New applications of Ψ -spaces in analysis

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A family A of infinite subsets of N is almost disjoint if

э

Image: A math a math

• A family \mathcal{A} of infinite subsets of \mathbb{N} is almost disjoint if

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

 $\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},$

٠

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- E - N

 A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

● elements of N are isolated,

- E - N

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

● elements of N are isolated,

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of N are isolated,
- neighbourhoods of x_As are

 A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of N are isolated,
- neighbourhoods of x_As are

Image: A matrix

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of $\ensuremath{\mathbb{N}}$ are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

Image: A matrix

● A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of N are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$,

- E - N

 A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of ℕ are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$, so $\{k : k \in A\} \rightarrow x_A$.

(4) The field

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of N are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$, so $\{k : k \in A\} \rightarrow x_A$.

$$C_0(\Psi_{\mathcal{A}}) = \{ f \in C(\Psi_{\mathcal{A}}, \mathbb{R}) : \forall \varepsilon > 0 \ f^{-1}[[-\varepsilon, \varepsilon]] \text{ is compact} \}$$

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of N are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$, so $\{k : k \in A\} \rightarrow x_A$.

$$C_0(\Psi_{\mathcal{A}}) = \{ f \in C(\Psi_{\mathcal{A}}, \mathbb{R}) : \forall \varepsilon > 0 \ f^{-1}[[-\varepsilon, \varepsilon]] \text{ is compact} \}$$

• A family *A* of infinite subsets of ℕ is *almost disjoint* if any two distinct elements of *A* have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- elements of $\ensuremath{\mathbb{N}}$ are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$, so $\{k : k \in A\} \rightarrow x_A$.

$$C_0(\Psi_{\mathcal{A}}) = \{ f \in C(\Psi_{\mathcal{A}}, \mathbb{R}) : \forall \varepsilon > 0 \ f^{-1}[[-\varepsilon, \varepsilon]] \text{ is compact} \}$$

• $A \subseteq^* B$ means that $A \setminus B$ is finite.

 A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- $\bullet\,$ elements of $\mathbb N$ are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$, so $\{k : k \in A\} \rightarrow x_A$.

$$C_0(\Psi_{\mathcal{A}}) = \{ f \in C(\Psi_{\mathcal{A}}, \mathbb{R}) : \forall \varepsilon > 0 \ f^{-1}[[-\varepsilon, \varepsilon]] \text{ is compact} \}$$

• $A \subseteq^* B$ means that $A \setminus B$ is finite.

 A family A of infinite subsets of N is almost disjoint if any two distinct elements of A have finite intersection.

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ x_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \},\$$

- $\bullet\,$ elements of $\mathbb N$ are isolated,
- neighbourhoods of x_As are

$$V_A(n) = (A \setminus n) \cup \{x_A\}$$

for $n \in \mathbb{N}$, so $\{k : k \in A\} \rightarrow x_A$.

$$C_0(\Psi_{\mathcal{A}}) = \{ f \in C(\Psi_{\mathcal{A}}, \mathbb{R}) : \forall \varepsilon > 0 \ f^{-1}[[-\varepsilon, \varepsilon]] \text{ is compact} \}$$

• $A \subseteq^* B$ means that $A \setminus B$ is finite.

-

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $A \subseteq \mathbb{N}$ if :

-

イロト イヨト イヨト --

• Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :

э.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $A \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $A \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $A \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq * \mathbb{N} \setminus A$.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- $A \subseteq \mathbb{N}$ is called a *partitioner* of \mathcal{A} if

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- $A \subseteq \mathbb{N}$ is called a *partitioner* of \mathcal{A} if

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ ℝ \ Q

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ ℝ \Q

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.

• A is called Q-family

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called *Q-family*
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called *Q-family*
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.

(日)

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called **Q-family**
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.

(日)

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $A \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called **Q-family**
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.

(日)

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called **Q-family**
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.
- \mathcal{A} is *Mrówka's family* if $\Psi^* = \beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}$ consist just of one point.

(ロ)

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called *Q-family*
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.
- \mathcal{A} is *Mrówka's family* if $\Psi^* = \beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}$ consist just of one point.

(ロ)

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called **Q-family**
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.
- \mathcal{A} is *Mrówka's family* if $\Psi^* = \beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}$ consist just of one point.
- A is *Lusin's family* if no two uncountable subfamilies of A can be separated.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called **Q-family**
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.
- \mathcal{A} is *Mrówka's family* if $\Psi^* = \beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}$ consist just of one point.
- A is *Lusin's family* if no two uncountable subfamilies of A can be separated.

- Two subfamilies $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}$ are *separated* by $\mathcal{A} \subseteq \mathbb{N}$ if :
 - If $B \in \mathcal{B}$ then $B \subseteq^* A$.
 - If $C \in C$ then $C \subseteq^* \mathbb{N} \setminus A$.
- A ⊆ ℕ is called a *partitioner* of A if it separates some subfamily B of A from its complement A \ B.
- \mathcal{A} is called \mathbb{R} -embeddable
 - iff there is a function *f* : N → Q such that for each *A* ∈ A the set *f*[A] is the set of all terms of a sequence convergent to *r*_A ∈ R \ Q and *r*_A ≠ *r*_B if *A*, *B* ∈ A are distinct.
 - iff there is a continuous $F : \Psi_A \to \mathbb{R}$ such that $F | \{x_A : A \in A\}$ is injective.
- A is called **Q-family**
 - iff every subfamily $\mathcal{B} \subseteq \mathcal{A}$ can be separated from its complement $\mathcal{A} \setminus \mathcal{B}$.
 - iff $\Psi_{\mathcal{A}}$ is normal.
- \mathcal{A} is *Mrówka's family* if $\Psi^* = \beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}$ consist just of one point.
- A is *Lusin's family* if no two uncountable subfamilies of A can be separated.
- M. Hrušák, Almost disjoint families and topology. Recent progress in general topology. III, 601-638, 2014.
- F. Hernández-Hernández, M. Hrušák, Topology of Mrówka-Isbell spaces. Pseudocompact topological spaces, 253–289, Dev. Math., 55, 2018.

Outline of the talk

æ

・ロト ・回 ト ・ヨト ・ヨト

We consider an equivalent renorming of C₀(Ψ_A) and obtain new results on the geometry of unit spheres of Banach spaces.

- We consider an equivalent renorming of C₀(Ψ_A) and obtain new results on the geometry of unit spheres of Banach spaces.
- We consider N × N matrices acting on C₀(Ψ_A) which generalize partitioners of almost disjont families or clopen subsets of Ψ_A and obtain new examples in Banach algebras of operators.

・ロト ・同ト ・ヨト ・ヨト

- We consider an equivalent renorming of C₀(Ψ_A) and obtain new results on the geometry of unit spheres of Banach spaces.
- We consider N × N matrices acting on C₀(Ψ_A) which generalize partitioners of almost disjont families or clopen subsets of Ψ_A and obtain new examples in Banach algebras of operators.

・ロト ・同ト ・ヨト ・ヨト

- We consider an equivalent renorming of $C_0(\Psi_A)$ and obtain new results on the geometry of unit spheres of Banach spaces.
- We consider N × N matrices acting on C₀(Ψ_A) which generalize partitioners of almost disjont families or clopen subsets of Ψ_A and obtain new examples in Banach algebras of operators.
- We consider continuous functions from Ψ_A into 2 × 2 matrices with pointwise noncommutative multiplication and obtain new results in the theory of C*-algebras

- We consider an equivalent renorming of C₀(Ψ_A) and obtain new results on the geometry of unit spheres of Banach spaces.
- We consider N × N matrices acting on C₀(Ψ_A) which generalize partitioners of almost disjont families or clopen subsets of Ψ_A and obtain new examples in Banach algebras of operators.
- We consider continuous functions from Ψ_A into 2 × 2 matrices with pointwise noncommutative multiplication and obtain new results in the theory of C*-algebras

- We consider an equivalent renorming of C₀(Ψ_A) and obtain new results on the geometry of unit spheres of Banach spaces.
- We consider N × N matrices acting on C₀(Ψ_A) which generalize partitioners of almost disjont families or clopen subsets of Ψ_A and obtain new examples in Banach algebras of operators.
- We consider continuous functions from Ψ_A into 2 × 2 matrices with pointwise noncommutative multiplication and obtain new results in the theory of C*-algebras

- We consider an equivalent renorming of $C_0(\Psi_A)$ and obtain new results on the geometry of unit spheres of Banach spaces.
- We consider N × N matrices acting on C₀(Ψ_A) which generalize partitioners of almost disjont families or clopen subsets of Ψ_A and obtain new examples in Banach algebras of operators.
- We consider continuous functions from Ψ_A into 2 × 2 matrices with pointwise noncommutative multiplication and obtain new results in the theory of C*-algebras

In all theses cases we need extra combinatorial properties of the almost disjoint families to obtain interesting examples.

æ

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

• (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,

イロン イボン イヨン 一日

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

• (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,

• *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,

・ロン ・回 と ・ ヨ と ・ ヨ

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,

・ロン ・回 と ・ ヨ と ・ ヨ

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

(D) (A) (A) (A) (A) (A)

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

• (Riesz, 1916) For every $\varepsilon > 0$ there is $(1 - \varepsilon)$ -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

- (Riesz, 1916) For every $\varepsilon > 0$ there is (1ε) -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.
- (Kottman, 1975) There is an infinite (1+)-separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$.

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \le r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

- (Riesz, 1916) For every $\varepsilon > 0$ there is (1ε) -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.
- (Kottman, 1975) There is an infinite (1+)-separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$.
- (Elton, Odell, 1981) There is an infinite $(1 + \varepsilon)$ -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ for some $\varepsilon > 0$.

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \leq r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

- (Riesz, 1916) For every $\varepsilon > 0$ there is (1ε) -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.
- (Kottman, 1975) There is an infinite (1+)-separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$.
- (Elton, Odell, 1981) There is an infinite $(1 + \varepsilon)$ -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ for some $\varepsilon > 0$.
- $c_0(\omega_1)$ does not admit an uncountable $(1 + \varepsilon)$ -separated set.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \leq r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

- (Riesz, 1916) For every $\varepsilon > 0$ there is (1ε) -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.
- (Kottman, 1975) There is an infinite (1+)-separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$.
- (Elton, Odell, 1981) There is an infinite $(1 + \varepsilon)$ -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ for some $\varepsilon > 0$.
- $c_0(\omega_1)$ does not admit an uncountable $(1 + \varepsilon)$ -separated set.
- (P. K., 2018) It is independent whether a nonseparable Banach space of the form X = C(K) admits an uncountable equilateral set.

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \leq r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

- (Riesz, 1916) For every $\varepsilon > 0$ there is (1ε) -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.
- (Kottman, 1975) There is an infinite (1+)-separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$.
- (Elton, Odell, 1981) There is an infinite $(1 + \varepsilon)$ -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ for some $\varepsilon > 0$.
- $c_0(\omega_1)$ does not admit an uncountable $(1 + \varepsilon)$ -separated set.
- (P. K., 2018) It is independent whether a nonseparable Banach space of the form X = C(K) admits an uncountable equilateral set.

If (\mathcal{X}, d) is a metric space, $\mathcal{Y} \subseteq \mathcal{X}$ and r > 0, we say that \mathcal{Y} is

- (*r*+)-separated if d(y, y') > r, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-separated if $d(y, y') \ge r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-concentrated if $d(y, y') \leq r$, for any two distinct $y, y' \in \mathcal{Y}$,
- *r*-equilateral if d(y, y') = r for any two distinct $y, y' \in \mathcal{Y}$,
- equilateral if it is *r*-equilateral for some r > 0.

Let $(\mathcal{X}, \| \|)$ be an infinite dimensional Banach space and $S_{\mathcal{X}}$ its unit sphere.

- (Riesz, 1916) For every $\varepsilon > 0$ there is (1ε) -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ with $|\mathcal{Y}| = dens(\mathcal{X})$.
- (Kottman, 1975) There is an infinite (1+)-separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$.
- (Elton, Odell, 1981) There is an infinite $(1 + \varepsilon)$ -separated $\mathcal{Y} \subseteq S_{\mathcal{X}}$ for some $\varepsilon > 0$.
- $c_0(\omega_1)$ does not admit an uncountable $(1 + \varepsilon)$ -separated set.
- (P. K., 2018) It is independent whether a nonseparable Banach space of the form X = C(K) admits an uncountable equilateral set.

æ

・ロト ・回ト ・ヨト ・ヨト

Theorem (P.K. 202?)

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let \mathcal{A} be an \mathbb{R} -embeddable almost disjoint family of subsets of \mathbb{N} .

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

$$|||f||| = \sup\{|f(x)| : x \in \Psi_A\} + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

$$|||f||| = \sup\{|f(x)| : x \in \Psi_A\} + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (P.K. 202?)

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

$$|||f||| = \sup\{|f(x)| : x \in \Psi_A\} + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (P.K. 202?)

Let A is an \mathbb{R} -embeddable almost disjoint family of subsets of \mathbb{N} of cardinality continuum. Then Ψ_A is of weight continuum and such that

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

$$|||f||| = \sup\{|f(x)| : x \in \Psi_A\} + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (P.K. 202?)

Let \mathcal{A} is an \mathbb{R} -embeddable almost disjoint family of subsets of \mathbb{N} of cardinality continuum. Then $\Psi_{\mathcal{A}}$ is of weight continuum and such that for every $\varepsilon > 0$ and every subset \mathcal{Y} of the unit sphere of $C_0(\Psi_{\mathcal{A}})$ of a regular uncountable cardinality

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

$$|||f||| = \sup\{|f(x)| : x \in \Psi_A\} + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (P.K. 202?)

Let \mathcal{A} is an \mathbb{R} -embeddable almost disjoint family of subsets of \mathbb{N} of cardinality continuum. Then $\Psi_{\mathcal{A}}$ is of weight continuum and such that for every $\varepsilon > 0$ and every subset \mathcal{Y} of the unit sphere of $C_0(\Psi_{\mathcal{A}})$ of a regular uncountable cardinality there is a subset $\mathcal{Z} \subseteq \mathcal{Y}$ of the same cardinality which is $(1 + \varepsilon)$ -concentrated.

Theorem (P.K. 202?)

There is a (strictly convex) Banach space of density continuum where

- every uncountable subset of the unit sphere of regular cardinality κ includes a subset of the same cardinality which is (1 − ε)-concentrated for some ε > 0.
- there is no uncountable equilateral set.

Proof.

Let ${\cal A}$ be an $\mathbb{R}-embeddable$ almost disjoint family of subsets of $\mathbb{N}.$ Consider ${\cal X}=C_0(\Psi_{\cal A})$ with

$$|||f||| = \sup\{|f(x)| : x \in \Psi_A\} + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (P.K. 202?)

Let \mathcal{A} is an \mathbb{R} -embeddable almost disjoint family of subsets of \mathbb{N} of cardinality continuum. Then $\Psi_{\mathcal{A}}$ is of weight continuum and such that for every $\varepsilon > 0$ and every subset \mathcal{Y} of the unit sphere of $C_0(\Psi_{\mathcal{A}})$ of a regular uncountable cardinality there is a subset $\mathcal{Z} \subseteq \mathcal{Y}$ of the same cardinality which is $(1 + \varepsilon)$ -concentrated.

Question:

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

• (Terenzi, 1989) Every Banach space of density $> 2^{2^{\omega}}$ admits an uncountable equilateral set.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density > 2^{2^ω} admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2²}} admits an uncountable (1+)-separated set.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density > 2^{2^ω} admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2²}}} admits an uncountable (1+)-separated set.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density > 2^{2^ω} admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2^ω}}} admits an uncountable (1+)-separated set.

Question:

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density > 2^{2^ω} admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2²⁻¹}} admits an uncountable (1+)-separated set.

Question: Which metric spaces can be isometrically embedded into any infinite dimensional Banach space (of a given class)?

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density > 2^{2^ω} admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2²}}} admits an uncountable (1+)-separated set.

Question: Which metric spaces can be isometrically embedded into any infinite dimensional Banach space (of a given class)?

• (Shkarin, 2004) Every infinite dimensional Banach space contains any finite ultrametric space.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density > 2^{2^ω} admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2²}}} admits an uncountable (1+)-separated set.

Question: Which metric spaces can be isometrically embedded into any infinite dimensional Banach space (of a given class)?

• (Shkarin, 2004) Every infinite dimensional Banach space contains any finite ultrametric space.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density $> 2^{2^{\omega}}$ admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2²}}} admits an uncountable (1+)-separated set.

Question: Which metric spaces can be isometrically embedded into any infinite dimensional Banach space (of a given class)?

- (Shkarin, 2004) Every infinite dimensional Banach space contains any finite ultrametric space.
- (Mercourakis, Vassiliadis 2014) If \mathcal{X} admits an isomorphic copy of c_0 , then \mathcal{X} contains an infinite equilateral set.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density $> 2^{2^{\omega}}$ admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2²}}} admits an uncountable (1+)-separated set.

Question: Which metric spaces can be isometrically embedded into any infinite dimensional Banach space (of a given class)?

- (Shkarin, 2004) Every infinite dimensional Banach space contains any finite ultrametric space.
- (Mercourakis, Vassiliadis 2014) If \mathcal{X} admits an isomorphic copy of c_0 , then \mathcal{X} contains an infinite equilateral set.

Question: Does every Banach space of density bigger than 2^{ω} admit an uncountable set which is (1+)-separated/equilateral?

- (Terenzi, 1989) Every Banach space of density $> 2^{2^{\omega}}$ admits an uncountable equilateral set.
- (Hájek, Kania, Russo, 2020) Every Banach space of density > 2^{2^{2^{2²}}} admits an uncountable (1+)-separated set.

Question: Which metric spaces can be isometrically embedded into any infinite dimensional Banach space (of a given class)?

- (Shkarin, 2004) Every infinite dimensional Banach space contains any finite ultrametric space.
- (Mercourakis, Vassiliadis 2014) If \mathcal{X} admits an isomorphic copy of c_0 , then \mathcal{X} contains an infinite equilateral set.

æ

・ロン ・回 と ・ ヨン・

• We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X}

< E

• We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X}

Image: A matrix

• We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators $\mathcal{WC}(\mathcal{X})$,

- 4 The set

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators $\mathcal{WC}(\mathcal{X})$,
 - separable range operators $\mathcal{S}(\mathcal{X})$.

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators $\mathcal{WC}(\mathcal{X})$,
 - separable range operators $\mathcal{S}(\mathcal{X})$.

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.

• If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.

・ロト ・同ト ・ヨト ・ヨト
- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_A)) = \{M_g : g \in C_b(\Psi_A)\}$ the algebra of multipliers of $C_0(\Psi_A)$.

• □ ▶ • • □ ▶ • • □ ▶ • • □ ▶ •

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_A)) = \{M_g : g \in C_b(\Psi_A)\}$ the algebra of multipliers of $C_0(\Psi_A)$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so

4 日 2 4 同 2 4 三 2 4 三 2 4

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_A)) = \{M_g : g \in C_b(\Psi_A)\}$ the algebra of multipliers of $C_0(\Psi_A)$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so

・ロト ・同ト ・ヨト ・ヨト

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If A is maximal, then the multiplier M_g has separable range iff g ∈ C₀(Ψ_A), so M(C₀(Ψ_A))/S(C₀(Ψ_A)) ≡

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If A is maximal, then the multiplier M_g has separable range iff g ∈ C₀(Ψ_A), so M(C₀(Ψ_A))/S(C₀(Ψ_A)) ≡C_b(Ψ_A)/C₀(Ψ_A) ≡

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If A is maximal, then the multiplier M_g has separable range iff g ∈ C₀(Ψ_A), so M(C₀(Ψ_A))/S(C₀(Ψ_A)) ≡C_b(Ψ_A)/C₀(Ψ_A) ≡C(βΨ_A \ Ψ_A) ≡

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.

(D) (A) (A) (A) (A) (A)

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$
- Let Ψ^* be the class of all Čech-Stone reminders of Ψ_A s for maximal As
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.
 - (Baumgartner, Weese, 1982) (CH) $\Psi^* = \{ all \text{ compact spaces of weight } 2^{\omega} \}.$

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If *A* is maximal, then the multiplier *M_g* has separable range iff *g* ∈ *C*₀(Ψ_A), so *M*(ℂ₀(Ψ_A))/*S*(*C*₀(Ψ_A)) ≡ *C_b*(Ψ_A)/*C*₀(Ψ_A) ≡ *C*(βΨ_A \ Ψ_A) ≡ *C*(Ψ^{*}_A)
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.
 - (Baumgartner, Weese, 1982) (CH) Ψ* = {all compact spaces of weight 2^ω}.

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators $\mathcal{K}(\mathcal{X})$,
 - weakly compact operators WC(X),
 - separable range operators S(X).
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If \mathcal{A} is maximal, then the multiplier M_g has separable range iff $g \in C_0(\Psi_{\mathcal{A}})$, so $\mathcal{M}(\mathbb{C}_0(\Psi_{\mathcal{A}}))/\mathcal{S}(C_0(\Psi_{\mathcal{A}})) \equiv C_b(\Psi_{\mathcal{A}})/C_0(\Psi_{\mathcal{A}}) \equiv C(\beta \Psi_{\mathcal{A}} \setminus \Psi_{\mathcal{A}}) \equiv C(\Psi_{\mathcal{A}}^*)$
- Let Ψ^* be the class of all Čech-Stone reminders of Ψ_A s for maximal As
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.
 - (Baumgartner, Weese, 1982) (CH) Ψ* = {all compact spaces of weight 2^ω}.
 - (Dow, 1990) Ψ^{*} ⊆ {all compact spaces of cardinality ≤ 2^ω} ∌ {0,1}^ℝ.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If *A* is maximal, then the multiplier *M_g* has separable range iff *g* ∈ *C*₀(Ψ_A), so *M*(ℂ₀(Ψ_A))/*S*(*C*₀(Ψ_A)) ≡ *C_b*(Ψ_A)/*C*₀(Ψ_A) ≡ *C*(βΨ_A \ Ψ_A) ≡ *C*(Ψ^{*}_A)
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.
 - (Baumgartner, Weese, 1982) (CH) Ψ* = {all compact spaces of weight 2^ω}.
 - (Dow, 1990) $\Psi^* \subseteq \{ all \text{ compact spaces of cardinality} \le 2^{\omega} \} \not\supseteq \{0, 1\}^{\mathbb{R}}.$
- What Banach algebras could be $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A))$?

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If *A* is maximal, then the multiplier *M_g* has separable range iff *g* ∈ *C*₀(Ψ_A), so *M*(ℂ₀(Ψ_A))/*S*(*C*₀(Ψ_A)) ≡ *C_b*(Ψ_A)/*C*₀(Ψ_A) ≡ *C*(βΨ_A \ Ψ_A) ≡ *C*(Ψ^{*}_A)
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.
 - (Baumgartner, Weese, 1982) (CH) Ψ* = {all compact spaces of weight 2^ω}.
 - (Dow, 1990) $\Psi^* \subseteq \{ all \text{ compact spaces of cardinality} \le 2^{\omega} \} \not\supseteq \{0, 1\}^{\mathbb{R}}.$
- What Banach algebras could be $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A))$?

・ロン ・回 と ・ ヨ と ・ ヨ

- We consider the Banach algebra $\mathcal{B}(\mathcal{X})$ of all bounded linear operators on a Banach space \mathcal{X} and the quotients $\mathcal{B}(\mathcal{X})/\mathcal{I}$ for classical ideals \mathcal{I} like
 - compact operators K(X),
 - weakly compact operators WC(X),
 - separable range operators $\mathcal{S}(\mathcal{X})$.
- If $g \in C_b(\Psi_A)$, then $M_g \in \mathcal{B}(C_0(\Psi_A))$, where $M_g(f) = gf$ for $f \in C_0(\Psi_A)$.
- $\mathcal{M}(C_0(\Psi_{\mathcal{A}})) = \{M_g : g \in C_b(\Psi_{\mathcal{A}})\}\)$ the algebra of multipliers of $C_0(\Psi_{\mathcal{A}})$.
- If *A* is maximal, then the multiplier *M_g* has separable range iff *g* ∈ *C*₀(Ψ_A), so *M*(ℂ₀(Ψ_A))/*S*(*C*₀(Ψ_A)) ≡ *C_b*(Ψ_A)/*C*₀(Ψ_A) ≡ *C*(βΨ_A \ Ψ_A) ≡ *C*(Ψ^{*}_A)
- Let Ψ^* be the class of all Čech-Stone reminders of $\Psi_{\mathcal{A}}s$ for maximal $\mathcal{A}s$
 - (Terasawa, 1980) {all compact metrizable spaces} $\subseteq \Psi^*$.
 - (Baumgartner, Weese, 1982) (CH) Ψ* = {all compact spaces of weight 2^ω}.
 - (Dow, 1990) $\Psi^* \subseteq \{ all \text{ compact spaces of cardinality} \le 2^{\omega} \} \not\supseteq \{0, 1\}^{\mathbb{R}}.$
- What Banach algebras could be $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A))$?

・ロン ・回 と ・ ヨ と ・ ヨ

The second application

Piotr Koszmider

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The second application

Theorem (P.K., N. Laustsen, 2021)

The second application

Theorem (P.K., N. Laustsen, 2021)

There is an uncountable, almost disjoint family A such that:

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_{\mathcal{A}}) \to C_0(\Psi_{\mathcal{A}})$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 .

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_{\mathcal{A}}) \to C_0(\Psi_{\mathcal{A}})$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 .

Image: A matrix and a matrix

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T : C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S: C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

Image: A matrix and a matrix

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T : C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

• Whenever the Banach space $C_0(K_A)$ is decomposed into a direct sum $C_0(K_A) = \mathcal{X} \oplus \mathcal{Y}$ of two closed, infinite-dimensional subspaces \mathcal{X} and \mathcal{Y} , then

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T : C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

• Whenever the Banach space $C_0(K_A)$ is decomposed into a direct sum $C_0(K_A) = \mathcal{X} \oplus \mathcal{Y}$ of two closed, infinite-dimensional subspaces \mathcal{X} and \mathcal{Y} , then

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀,

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T : C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T : C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

• What could be $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A))$ other than \mathbb{R}, \mathbb{C} ?

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

What could be B(C₀(Ψ_A))/S(C₀(Ψ_A)) other than ℝ, C?

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

What could be B(C₀(Ψ_A))/S(C₀(Ψ_A)) other than R, C? C(2^N)?

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T : C_0(\Psi_A) \to C_0(\Psi_A)$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

What could be B(C₀(Ψ_A))/S(C₀(Ψ_A)) other than R, C? C(2^N)? C(2^N, M₂)?

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_{\mathcal{A}}) \to C_0(\Psi_{\mathcal{A}})$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

- What could be B(C₀(Ψ_A))/S(C₀(Ψ_A)) other than R, C? C(2^N)? C(2^N, M₂)?
- Can one construct in ZFC a maximal A as above?

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_{\mathcal{A}}) \to C_0(\Psi_{\mathcal{A}})$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

- What could be B(C₀(Ψ_A))/S(C₀(Ψ_A)) other than R, C? C(2^N)? C(2^N, M₂)?
- Can one construct in ZFC a maximal A as above?

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

There is an uncountable, almost disjoint family A such that:

• every bounded linear operator $T: C_0(\Psi_{\mathcal{A}}) \to C_0(\Psi_{\mathcal{A}})$ has the form

 $T = \lambda Id + S$

for some scalar λ and some operator $S : C_0(K_A) \to C_0(K_A)$ that factors through c_0 . In particular

 $\mathcal{B}(\mathbb{C}_0(\Psi_A))/\mathcal{S}(\mathbb{C}_0(\Psi_A)) = \mathbb{R}, \mathbb{C}.$

 Whenever the Banach space C₀(K_A) is decomposed into a direct sum C₀(K_A) = X ⊕ Y of two closed, infinite-dimensional subspaces X and Y, then either X is isomorphic to C₀(K_A) and Y is isomorphic to c₀, or vice versa.

Questions:

- What could be B(C₀(Ψ_A))/S(C₀(Ψ_A)) other than R, C? C(2^N)? C(2^N, M₂)?
- Can one construct in ZFC a maximal A as above?

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Akemann-Donner C*-algebras

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・
• M_2 - 2 × 2 matrices,

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• M_2 - 2 \times 2 matrices,

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

3

B 1 4 B 1

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

Image: Image:

э

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

Image: Image:

э

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{\rho}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For $A \subseteq \mathbb{N}$ define $P_{A, \theta} \in C_0(\Psi_{\mathcal{A}}, M_2)$ by

B N 4 B N

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{\rho}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For $A \subseteq \mathbb{N}$ define $P_{A, heta} \in C_0(\Psi_\mathcal{A}, M_2)$ by

B N 4 B N

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For $A \subseteq \mathbb{N}$ define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_\theta & x \in A \cup \{x_A\} \end{cases}$

(日)

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_\theta & x \in A \cup \{x_A\} \end{cases}$

• Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,

B N 4 B N

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
$$P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\}\\ p_\theta & x \in A \cup \{x_A\} \end{cases}$$

• Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,

ヨト・モト

Image: Image:

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_\theta & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi : \mathcal{A} \to [0, 2\pi)$ be injective

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_\theta & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi : \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$:

B N 4 B N

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_\theta & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi : \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$:

B N 4 B N

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_{\theta} & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi : \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$: The C*-algebra generated in $C_0(\Psi_{\mathcal{A}}, M_2)$ by

(日)

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_{\theta} & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi: \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$: The C*-algebra generated in $C_0(\Psi_{\mathcal{A}}, M_2)$ by

 $c_0(M_2) = \{ f : C_0(\Psi_A, M_2) : f | \{ x_A : A \in A \} \equiv 0 \}$ and

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_{\theta} & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi: \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$: The C*-algebra generated in $C_0(\Psi_{\mathcal{A}}, M_2)$ by

 $c_0(M_2) = \{ f : C_0(\Psi_{\mathcal{A}}, M_2) : f | \{ x_A : A \in \mathcal{A} \} \equiv 0 \} \text{ and } \{ P_{A,\phi(A)} : A \in \mathcal{A} \}.$

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_{\theta} & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi: \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$: The C*-algebra generated in $C_0(\Psi_{\mathcal{A}}, M_2)$ by

 $c_0(M_2) = \{ f : C_0(\Psi_{\mathcal{A}}, M_2) : f | \{ x_A : A \in \mathcal{A} \} \equiv 0 \} \text{ and } \{ P_{A,\phi(A)} : A \in \mathcal{A} \}.$

- M_2 2 \times 2 matrices,
- for $\theta \in [0, 2\pi)$ define a 2 × 2 complex matrix of a rank one projection by

$$\boldsymbol{p}_{\theta} = \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}.$$

• For
$$A \subseteq \mathbb{N}$$
 define $P_{A,\theta} \in C_0(\Psi_A, M_2)$ by
 $P_{A,\theta}(x) = \begin{cases} 0 & x \notin A \cup \{x_A\} \\ p_{\theta} & x \in A \cup \{x_A\} \end{cases}$

- Let $\mathcal{A} \subseteq \wp(\mathbb{N})$ be an almost disjoint family,
- Let $\phi: \mathcal{A} \to [0, 2\pi)$ be injective
- Akemann-Doner algebra $AD(\mathcal{A}, \phi)$: The C*-algebra generated in $C_0(\Psi_{\mathcal{A}}, M_2)$ by

 $c_0(M_2) = \{ f : C_0(\Psi_{\mathcal{A}}, M_2) : f | \{ x_A : A \in \mathcal{A} \} \equiv 0 \} \text{ and } \{ P_{A,\phi(A)} : A \in \mathcal{A} \}.$

3

• (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra

Image: A matrix

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?

ヨト・モト

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups).

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups).

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups). Examples can be arbitrarily big but far from AF.

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups). Examples can be arbitrarily big but far from AF.
- (T. Bice, P.K.; 2017) No in ZFC. Examples of density ω₁ can be AF: AD(A, φ) for A a Luzin family.

(D) (A) (A) (A) (A) (A)

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups). Examples can be arbitrarily big but far from AF.
- (T. Bice, P.K.; 2017) No in ZFC. Examples of density ω₁ can be AF: AD(A, φ) for A a Luzin family.

(D) (A) (A) (A) (A) (A)

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups). Examples can be arbitrarily big but far from AF.
- (T. Bice, P.K.; 2017) No in ZFC. Examples of density ω₁ can be AF: AD(A, φ) for A a Luzin family.

Questions:

• Are there in ZFC AF of density c with no commutative nonseparable algebras?

(日)

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups). Examples can be arbitrarily big but far from AF.
- (T. Bice, P.K.; 2017) No in ZFC. Examples of density ω₁ can be AF: AD(A, φ) for A a Luzin family.

Questions:

- Are there in ZFC AF of density c with no commutative nonseparable algebras?
- Is there a bound for densities of AF algebras with no commutative nonseparable algebras?

(日) (空) (日) (日) (日)

- (T. Ogasawara; 1954) Every infinite dimensional C*-algebra has an infinite dimensional commutative C*-subalgebra
- (J. Dixmier; 1970) Does every nonseparable C*-algebra has a nonseparable commutative C*-subalgebra?
- (C. Akemann, J. Donner; 1979): CH implies: No. Examples are AF (approximately finite dimensional) of density c = ω₁.
- (S. Popa, 1983) No in ZFC (group C*-algebras of uncountable free groups). Examples can be arbitrarily big but far from AF.
- (T. Bice, P.K.; 2017) No in ZFC. Examples of density ω₁ can be AF: AD(A, φ) for A a Luzin family.

Questions:

- Are there in ZFC AF of density c with no commutative nonseparable algebras?
- Is there a bound for densities of AF algebras with no commutative nonseparable algebras?

(日) (空) (日) (日) (日)

The third application

Piotr Koszmider

New applications of Ψ -spaces in analysis

Toposym, Prague, 26-07-2022 12/14

æ

ヘロン 人間 とくほど 不良と

Piotr Koszmider

New applications of Ψ -spaces in analysis

ঈ ▶ ৰ ≣ ▶ ৰ ≣ ▶ া≣ প ৭. Toposym, Prague, 26-07-2022 12/14

 $\langle \Box \rangle \langle \Box \rangle$

• (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.

Image: Image:

 (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.

Image: Image:

- (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.
- (Cohen model) There is an Akemann-Doner algebra of density c with no nonseparable commutative C*-subalgebra.

- (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.
- (Cohen model) There is an Akemann-Doner algebra of density c with no nonseparable commutative C*-subalgebra.
Theorem (O. Guzmán, M. Hrušák, P.K., 2021)

- (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.
- (Cohen model) There is an Akemann-Doner algebra of density c with no nonseparable commutative C*-subalgebra.
- (ZFC) There is an Akemann-Doner algebra of density c with no density c commutative C*-subalgebra.

Theorem (O. Guzmán, M. Hrušák, P.K., 2021)

- (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.
- (Cohen model) There is an Akemann-Doner algebra of density c with no nonseparable commutative C*-subalgebra.
- (ZFC) There is an Akemann-Doner algebra of density c with no density c commutative C*-subalgebra.

Theorem (O. Guzmán, M. Hrušák, P.K., 2021)

- (Sacks model) Every Akemann-Doner algebra of density c contains a nonseparable commutative C*-subalgebra.
- (Cohen model) There is an Akemann-Doner algebra of density c with no nonseparable commutative C*-subalgebra.
- (ZFC) There is an Akemann-Doner algebra of density c with no density c commutative C*-subalgebra.

3

B 1 4 B 1

Definition

An almost disjoint family A has the κ -controlled \mathbb{R} -embedding property if

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function)

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that

Definition

Definition

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

Sacks model

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

Sacks model

Definition

- Sacks model
 - Every almost disjoint family of size \mathfrak{c} has the ω_1 -controlled \mathbb{R} -embedding property.

Definition

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.

Definition

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size c contains an R-embeddable subfamily of size c.

Definition

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size c contains an R-embeddable subfamily of size c.

Definition

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size c contains an R-embeddable subfamily of size c.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size $\mathfrak c$ contains an $\mathbb R\text{-embeddable}$ subfamily of size $\mathfrak c.$
- Cohen model

ロト イポト イラト イラト

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size $\mathfrak c$ contains an $\mathbb R\text{-embeddable}$ subfamily of size $\mathfrak c.$
- Cohen model

ロト イポト イラト イラト

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size \mathfrak{c} has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

Cohen model

• No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

• No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.

ロト イポト イラト イラト

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size \mathfrak{c} has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size $\mathfrak c$ has $\mathfrak c\text{-controlled}\ \mathbb R\text{-embedding}$ property.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size c has c-controlled ℝ-embedding property.

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size $\mathfrak c$ has $\mathfrak c\text{-controlled}\ \mathbb R\text{-embedding}$ property.
- Question

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

• Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size $\mathfrak c$ has $\mathfrak c\text{-controlled}\ \mathbb R\text{-embedding}$ property.
- Question

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size \mathfrak{c} has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size $\mathfrak c$ has $\mathfrak c\text{-controlled}\ \mathbb R\text{-embedding}$ property.
- Question
 - Is it consistent that every almost disjoint family of size c contains an uncountable *Q*-family?

Piotr Koszmider

New applications of Ψ -spaces in analysis

Toposym, Prague, 26-07-2022 13/14

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size $\mathfrak c$ has $\mathfrak c\text{-controlled}\ \mathbb R\text{-embedding}$ property.
- Question
 - Is it consistent that every almost disjoint family of size c contains an uncountable Q-family?

Definition

An almost disjoint family \mathcal{A} has the κ -controlled \mathbb{R} -embedding property if for every function $f : \{x_A : A \in \mathcal{A}\} \to \mathbb{R}$ (control function) there is a subfamily $\mathcal{B} \subseteq \mathcal{A}$ of cardinality κ such that $f | \{x_A : A \in \mathcal{B}\}$ extends to a continuous $F : \Psi_{\mathcal{B}} \to \mathbb{R}$.

- Sacks model
 - Every almost disjoint family of size c has the ω_1 -controlled \mathbb{R} -embedding property.
 - Every almost disjoint family of size \mathfrak{c} contains an \mathbb{R} -embeddable subfamily of size \mathfrak{c} .

Cohen model

- No uncountable almost disjoint family has ω_1 -controlled \mathbb{R} -embedding property.
- There is an almost disjoint family of size $\mathfrak c$ which contains no uncountable $\mathbb R\text{-embeddable}$ subfamily.
- ZFC
 - No almost disjoint family of size $\mathfrak c$ has $\mathfrak c\text{-controlled}\ \mathbb R\text{-embedding}$ property.
- Question
 - Is it consistent that every almost disjoint family of size c contains an uncountable Q-family?

Main references

< □ > < □ > < □ > < □ > < □ > = Ξ

• P. Koszmider, Banach spaces in which large subsets of spheres concentrate, arXiv:2104.05335

-

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• P. Koszmider, *Banach spaces in which large subsets of spheres concentrate*, arXiv:2104.05335

• P. Koszmider and N. J. Laustsen, A Banach space induced by an almost disjoint family, admitting only few operators and decompositions, Adv. Math., 381 (2021), paper no. 107613, 39 pages.

글 > - - - - >

• P. Koszmider, *Banach spaces in which large subsets of spheres concentrate*, arXiv:2104.05335

• P. Koszmider and N. J. Laustsen, *A Banach space induced by an almost disjoint family, admitting only few operators and decompositions*, Adv. Math., 381 (2021), paper no. 107613, 39 pages.

 O. Guzmán, M. Hrušák, P. Koszmider, On ℝ-embeddability of almost disjoint families and Akemann-Doner C*-algebras, Fund. Math., 254 (2021), pp. 15–47.
• P. Koszmider, *Banach spaces in which large subsets of spheres concentrate*, arXiv:2104.05335

 P. Koszmider and N. J. Laustsen, A Banach space induced by an almost disjoint family, admitting only few operators and decompositions, Adv. Math., 381 (2021), paper no. 107613, 39 pages.

 O. Guzmán, M. Hrušák, P. Koszmider, On ℝ-embeddability of almost disjoint families and Akemann-Doner C*-algebras, Fund. Math., 254 (2021), pp. 15–47.

ヘロト 人間 とくほとく ほう

• P. Koszmider, *Banach spaces in which large subsets of spheres concentrate*, arXiv:2104.05335

 P. Koszmider and N. J. Laustsen, A Banach space induced by an almost disjoint family, admitting only few operators and decompositions, Adv. Math., 381 (2021), paper no. 107613, 39 pages.

 O. Guzmán, M. Hrušák, P. Koszmider, On ℝ-embeddability of almost disjoint families and Akemann-Doner C*-algebras, Fund. Math., 254 (2021), pp. 15–47.

ヘロト 人間 とくほとく ほう