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All spaces under consideration are Tychonoff. For a space X ,
Cp(X ) is the space of continuous real-valued functions on X , with
the pointwise topology

General problem

Suppose that Cp(X ) and Cp(Y ) are linearly homeomorphic (resp.,
homeomorphic) and X has a topological property P. Does Y have
P?

Definition
A topological property P is called `-invariant (resp., t-invariant) if
the answer to the above Problem for P is ’yes’.

Problem (Arhangel’skii, 1982)

Is the Lindelöf property t-invariant (`-invariant)?

Problem (Arhangel’skii, 198?)

Is the Menger property t-invariant (`-invariant)?
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Definition
A space X is Menger (resp., Hurewicz) if for every sequence
(Un)n∈N of open covers of X , there is a sequence (Vn)n∈N such
that for every n, Vn is a finite subfamily of Un and the family⋃

n∈N Vn covers X (resp., every point of X is contained in
⋃
Vn for

all but finitely many n’s).

σ-compact⇒ Hurewicz⇒ Menger⇒ Lindelöf.



Definition
A space X is Menger (resp., Hurewicz) if for every sequence
(Un)n∈N of open covers of X , there is a sequence (Vn)n∈N such
that for every n, Vn is a finite subfamily of Un and the family⋃

n∈N Vn covers X (resp., every point of X is contained in
⋃
Vn for

all but finitely many n’s).

σ-compact⇒ Hurewicz⇒ Menger⇒ Lindelöf.



Theorem (Arhangel’skii-Pytkeev, 1982)

(∀n X n is Lindelöf)⇔ Cp(X ) has countable tightness.

In particular, the property ”(∀n X n is Lindelöf)” is t-invariant

Theorem (Arhangel’skii, 1986)

(∀n X n is Menger)⇔ Cp(X ) has countable fan tightness.

In particular, the property ”(∀n X n is Menger)” is t-invariant

Theorem (Velichko, 1998)

The Lindelöf property is `-invariant.

Theorem (Zdomskyy, 2006)

The Hurewicz property is `-invariant.
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(∀n X n is Lindelöf)⇔ Cp(X ) has countable tightness.

In particular, the property ”(∀n X n is Lindelöf)” is t-invariant
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Theorem (K.)

The Menger property is `-invariant.

Some partial results were known before:

1 Zdomskyy, 2006: The Menger property is `-invariant under
the set-theoretic assumption u < g

2 Sakai, 2020: The Menger property is `-invariant, for spaces
having property (∗).

Property (∗) is a weaker form of first-countability.



Theorem (K.)

The Menger property is `-invariant.

Some partial results were known before:

1 Zdomskyy, 2006: The Menger property is `-invariant under
the set-theoretic assumption u < g

2 Sakai, 2020: The Menger property is `-invariant, for spaces
having property (∗).

Property (∗) is a weaker form of first-countability.



Theorem (K.)

The Menger property is `-invariant.

Some partial results were known before:

1 Zdomskyy, 2006: The Menger property is `-invariant under
the set-theoretic assumption u < g

2 Sakai, 2020: The Menger property is `-invariant, for spaces
having property (∗).

Property (∗) is a weaker form of first-countability.



Theorem (K.)

The Menger property is `-invariant.

Some partial results were known before:

1 Zdomskyy, 2006: The Menger property is `-invariant under
the set-theoretic assumption u < g

2 Sakai, 2020: The Menger property is `-invariant, for spaces
having property (∗).

Property (∗) is a weaker form of first-countability.



Projective properties of Menger and
Hurewicz

Definition
A space X is projectively Menger (Hurewicz) provided every
separable metrizable continuous image of X is Menger (Hurewicz).

Proposition (Telgársky, 1984)

A space X is Menger iff X is Lindelöf and projectively Menger.

Proposition (Kočinac, 2006)

A space X is Hurewicz iff X is Lindelöf and projectively Hurewicz.

Theorem (K.)

The projective Menger property is `-invariant

Theorem (K.)

The projective Hurewicz property is `-invariant
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A space X is Hurewicz iff X is Lindelöf and projectively Hurewicz.
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Theorem (K.)

The projective Menger property is `-invariant

Theorem (K.)

The projective Hurewicz property is `-invariant



Projective properties of Menger and
Hurewicz

Definition
A space X is projectively Menger (Hurewicz) provided every
separable metrizable continuous image of X is Menger (Hurewicz).

Proposition (Telgársky, 1984)
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Proposition (Kočinac, 2006)
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Position of a space in its compactification

Let bX be a compactification of X (it doesn’t matter what
compactification we take).

X is σ-compact ⇔ bX \ X is Gδ in bX .

Proposition (Smirnov)

X is Lindelöf ⇔ ∀compact A ⊆ bX \ X ∃G Gδ in bX
A ⊆ G ⊆ bX \ X

Proposition (Just-Miller-Scheepers-Szeptycki, Tall)

X is Hurewicz ⇔ ∀σ-compact A ⊆ bX \ X ∃G Gδ in bX
A ⊆ G ⊆ bX \ X
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X is Lindelöf ⇔ ∀compact A ⊆ bX \ X ∃G Gδ in bX
A ⊆ G ⊆ bX \ X

Proposition (Just-Miller-Scheepers-Szeptycki, Tall)

X is Hurewicz ⇔

∀σ-compact A ⊆ bX \ X ∃G Gδ in bX
A ⊆ G ⊆ bX \ X



Position of a space in its compactification

Let bX be a compactification of X (it doesn’t matter what
compactification we take).

X is σ-compact ⇔ bX \ X is Gδ in bX .

Proposition (Smirnov)
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k-Porada game

Let bX be a compactification of X . We define the k-Porada game
kP(bX , bX \ X ):

I

(K0,U0) (K1,U1) . . .

II

V0 V1 . . .

K0 ⊆ bX \ X is compact 6= ∅, U0 is open in bX and K0 ⊆ U0

V0 is open in bX and K0 ⊆ V0 ⊆ U0

K1 ⊆ bX \ X is compact 6= ∅, U1 is open in bX and K1 ⊆ U1 ⊆ V0

V1 is open in bX and K1 ⊆ V1 ⊆ U1

Player II wins if ∅ 6=
⋂

n∈ω Vn ⊆ bX \ X , otherwise Player I wins.
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Proposition (Telgársky, 1984)

The game kP(bX , bX \ X ) is equivalent to the Menger game
M(X ).

Corollary

Player I has no winning strategy in kP(bX , bX \ X )⇔ the space
X is Menger.
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For the projective properties of Menger and Hurewicz, we use the
Čech-Stone compactification βX of X .

Generally speaking, we replace ”compact sets” by ”zero-sets in
βX”.

Proposition (K., Kucharski)

TFAE:

1 X is projectively Hurewicz

2 ∀F ⊆ βX \X , such that F is a countable union of zero-sets in
βX , there exists a Gδ subset G of βX with F ⊆ G ⊆ βX \ X .

Proposition (K., Kucharski)

X is projectively Menger ⇔ Player I has no winning strategy in the
z-Porada game zP(βX , βX \ X )

The game zP(βX , βX \ X ) is played as kP(βX , βX \ X ) with
additional requirement that the compact sets played by player I are
zero-sets in βX .
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Čech-Stone compactification βX of X .

Generally speaking, we replace ”compact sets” by ”zero-sets in
βX”.

Proposition (K., Kucharski)

TFAE:

1 X is projectively Hurewicz

2 ∀F ⊆ βX \X , such that F is a countable union of zero-sets in
βX , there exists a Gδ subset G of βX with F ⊆ G ⊆ βX \ X .

Proposition (K., Kucharski)

X is projectively Menger ⇔ Player I has no winning strategy in the
z-Porada game zP(βX , βX \ X )

The game zP(βX , βX \ X ) is played as kP(βX , βX \ X ) with
additional requirement that the compact sets played by player I are
zero-sets in βX .



The general idea

1 Suppose that ϕ : Cp(X )→ Cp(Y ) is a linear homeomorphism.
The map ϕ induces a set-valued, lower semi-continuous map
supp : Y → [X ]<ω

2 We extend the map supp to a lower semi-continuous map
s : βY → K(βX ) = hyperspace of compact subsets of βX

3 We find a cover Y =
⋃

n∈ω Yn, where Yn’s are closed, such

that ∀n ∀y ∈ (Yn
βY \ Yn) s(y) ∩ (βX \ X ) 6= ∅

4 For a compact Gδ-set K ⊆ (Yn
βY \ Yn) we need to find a

compact set L ⊆ βX \ X with
K ⊆ s−1(L) = {y ∈ Y : s(y) ∩ L 6= ∅}.

Theorem (Bouziad, 1999)

Suppose that Z is Čech-complete. If C is compact and
φ : C → K(Z ) is l.s.c., then there is a compact L ⊆ Z that meets
every value of φ, i.e. C = φ−1(L)
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