Arbitrarily Large Countably Compact Free Abelian Groups

Matheus Koveroff Bellini (USP)

Co-authors: Artur Hideyuki Tomita (USP), Klaas Pieter Hart (UDelft), Vinicius de Oliveira Rodrigues (USP)

July 26, 2022

This work has been supported by FAPESP (Process No. 2017/15709-6)

Matheus Koveroff Bellini (USP)

Arbitrarily Large Countably Compact Free Abelian Groups

Previous results on $\mathbb{Z}^{(c)}$ being countably compact:

- Tkachenko, 1990 : Under CH
- Tomita, 1998 : Under MA(*σ*-centered)
- Koszmider, Tomita, Watson, 2000 : Under MA(countable), forcing example
- Madariaga-García, Tomita, 2007 : Under c selective ultrafilters (also Z^(2^c), under 2^c selective ultrafilters)
- Boero, Castro-Pereira, Tomita, 2019 : Under 1 selective ultrafilter

Two results on finite powers:

- Boero, Tomita, 2011 : The square is countably compact, under c selective ultrafilters
- Tomita, 2015 : All finite powers are countably compact, under c incomparable selective ultrafilters

We also recall that in [8] Tomita showed that the ω -th power of a free Abelian group cannot be countably compact.

We have obtained the following:

Theorem

Assume that there are c incomparable selective ultrafilters. Then for every cardinal κ such that $\kappa^{\omega} = \kappa$, there is a Hausdorff group topology on the free Abelian group of cardinality κ without non-trivial convergent sequences and whose finite powers are countably compact. Recall the following result:

Theorem (van Douwen, [3])

The cardinality of a countably compact group cannot be a strong limit of countable cofinality.

Recall the following result:

Theorem (van Douwen, [3])

The cardinality of a countably compact group cannot be a strong limit of countable cofinality.

This classifies, under GCH, which free Abelian groups allow a countably compact group topology:

Recall the following result:

Theorem (van Douwen, [3])

The cardinality of a countably compact group cannot be a strong limit of countable cofinality.

This classifies, under GCH, which free Abelian groups allow a countably compact group topology:

Theorem (GCH)

A free Abelian group of infinite cardinality κ can be endowed with a countably compact group topology if and only if $\kappa = \kappa^{\omega}$.

Henceforth we fix a cardinal κ such that $\kappa^\omega=\omega$ and denote ${\cal G}=\mathbb{Z}^{(\kappa)}.$

Arbitrarily Large Countably Compact Free Abelian Groups

イロト イポト イヨト イヨト 三日

Henceforth we fix a cardinal κ such that $\kappa^{\omega} = \omega$ and denote $G = \mathbb{Z}^{(\kappa)}$.

Given an ultrafilter p and f, g ∈ (Q^(κ))^ω we denote f ≡_p g if {n ∈ ω : f(n) = g(n)} ∈ p, and the class of f in this equivalence relation [f]_p. The quotient (Q^(κ))^ω/≡_p is here denoted Ult(Q, p) and is called the *ultrapower* of Q^(κ) by p. We note that Ult(Q, p) has a natural Q-vector space structure.

Henceforth we fix a cardinal κ such that $\kappa^{\omega} = \omega$ and denote $G = \mathbb{Z}^{(\kappa)}$.

- Given an ultrafilter p and f, g ∈ (Q^(κ))^ω we denote f ≡_p g if {n ∈ ω : f(n) = g(n)} ∈ p, and the class of f in this equivalence relation [f]_p. The quotient (Q^(κ))^ω/≡_p is here denoted Ult(Q, p) and is called the *ultrapower* of Q^(κ) by p. We note that Ult(Q, p) has a natural Q-vector space structure.
- $Ult(\mathbb{Z}, p) := \{[f]_p : f \in G^{\omega}\}$. Note that $Ult(\mathbb{Z}, p) \subseteq Ult(\mathbb{Q}, p)$.

Henceforth we fix a cardinal κ such that $\kappa^{\omega} = \omega$ and denote $G = \mathbb{Z}^{(\kappa)}$.

- Given an ultrafilter p and f, g ∈ (Q^(κ))^ω we denote f ≡_p g if {n ∈ ω : f(n) = g(n)} ∈ p, and the class of f in this equivalence relation [f]_p. The quotient (Q^(κ))^ω/≡_p is here denoted Ult(Q, p) and is called the *ultrapower* of Q^(κ) by p. We note that Ult(Q, p) has a natural Q-vector space structure.
- $\operatorname{Ult}(\mathbb{Z},p) := \{[f]_p : f \in G^{\omega}\}.$ Note that $\operatorname{Ult}(\mathbb{Z},p) \subseteq \operatorname{Ult}(\mathbb{Q},p).$
- Given $\xi < \kappa$, $\chi_{\vec{\xi}}$ is the sequence constantly equal to $\chi_{\{\xi\}} \in \mathbb{Z}^{(\kappa)}$.

Henceforth we fix a cardinal κ such that $\kappa^{\omega} = \omega$ and denote $G = \mathbb{Z}^{(\kappa)}$.

- Given an ultrafilter p and f, g ∈ (Q^(κ))^ω we denote f ≡_p g if {n ∈ ω : f(n) = g(n)} ∈ p, and the class of f in this equivalence relation [f]_p. The quotient (Q^(κ))^ω/≡_p is here denoted Ult(Q, p) and is called the *ultrapower* of Q^(κ) by p. We note that Ult(Q, p) has a natural Q-vector space structure.
- $Ult(\mathbb{Z}, p) := \{[f]_p : f \in G^{\omega}\}.$ Note that $Ult(\mathbb{Z}, p) \subseteq Ult(\mathbb{Q}, p).$
- Given $\xi < \kappa$, $\chi_{\vec{\xi}}$ is the sequence constantly equal to $\chi_{\{\xi\}} \in \mathbb{Z}^{(\kappa)}$.
- The unit circle group T is the metric group (ℝ/ℤ, δ), with the metric δ(x + ℤ, y + ℤ) = min{|x y + n| : n ∈ ℤ}.

・ロト ・ 同ト ・ ヨト ・ ヨト

 Recall that an ultrafilter p is selective if and only if for every h: ω → ω there exists A ∈ p such that h|A is injective or one-to-one.

- Recall that an ultrafilter p is selective if and only if for every
 h : ω → ω there exists A ∈ p such that h|A is injective or
 one-to-one.
- Given an ultrafilter p and an $f : \omega \to \omega$, let $f_*(p) = \{A \in \omega : f^{-1}[A] \in p\}.$

- Recall that an ultrafilter p is selective if and only if for every h: ω → ω there exists A ∈ p such that h|A is injective or one-to-one.
- Given an ultrafilter p and an $f : \omega \to \omega$, let $f_*(p) = \{A \in \omega : f^{-1}[A] \in p\}.$
- We say that $p \leq_{\mathsf{RK}} q$ if there exists an $f : \omega \to \omega$ such that $p = f_*(q)$.

- Recall that an ultrafilter p is selective if and only if for every h: ω → ω there exists A ∈ p such that h|A is injective or one-to-one.
- Given an ultrafilter p and an $f : \omega \to \omega$, let $f_*(p) = \{A \in \omega : f^{-1}[A] \in p\}.$
- We say that $p \leq_{\mathsf{RK}} q$ if there exists an $f : \omega \to \omega$ such that $p = f_*(q)$.
- We say that p and q are *incomparable* if neither $p \leq_{\mathsf{RK}} q$ or $q \leq_{\mathsf{RK}} p$.

• A *finite tower* is a finite non-increasing sequence in $[\omega]^{\omega}$.

- A *finite tower* is a finite non-increasing sequence in $[\omega]^{\omega}$.
- We denote the set of all finite towers by $\mathcal{T}.$ Notice that $|\mathcal{T}|=\mathfrak{c}.$

Finite Towers for Finite Powers

- A finite tower is a finite non-increasing sequence in $[\omega]^{\omega}$.
- We denote the set of all finite towers by $\mathcal{T}.$ Notice that $|\mathcal{T}|=\mathfrak{c}.$
- If $T = (A_i : i < k) \in \mathcal{T}$, then $I(T) = A_{k-1}$ (and $I(\emptyset) = \omega$).

- A finite tower is a finite non-increasing sequence in $[\omega]^{\omega}$.
- We denote the set of all finite towers by $\mathcal{T}.$ Notice that $|\mathcal{T}|=\mathfrak{c}.$
- If $T = (A_i : i < k) \in \mathcal{T}$, then $I(T) = A_{k-1}$ (and $I(\emptyset) = \omega$).

Lemma

Assume there are c incomparable selective ultrafilters. Then there is a family of incomparable selective ultrafilters $(p_{T,n}: T \in \mathcal{T}, n \in \omega)$ such that $l(T) \in p_{T,n}$ whenever $T \in \mathcal{T}$ and $n \in \omega$.

Definition

Let \mathcal{F} be a subset of G^{ω} and $A \in [\omega]^{\omega}$. We shall call \mathcal{F} linearly independent mod A^* if for every free ultrafilter p with $A \in p$,

$$([f]_{p}: f \in \mathcal{F}) \cup ([\chi_{\vec{\xi}}]_{p}: \xi < \kappa)$$

is a linearly independent family of the \mathbb{Q} -vector space $Ult(\mathbb{Q}, p)$.

Matheus Koveroff Bellini (USP)

Arbitrarily Large Countably Compact Free Abelian Groups

Definition

Let \mathcal{F} be a subset of G^{ω} and $A \in [\omega]^{\omega}$. We shall call \mathcal{F} linearly independent mod A^* if for every free ultrafilter p with $A \in p$,

$$([f]_{p}: f \in \mathcal{F}) \cup ([\chi_{\vec{\xi}}]_{p}: \xi < \kappa)$$

is a linearly independent family of the \mathbb{Q} -vector space $Ult(\mathbb{Q}, p)$.

Lemma

Every set of sequences that is l.i. mod A^* can be extended to a maximal linearly independent set mod A^* .

Lemma

Let g be an element of G^{ω} and let $\mathcal{E} \subseteq G^{\omega}$ be maximal l.i. mod B^* . Then there exist an infinite subset A of B, a finite subset E of \mathcal{E} , a finite subset D of κ , and sets $\{r_f : f \in E\}$ and $\{s_{\nu} : \nu \in D\}$ of rational numbers such that

$$g|_{A} = \sum_{f \in E} r_{f} \cdot f|_{A} + \sum_{\nu \in D} s_{\nu} \cdot \chi_{\vec{\nu}}|_{A}.$$

Lemma

Let g be an element of G^{ω} and let $\mathcal{E} \subseteq G^{\omega}$ be maximal l.i. mod B^* . Then there exist an infinite subset A of B, a finite subset E of \mathcal{E} , a finite subset D of κ , and sets $\{r_f : f \in E\}$ and $\{s_{\nu} : \nu \in D\}$ of rational numbers such that

$$g|_A = \sum_{f \in E} r_f \cdot f|_A + \sum_{\nu \in D} s_{\nu} \cdot \chi_{\vec{\nu}}|_A.$$

Corollary

If
$$\mathcal{E} \subseteq G^{\omega}$$
 is maximal l.i. mod B^* , then $|\mathcal{E}| = \kappa$.

Matheus Koveroff Bellini (USP)

Arbitrarily Large Countably Compact Free Abelian Groups

Proposition

There exists a family $(\mathcal{E}_T : T \in \mathcal{T})$ such that:

- **①** For every $T \in \mathcal{T}$ the set \mathcal{E}_T is maximal l.i. mod $I(T)^*$, and
- **2** For every $T \in \mathcal{T}$, if $n \leq |T|$ then $\mathcal{E}_{T|n} \subseteq \mathcal{E}_T$.

Proposition

There exists a family $(\mathcal{E}_T : T \in \mathcal{T})$ such that:

- **①** For every $T \in \mathcal{T}$ the set \mathcal{E}_T is maximal l.i. mod $I(T)^*$, and
- **2** For every $T \in \mathcal{T}$, if $n \leq |T|$ then $\mathcal{E}_{T|n} \subseteq \mathcal{E}_T$.

So now we enumerate each \mathcal{E}_T faithfully as $\{f_{\xi}^T : \kappa \leq \xi < \kappa + \kappa\}$.

Definition

For each $T \in \mathcal{T}$ and $n \in \omega$, we denote by $G_{T,n}$ the intersection of $\text{Ult}(\mathbb{Z}, p_{T,n})$ and the free Abelian group generated by $\{\frac{1}{n!}[f_{\xi}^{T}]_{p_{T,n}}: \kappa \leq \xi < \kappa + \kappa\} \cup \{\frac{1}{n!}[\chi_{\xi}]_{p_{T,n}}: \xi < \kappa\}.$

Arbitrarily Large Countably Compact Free Abelian Groups

Definition

For each $T \in \mathcal{T}$ and $n \in \omega$, we denote by $G_{T,n}$ the intersection of $\text{Ult}(\mathbb{Z}, p_{T,n})$ and the free Abelian group generated by $\{\frac{1}{n!}[f_{\xi}^{T}]_{p_{T,n}}: \kappa \leq \xi < \kappa + \kappa\} \cup \{\frac{1}{n!}[\chi_{\xi}]_{p_{T,n}}: \xi < \kappa\}.$

Lemma

The group $G_{T,n}$ has a basis of the form $\{[\chi_{\xi}]_{\rho_{T,n}}: \xi < \kappa\} \cup \{[f]_{\rho_{T,n}}: f \in \mathcal{F}_{T,n}\}$ for some subset $\mathcal{F}_{T,n}$ of G^{ω} .

Lemma

Assume that for every pair (T, n) in $\mathcal{T} \times \omega$ every sequence f in $\mathcal{F}_{T,n}$ has a $p_{T,n}$ -limit in G. Then every finite power of G is countably compact.

Enumerate $G^{\omega} = \{h_{\xi} : \omega \leq \xi < \kappa\}$ so that supp $h_{\xi}(n) \subseteq \xi$ for all $n \in \omega$ and $\omega \leq \xi < \kappa$, with \mathfrak{c} repetitions.

Arbitrarily Large Countably Compact Free Abelian Groups

Enumerate $G^{\omega} = \{h_{\xi} : \omega \leq \xi < \kappa\}$ so that supp $h_{\xi}(n) \subseteq \xi$ for all $n \in \omega$ and $\omega \leq \xi < \kappa$, with \mathfrak{c} repetitions.

Lemma

There exists a family $(J_{T,n} : T \in \mathcal{T}, n \in \omega)$ of pairwise disjoint subsets of κ such that $\{h_{\xi} : \xi \in J_{T,n}\} = \mathcal{F}_{T,n}$.

Enumerate $G^{\omega} = \{h_{\xi} : \omega \leq \xi < \kappa\}$ so that supp $h_{\xi}(n) \subseteq \xi$ for all $n \in \omega$ and $\omega \leq \xi < \kappa$, with \mathfrak{c} repetitions.

Lemma

There exists a family $(J_{T,n} : T \in \mathcal{T}, n \in \omega)$ of pairwise disjoint subsets of κ such that $\{h_{\xi} : \xi \in J_{T,n}\} = \mathcal{F}_{T,n}$.

The following lemma is the main step towards guaranteeing that each $f \in \mathcal{F}_{T,n}$ has a $p_{T,n}$ -limit.

Lemma (Countable Homomorphism)

Assume we have $d \in G \setminus \{0\}$, $r \in G^{\omega}$ injective, and $D \in [\kappa]^{\omega}$ such that

- $u \cup \operatorname{supp} d \cup \bigcup_{n \in \omega} \operatorname{supp} r(n) \subseteq D,$
- **2** $D \cap J_{T,n} \neq \emptyset$ for infinitely many (T, n)'s and,
- **③** supp $h_{\xi}(n) ⊆ D$ for all n ∈ ω and $\xi ∈ D \setminus ω$

Then there exists a homomorphism $\phi : \mathbb{Z}^{(D)} \to \mathbb{T}$ such that:

- $\phi(d) \neq 0$
- 2 $p_{T,n} \lim(\phi \circ h_{\xi}) = \phi(\chi_{\xi})$, whenever $T \in \mathcal{T}$, $n \in \omega$, and $\xi \in D \cap J_{T,n}$
- **3** $\phi \circ r$ does not converge.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma (Countable Homomorphism)

Assume we have $d \in G \setminus \{0\}$, $r \in G^{\omega}$ injective, and $D \in [\kappa]^{\omega}$ such that

- $u \cup \operatorname{supp} d \cup \bigcup_{n \in \omega} \operatorname{supp} r(n) \subseteq D,$
- **2** $D \cap J_{T,n} \neq \emptyset$ for infinitely many (T, n)'s and,
- **③** supp $h_{\xi}(n) ⊆ D$ for all n ∈ ω and $\xi ∈ D \setminus ω$

Then there exists a homomorphism $\phi : \mathbb{Z}^{(D)} \to \mathbb{T}$ such that:

- $\phi(d) \neq 0$
- 2 $p_{T,n} \lim(\phi \circ h_{\xi}) = \phi(\chi_{\xi})$, whenever $T \in \mathcal{T}$, $n \in \omega$, and $\xi \in D \cap J_{T,n}$
- **3** $\phi \circ r$ does not converge.

From this Lemma we obtain, by recursion, the full homomorphism.

Matheus Koveroff Bellini (USP)

Lemma

Assume $d \in G \setminus \{0\}$ and $r \in G^{\omega}$ is injective. Then there exists a homomorphism $\phi : \mathbb{Z}^{(\kappa)} \to \mathbb{T}$ such that

- $\phi(d) \neq 0$
- 2 $p_{T,n} \lim(\phi \circ h_{\xi}) = \phi(\chi_{\xi})$, whenever $T \in \mathcal{T}$, $n \in \omega$ and $\xi \in J_{T,n}$
- 3 $\phi \circ r$ does not converge.

Lemma

Assume $d \in G \setminus \{0\}$ and $r \in G^{\omega}$ is injective. Then there exists a homomorphism $\phi : \mathbb{Z}^{(\kappa)} \to \mathbb{T}$ such that

- $\phi(d) \neq 0$
- 2 $p_{T,n} \lim(\phi \circ h_{\xi}) = \phi(\chi_{\xi})$, whenever $T \in \mathcal{T}$, $n \in \omega$ and $\xi \in J_{T,n}$
- 3 $\phi \circ r$ does not converge.

The main result follows from obtaining such a $\phi_{d,r}$ for each $d \in G \setminus \{0\}$ and $r \in G^{\omega}$ injective, and considering the initial topology generated by these $\phi_{d,r}$.

• There are two very technical lemmas to prove the Countable Homomorphism Lemma

- There are two very technical lemmas to prove the Countable Homomorphism Lemma
- One uses stacks, a technique used in similar results on non-torsion groups

- There are two very technical lemmas to prove the Countable Homomorphism Lemma
- One uses stacks, a technique used in similar results on non-torsion groups
- The other is the following lemma:

Lemma

Let $(\mathcal{F}^k : k \in \omega)$ be a sequence of countable subsets of G^{ω} and let $(p_k : k \in \omega)$ be a sequence of pairwise incomparable selective ultrafilters such that for each $k \in \omega$ $([f]_{p_k} : f \in \mathcal{F}^k) \cup ([\chi_{\xi}]_{p_k} : \xi \in \kappa)$ is linearly independent. Furthermore let for every $f \in \bigcup_k \mathcal{F}^k$ a $\xi_f \in \kappa$ be given. In addition let $d, d' \in G \setminus \{0\}$ with disjoint supports. Finally, let $D \in [\kappa]^{\omega}$ containing $\omega \cup$ supp $d \cup$ supp d' and \bigcup_n supp f(n) for every $f \in \bigcup_k \mathcal{F}^k$. Then there exists a homomorphism $\phi : \mathbb{Z}^{(D)} \to \mathbb{T}$ such that

•
$$\phi(d) \neq 0, \ \phi(d') \neq 0$$
 and

2 $p_k - \lim(\phi \circ f) = \phi(\chi_{\xi_f})$, whenever $k \in \omega$ and $f \in \mathcal{F}^k$.

< ロ > < 同 > < 回 > < 回 >

This last lemma requires the following combinatorial principle:

Lemma

Let $(p_k : k \in \omega)$ be a family of pairwise incomparable selective ultrafilters. For each k let $(a_{k,i} : i \in \omega)$ be a strictly increasing sequence in ω such that $\{a_{k,i} : i \in \omega\} \in p_k$ and $i < a_{k,i}$ for all $i \in \omega$. Then there exists $\{I_k : k \in \omega\}$ such that:

$$(a_{k,i} : i \in I_k) \in p_k, \text{ for each } k \in \omega.$$

()
$$I_j \cap I_j = \emptyset$$
 whenever $i, j \in \omega$ and $i \neq j$, and

(a) $\{[i, a_{k,i}] : i \in I_k \text{ and } k \in \omega\}$ is a pairwise disjoint family.

A. C. Boero, I. Castro-Pereira, and A. H. Tomita, Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter, Acta Math. Hungar. 159(2) (2019), 414–428.

- A. C. Boero and A. H. Tomita, A group topology on the free Abelian group of cardinality c that makes its square countably compact, Fund. Math. **212** (2011), 235–260.
- E. K. van Douwen, The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality, Proc. Amer. Math. Soc. 80 (1980), 678–682.
- L. Fuchs, *Infinite abelian groups*, ISSN, Elsevier Science, 1970.
- P. B. Koszmider, A. H. Tomita, and S. Watson, Forcing countably compact group topologies on a larger free Abelian group, Topology Proc. 25 (2000), 563–574.

R. E. Madariaga-Garcia and A. H. Tomita, Countably compact topological group topologies on free Abelian groups from selective ultrafilters, Topology Appl. 154 (2007), 1470–1480.

- M. G. Tkachenko, Countably compact and pseudocompact topologies on free Abelian groups, Soviet Math. (Izv. VUZ) 34 (1990), 79–86.
- A. H. Tomita, The existence of initially ω₁-compact group topologies on free Abelian groups is independent of ZFC, Comment. Math. Univ. Carolinae **39** (1998), 401–413.

 _____, A group topology on the free abelian group of cardinality c that makes its finite powers countably compact, Topology Appl. 196 (2015), 976–998. Thank you for your attention!

Matheus Koveroff Bellini (USP)

Arbitrarily Large Countably Compact Free Abelian Groups

э