (resp., homeomorphic) and X has a topological property \mathcal{P} . Does Y have \mathcal{P} ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General problem

Suppose that $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic (resp., homeomorphic) and X has a topological property \mathcal{P} . Does Y have \mathcal{P} ?

Definition

A topological property \mathcal{P} is called ℓ -invariant (resp., *t*-invariant) if the answer to the above Problem for \mathcal{P} is 'yes'.

General problem

Suppose that $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic (resp., homeomorphic) and X has a topological property \mathcal{P} . Does Y have \mathcal{P} ?

Definition

A topological property \mathcal{P} is called ℓ -invariant (resp., *t*-invariant) if the answer to the above Problem for \mathcal{P} is 'yes'.

Problem (Arhangel'skii, 1982)

Is the Lindelöf property *t*-invariant (ℓ -invariant)?

General problem

Suppose that $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic (resp., homeomorphic) and X has a topological property \mathcal{P} . Does Y have \mathcal{P} ?

Definition

A topological property \mathcal{P} is called ℓ -invariant (resp., *t*-invariant) if the answer to the above Problem for \mathcal{P} is 'yes'.

Problem (Arhangel'skii, 1982)

Is the Lindelöf property *t*-invariant (ℓ -invariant)?

Problem (Arhangel'skii, 198?)

Is the Menger property *t*-invariant (ℓ -invariant)?

Definition

A space X is Menger (resp., Hurewicz) if for every sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of open covers of X, there is a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ such that for every n, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n\in\mathbb{N}}\mathcal{V}_n$ covers X (resp., every point of X is contained in $\bigcup \mathcal{V}_n$ for all but finitely many n's).

Definition

A space X is Menger (resp., Hurewicz) if for every sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of open covers of X, there is a sequence $(\mathcal{V}_n)_{n\in\mathbb{N}}$ such that for every n, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n\in\mathbb{N}}\mathcal{V}_n$ covers X (resp., every point of X is contained in $\bigcup \mathcal{V}_n$ for all but finitely many n's).

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger \Rightarrow Lindelöf.

 $(\forall n \ X^n \text{ is Lindelöf}) \Leftrightarrow C_p(X)$ has countable tightness.

In particular, the property " $(\forall n \ X^n \text{ is Lindelöf})$ " is *t*-invariant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $(\forall n \ X^n \text{ is Lindelöf}) \Leftrightarrow C_p(X)$ has countable tightness.

In particular, the property " $(\forall n \ X^n \text{ is Lindelöf})$ " is *t*-invariant

Theorem (Arhangel'skii, 1986)

 $(\forall n \ X^n \text{ is Menger}) \Leftrightarrow C_p(X)$ has countable fan tightness.

In particular, the property " $(\forall n \ X^n \text{ is Menger})$ " is t-invariant

 $(\forall n \ X^n \text{ is Lindelöf}) \Leftrightarrow C_p(X)$ has countable tightness.

In particular, the property " $(\forall n \ X^n \text{ is Lindelöf})$ " is *t*-invariant

Theorem (Arhangel'skii, 1986)

 $(\forall n \ X^n \text{ is Menger}) \Leftrightarrow C_p(X)$ has countable fan tightness.

In particular, the property " $(\forall n \ X^n \text{ is Menger})$ " is *t*-invariant

Theorem (Velichko, 1998)

The Lindelöf property is ℓ -invariant.

 $(\forall n \ X^n \text{ is Lindelöf}) \Leftrightarrow C_p(X)$ has countable tightness.

In particular, the property " $(\forall n \ X^n \text{ is Lindelöf})$ " is *t*-invariant

Theorem (Arhangel'skii, 1986)

 $(\forall n \ X^n \text{ is Menger}) \Leftrightarrow C_p(X)$ has countable fan tightness. In particular, the property " $(\forall n \ X^n \text{ is Menger})$ " is *t*-invariant

Theorem (Velichko, 1998)

The Lindelöf property is ℓ -invariant.

Theorem (Zdomskyy, 2006)

The Hurewicz property is ℓ -invariant.

property	$\sigma ext{-compact}$	Hurewicz	Menger	Lindelöf
ℓ -invariant?				
<i>t</i> -invariant?				

property	$\sigma ext{-compact}$	Hurewicz	Menger	Lindelöf
ℓ -invariant?	+ (folklore)			
<i>t</i> -invariant?				

property	$\sigma ext{-compact}$	Hurewicz	Menger	Lindelöf
ℓ -invariant?	+ (folklore)			
<i>t</i> -invariant?	+ (Okunev)			

property	$\sigma ext{-compact}$	Hurewicz	Menger	Lindelöf
ℓ -invariant?	+ (folklore)			+ (Velichko)
<i>t</i> -invariant?	+ (Okunev)			

property	$\sigma ext{-compact}$	Hurewicz	Menger	Lindelöf
ℓ -invariant?	+ (folklore)	+ (Zdomskyy)		+ (Velichko)
<i>t</i> -invariant?	+ (Okunev)			

property	σ -compact	Hurewicz	Menger	Lindelöf
ℓ -invariant?	+ (folklore)	+ (Zdomskyy)	+	+ (Velichko)
<i>t</i> -invariant?	+ (Okunev)			

property	$\sigma ext{-compact}$	Hurewicz	Menger	Lindelöf
ℓ -invariant?	+ (folklore)	+ (Zdomskyy)	+	+ (Velichko)
<i>t</i> -invariant?	+ (Okunev)	?	?	?

The Menger property is ℓ -invariant.

Some partial results were known before:

The Menger property is ℓ -invariant.

Some partial results were known before:

 Zdomskyy, 2006: The Menger property is ℓ-invariant under the set-theoretic assumption u < g

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Menger property is ℓ -invariant.

Some partial results were known before:

- Zdomskyy, 2006: The Menger property is ℓ-invariant under the set-theoretic assumption u < g
- 2 Sakai, 2020: The Menger property is ℓ-invariant, for spaces having property (*).

The Menger property is ℓ -invariant.

Some partial results were known before:

- Zdomskyy, 2006: The Menger property is ℓ-invariant under the set-theoretic assumption u < g
- 2 Sakai, 2020: The Menger property is ℓ-invariant, for spaces having property (*).

Property (*) is a weaker form of first-countability.

Definition

A space X is projectively Menger (Hurewicz) provided every separable metrizable continuous image of X is Menger (Hurewicz).

Definition

A space X is projectively Menger (Hurewicz) provided every separable metrizable continuous image of X is Menger (Hurewicz).

Proposition (Telgársky, 1984)

A space X is Menger iff X is Lindelöf and projectively Menger.

Definition

A space X is projectively Menger (Hurewicz) provided every separable metrizable continuous image of X is Menger (Hurewicz).

Proposition (Telgársky, 1984)

A space X is Menger iff X is Lindelöf and projectively Menger.

Proposition (Kočinac, 2006)

A space X is Hurewicz iff X is Lindelöf and projectively Hurewicz.

Definition

A space X is projectively Menger (Hurewicz) provided every separable metrizable continuous image of X is Menger (Hurewicz).

Proposition (Telgársky, 1984)

A space X is Menger iff X is Lindelöf and projectively Menger.

Proposition (Kočinac, 2006)

A space X is Hurewicz iff X is Lindelöf and projectively Hurewicz.

Theorem (K.)

The projective Menger property is *l*-invariant

Definition

A space X is projectively Menger (Hurewicz) provided every separable metrizable continuous image of X is Menger (Hurewicz).

Proposition (Telgársky, 1984)

A space X is Menger iff X is Lindelöf and projectively Menger.

Proposition (Kočinac, 2006)

A space X is Hurewicz iff X is Lindelöf and projectively Hurewicz.

Theorem (K.)

The projective Menger property is *l*-invariant

Theorem (K.)

The projective Hurewicz property is ℓ -invariant

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let bX be a compactification of X (it doesn't matter what compactification we take).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let bX be a compactification of X (it doesn't matter what compactification we take).

X is σ -compact \Leftrightarrow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let bX be a compactification of X (it doesn't matter what compactification we take).

X is σ -compact $\Leftrightarrow bX \setminus X$ is G_{δ} in bX.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let bX be a compactification of X (it doesn't matter what compactification we take).

```
X is \sigma-compact \Leftrightarrow bX \setminus X is G_{\delta} in bX.
```

```
Proposition (Smirnov)
X is Lindelöf \Leftrightarrow
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let bX be a compactification of X (it doesn't matter what compactification we take).

X is σ -compact $\Leftrightarrow bX \setminus X$ is G_{δ} in bX.

Proposition (Smirnov) X is Lindelöf $\Leftrightarrow \forall$ compact $A \subseteq bX \setminus X$

Let bX be a compactification of X (it doesn't matter what compactification we take).

X is σ -compact $\Leftrightarrow bX \setminus X$ is G_{δ} in bX.

 $\begin{array}{l} \text{Proposition (Smirnov)} \\ X \text{ is Lindelöf} \Leftrightarrow & \forall \text{compact } A \subseteq bX \setminus X \quad \exists G \ G_{\delta} \text{ in } bX \\ & A \subseteq G \subseteq bX \setminus X \end{array}$

Let bX be a compactification of X (it doesn't matter what compactification we take).

X is σ -compact $\Leftrightarrow bX \setminus X$ is G_{δ} in bX.

$\begin{array}{l} \mathsf{Proposition} \ (\mathsf{Smirnov}) \\ X \ \text{is Lindelöf} \Leftrightarrow \ \forall \mathsf{compact} \ A \subseteq bX \setminus X \quad \exists G \ G_{\delta} \ \text{in} \ bX \\ A \subseteq G \subseteq bX \setminus X \end{array}$

Proposition (Just-Miller-Scheepers-Szeptycki, Tall) X is Hurewicz ⇔

Let bX be a compactification of X (it doesn't matter what compactification we take).

X is σ -compact $\Leftrightarrow bX \setminus X$ is G_{δ} in bX.

 $\begin{array}{l} \mathsf{Proposition} \ (\mathsf{Smirnov}) \\ X \ \text{is Lindelöf} \Leftrightarrow \ \forall \mathsf{compact} \ A \subseteq bX \setminus X \quad \exists G \ G_{\delta} \ \text{in} \ bX \\ A \subseteq G \subseteq bX \setminus X \end{array}$

Proposition (Just-Miller-Scheepers-Szeptycki, Tall) X is Hurewicz $\Leftrightarrow \forall \sigma$ -compact $A \subseteq bX \setminus X \exists G \ G_{\delta}$ in bX $A \subseteq G \subseteq bX \setminus X$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

$$\frac{|\mathsf{I}||(K_0, U_0)}{|\mathsf{I}||}$$

 $K_0 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_0 is open in bX and $K_0 \subseteq U_0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

$$\begin{array}{c|c} I & (\mathcal{K}_0, \mathcal{U}_0) \\ \hline II & \mathcal{V}_0 \end{array}$$

 $K_0 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_0 is open in bX and $K_0 \subseteq U_0$ V_0 is open in bX and $K_0 \subseteq V_0 \subseteq U_0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

$$\begin{array}{c|c} \mathsf{I} & (\mathcal{K}_0, \mathcal{U}_0) & (\mathcal{K}_1, \mathcal{U}_1) \\ \hline \mathsf{II} & \mathcal{V}_0 \end{array}$$

 $K_0 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_0 is open in bX and $K_0 \subseteq U_0$ V_0 is open in bX and $K_0 \subseteq V_0 \subseteq U_0$

 $K_1 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_1 is open in bX and $K_1 \subseteq U_1 \subseteq V_0$

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

 $K_0 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_0 is open in bX and $K_0 \subseteq U_0$ V_0 is open in bX and $K_0 \subseteq V_0 \subseteq U_0$ $K_1 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_1 is open in bX and $K_1 \subseteq U_1 \subseteq V_0$ V_1 is open in bX and $K_1 \subseteq V_1 \subseteq U_1$

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

 $K_0 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_0 is open in bX and $K_0 \subseteq U_0$ V_0 is open in bX and $K_0 \subseteq V_0 \subseteq U_0$ $K_1 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_1 is open in bX and $K_1 \subseteq U_1 \subseteq V_0$ V_1 is open in bX and $K_1 \subseteq V_1 \subseteq U_1$

Let bX be a compactification of X. We define the *k*-Porada game $kP(bX, bX \setminus X)$:

 $K_0 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_0 is open in bX and $K_0 \subseteq U_0$ V_0 is open in bX and $K_0 \subseteq V_0 \subseteq U_0$ $K_1 \subseteq bX \setminus X$ is compact $\neq \emptyset$, U_1 is open in bX and $K_1 \subseteq U_1 \subseteq V_0$ V_1 is open in bX and $K_1 \subseteq V_1 \subseteq U_1$

Player II wins if $\emptyset \neq \bigcap_{n \in \omega} V_n \subseteq bX \setminus X$, otherwise Player I wins.

Proposition (Telgársky, 1984)

The game $kP(bX, bX \setminus X)$ is equivalent to the Menger game M(X).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition (Telgársky, 1984)

The game $kP(bX, bX \setminus X)$ is equivalent to the Menger game M(X).

Corollary

Player I has no winning strategy in $kP(bX, bX \setminus X) \Leftrightarrow$ the space X is Menger.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Generally speaking, we replace "compact sets" by "zero-sets in βX ".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generally speaking, we replace "compact sets" by "zero-sets in βX ".

```
Proposition (K., Kucharski)
TFAE:
```

- **1** X is projectively Hurewicz
- **2** $\forall F \subseteq \beta X \setminus X$, such that *F* is a countable union of zero-sets in βX , there exists a G_{δ} subset *G* of βX with $F \subseteq G \subseteq \beta X \setminus X$.

Generally speaking, we replace "compact sets" by "zero-sets in βX ".

```
Proposition (K., Kucharski)
```

TFAE:

- **1** X is projectively Hurewicz
- **2** $\forall F \subseteq \beta X \setminus X$, such that *F* is a countable union of zero-sets in βX , there exists a G_{δ} subset *G* of βX with $F \subseteq G \subseteq \beta X \setminus X$.

Proposition (K., Kucharski)

X is projectively Menger \Leftrightarrow Player I has no winning strategy in the z-Porada game $zP(\beta X, \beta X \setminus X)$

Generally speaking, we replace "compact sets" by "zero-sets in βX ".

```
Proposition (K., Kucharski)
```

TFAE:

- **1** X is projectively Hurewicz
- **2** $\forall F \subseteq \beta X \setminus X$, such that *F* is a countable union of zero-sets in βX , there exists a G_{δ} subset *G* of βX with $F \subseteq G \subseteq \beta X \setminus X$.

Proposition (K., Kucharski)

X is projectively Menger \Leftrightarrow Player I has no winning strategy in the z-Porada game $zP(\beta X, \beta X \setminus X)$

The game $zP(\beta X, \beta X \setminus X)$ is played as $kP(\beta X, \beta X \setminus X)$ with additional requirement that the compact sets played by player I are zero-sets in βX .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 Suppose that φ : C_p(X) → C_p(Y) is a linear homeomorphism. The map φ induces a set-valued, lower semi-continuous map supp : Y → [X]^{<ω}

- Suppose that φ : C_p(X) → C_p(Y) is a linear homeomorphism. The map φ induces a set-valued, lower semi-continuous map supp : Y → [X]^{<ω}
- We extend the map supp to a lower semi-continuous map s : βY → K(βX) = hyperspace of compact subsets of βX

- Suppose that φ : C_p(X) → C_p(Y) is a linear homeomorphism. The map φ induces a set-valued, lower semi-continuous map supp : Y → [X]^{<ω}
- We extend the map supp to a lower semi-continuous map s : βY → K(βX) = hyperspace of compact subsets of βX
- **3** We find a cover $Y = \bigcup_{n \in \omega} Y_n$, where Y_n 's are closed, such that $\forall n \ \forall y \in (\overline{Y_n}^{\beta Y} \setminus Y_n) \quad s(y) \cap (\beta X \setminus X) \neq \emptyset$

- Suppose that φ : C_p(X) → C_p(Y) is a linear homeomorphism. The map φ induces a set-valued, lower semi-continuous map supp : Y → [X]^{<ω}
- We extend the map supp to a lower semi-continuous map s : βY → K(βX) = hyperspace of compact subsets of βX
- **3** We find a cover $Y = \bigcup_{n \in \omega} Y_n$, where Y_n 's are closed, such that $\forall n \ \forall y \in (\overline{Y_n}^{\beta Y} \setminus Y_n) \quad s(y) \cap (\beta X \setminus X) \neq \emptyset$
- ④ For a compact G_δ-set K ⊆ ($\overline{Y_n}^{\beta Y} \setminus Y_n$) we need to find a compact set L ⊆ βX \ X with K ⊆ s⁻¹(L) = {y ∈ Y : s(y) ∩ L ≠ ∅}.

- Suppose that φ : C_p(X) → C_p(Y) is a linear homeomorphism. The map φ induces a set-valued, lower semi-continuous map supp : Y → [X]^{<ω}
- We extend the map supp to a lower semi-continuous map s : βY → K(βX) = hyperspace of compact subsets of βX
- **3** We find a cover $Y = \bigcup_{n \in \omega} Y_n$, where Y_n 's are closed, such that $\forall n \ \forall y \in (\overline{Y_n}^{\beta Y} \setminus Y_n) \quad s(y) \cap (\beta X \setminus X) \neq \emptyset$
- ④ For a compact G_δ-set K ⊆ ($\overline{Y_n}^{\beta Y} \setminus Y_n$) we need to find a compact set L ⊆ βX \ X with K ⊆ s⁻¹(L) = {y ∈ Y : s(y) ∩ L ≠ ∅}.

Theorem (Bouziad, 1999)

Suppose that Z is Čech-complete. If C is compact and $\phi: C \to \mathcal{K}(Z)$ is l.s.c., then there is a compact $L \subseteq Z$ that meets every value of ϕ , i.e. $C = \phi^{-1}(L)$