Recognizing the topologies on subspaces in L^p-spaces on metric measure spaces

Katsuhisa Koshino

Kanagawa University

2022/7/25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1 Topological types of subspaces in L^p-spaces

2 Z-sets in $L^{p}(X)$

3 Characterizations of compact sets in L^p-spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Topological types of subspaces in L^p-spaces

Throughout this talk, $X = (X, d, \mu)$ is a metric measure space satisfying the following:

- (Borel) Borel sets of X are measurable;
- (Borel-regular) [∀]E ⊂ X is contained in a Borel set B ⊂ X s.t. μ(E) = μ(B);
- For $\forall x \in X$ and $\forall r \in (0, \infty)$, $0 < \mu(B(x, r)) < \infty$.

d is a metric and μ is a measure.

B(x,r) is the closed ball centered at x with radius $r \in \mathbb{R}$, $r \in \mathbb{R}$, $r \in \mathbb{R}$, $r \in \mathbb{R}$

Topological types of subspaces in L^p-spaces

Throughout this talk, $X = (X, d, \mu)$ is a metric measure space satisfying the following:

- (Borel) Borel sets of X are measurable;
- (Borel-regular) [∀]E ⊂ X is contained in a Borel set B ⊂ X s.t. μ(E) = μ(B);
- For $\forall x \in X$ and $\forall r \in (0, \infty)$, $0 < \mu(B(x, r)) < \infty$.

For $1 \le p < \infty$, let $L^{p}(X) = (L^{p}(X), \|\cdot\|_{p})$ be the L^{p} -space on X, which is a Banach space.

d is a metric and μ is a measure.

B(x,r) is the closed ball centered at x with radius $r \in \mathbb{R}$, $r \in \mathbb{R}$, $r \in \mathbb{R}$, $r \in \mathbb{R}$

Recognize "typical" infinite-dimensional spaces among subspaces of $L^{p}(X)$.

(日) (문) (문) (문) (문)

Recognize "typical" infinite-dimensional spaces among subspaces of $L^{p}(X)$.

Let ℓ_2 be the separable Hilbert space, ℓ_2^f be the linear span of the canonical orthonormal basis on ℓ_2 , and **Q** be the Hilbert cube.

▲口▶ ▲圖▶ ▲필▶ ▲필▶ - 理

Recognize "typical" infinite-dimensional spaces among subspaces of $L^{p}(X)$.

Let ℓ_2 be the separable Hilbert space, ℓ_2^f be the linear span of the canonical orthonormal basis on ℓ_2 , and **Q** be the Hilbert cube. Due to the efforts of R.D. Anderson and M.I. Kadec, we have the following:

Theorem 1.1

If X is infinite and separable, then $L^p(X) \approx \ell_2$.

Consider

 $UC(X) = \{ f \in L^{p}(X) \mid f \text{ is uniformly continuous} \}.$

Consider

 $UC(X) = \{ f \in L^{p}(X) \mid f \text{ is uniformly continuous} \}.$

Theorem 1.2 (R. Cauty (1991))

Let [0, 1] be equipped with the usual metric and the Lebesgue measure. Then $UC([0, 1]) \approx (\ell_2^f)^{\mathbb{N}}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Consider

 $UC(X) = \{ f \in L^{p}(X) \mid f \text{ is uniformly continuous} \}.$

Theorem 1.2 (R. Cauty (1991))

Let [0,1] be equipped with the usual metric and the Lebesgue measure. Then $UC([0,1]) \approx (\ell_2^f)^{\mathbb{N}}$.

Theorem A (K (2020))

If X is separable and locally compact, and $\{x \in X \mid \mu(\{x\}) \neq 0\}$ is not dense in X, then $UC(X) \approx (\ell_2^f)^{\mathbb{N}}$.

A space X is **doubling** if the following is satisfied.

• $\exists \gamma \geq 1 \text{ s.t. } \mu(B(x,2r)) \leq \gamma \mu(B(x,r)) \text{ for } \forall x \in X \text{ and } \forall r > 0.$

A space X is **doubling** if the following is satisfied.

• $\exists \gamma \geq 1 \text{ s.t. } \mu(B(x,2r)) \leq \gamma \mu(B(x,r)) \text{ for } \forall x \in X \text{ and } \forall r > 0.$ Consider

 $\mathsf{LIP}_b(X) = \{ f \in \mathsf{L}^\mathsf{p}(X) \mid f \text{ is lipschitz with a bounded support} \}.$

A space X is **doubling** if the following is satisfied.

•
$$\exists \gamma \geq 1 \text{ s.t. } \mu(B(x,2r)) \leq \gamma \mu(B(x,r)) \text{ for } \forall x \in X \text{ and } \forall r > 0.$$

Consider

 $\mathsf{LIP}_b(X) = \{ f \in \mathsf{L}^\mathsf{p}(X) \mid f \text{ is lipschitz with a bounded support} \}.$

Theorem B (K (?))

Let X be non-degenerate, separable and doubling. Suppose that

(*) for $\forall x \in X$,

 $(0,\infty)
i r \mapsto \mu(B(x,r)) \in (0,\infty)$

is continuous.

Then $(L^p(X), LIP_b(X)) \approx (\ell_2 \times \mathbf{Q}, \ell_2^f \times \mathbf{Q}).$

Z-sets in $L^{p}(X)$

Definition (Z-set)

For $A \subset Y$, A is a **(strong)** Z-set in Y if id_Y is approximated by $f : Y \to Y$ s.t. $f(Y) \cap A = \emptyset$ (cl $f(Y) \cap A = \emptyset$).

A Z-embedding is an embedding whose image is a Z-set, z = -2

Z-sets in $L^{p}(X)$

Definition (Z-set)

For $A \underset{closed}{\subset} Y$, A is a **(strong)** Z-set in Y if id_Y is approximated by $f: Y \to Y$ s.t. $f(Y) \cap A = \emptyset$ (cl $f(Y) \cap A = \emptyset$).

For a class \mathfrak{C} , Y is **strongly** \mathfrak{C} -**universal** if the following holds.

Let f : A → Y, A ∈ C. Suppose that B ⊂ A and f|_B is a Z-embedding. Then f is approximated by a Z-embedding g : A → Y s.t. g|_B = f|_B.

A Z-embedding is an embedding whose image is a Z-set, z = -2

Theorem 2.1 (absorbing set)

Let $Y \subset M$. Suppose that $M \approx \ell_2$ and Y satisfies the following:

- Y is homotopy dense in M and $Y \in (\mathfrak{M}_2)_{\sigma}$;
- **2** Y is strongly \mathfrak{M}_2 -universal;

③ *Y* is contained in a strong Z_{σ} -set in *M*. Then $Y \approx (\ell_2^f)^{\mathbb{N}}$.

Y is **homotopy dense** in M if $\exists h : M \times I \to M$ s.t. $h(M \times (0,1]) \subset Y$ and h(y,0) = y for $\forall y \in M$. \mathfrak{M}_2 is the class of absolute $F_{\sigma\delta}$ sets. A strong Z_{σ} -set is a countable union of strong Z_{σ} sets.

Detect Z-sets in $L^{p}(X)$.

(日) (四) (王) (王) (王) (王)

Detect Z-sets in $L^{p}(X)$.

Lemma 2.2

Let
$$\phi : Y \to L^{p}(X)$$
 and $a \in X$ with $\mu(\{a\}) = 0$.
Then for $\forall \epsilon : Y \to (0, 1), \exists \psi : Y \to L^{p}(X)$ and
 $\exists \delta : Y \to (0, 1)$ s.t. for $\forall y \in Y$,
 $\|\phi(y) - \psi(y)\|_{p} \le \epsilon(y)$,
 $\psi(y)(B(a, \delta(y))) = \{0\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Detect Z-sets in $L^{p}(X)$.

Lemma 2.2

Let
$$\phi : Y \to L^p(X)$$
 and $a \in X$ with $\mu(\{a\}) = 0$.
Then for $\forall \epsilon : Y \to (0, 1), \exists \psi : Y \to L^p(X)$ and
 $\exists \delta : Y \to (0, 1)$ s.t. for $\forall y \in Y$,
 $\|\phi(y) - \psi(y)\|_p \le \epsilon(y)$,
 $\psi(y)(B(a, \delta(y))) = \{0\}.$

For $\forall n \in \mathbb{N}$ and $\forall U \underset{open}{\subset} \text{int} \{x \in X \mid \mu(\{x\}) = 0\}$,

 $Z(n,U) = \{f \in \mathsf{L}^\mathsf{p}(X) \mid |f(x)| \ge 1/n \text{ for a.e. } x \in U\}$

is a Z-set in $L^p(X)$ by Lemma 2.2.

Lemma 2.3

Let
$$a \in X$$
 with $\mu(\{a\}) = 0$. Suppose that $A \subset L^p(X)$ and $\xi : A \to (0, \infty)$ s.t. for $\forall f \in A$, $f(x) = 0$ for a.e. $x \in B(a, \xi(f))$, and that B is a Z-set in $L^p(X)$. If $A \cup B \underset{closed}{\subset} L^p(X)$, then it is a Z-set.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Characterizations of compact sets in L^p-spaces

Theorem 3.1 (D. Curtis-T. Dobrowolski-J. Mogilski (1984))

Let C be a σ -compact convex set in a completely metrizable linear space. Suppose that cl C is an AR and not locally compact. Then (cl C, C) $\approx (\ell_2 \times \mathbf{Q}, \ell_2^f \times \mathbf{Q})$ if C contains an infinite-dimensional locally compact convex set.

Compact sets in ℓ_2 are Z-sets.

Give a criterion for subsets of $L^{p}(X)$ to be compact.

For $f : \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$, $\tau_a f(x) = f(x - a)$. For $E \subset X$, χ_E is the characteristic function of E, and for $f : X \to \mathbb{R}$, $f\chi_E(x) = f(x) \cdot \chi_E(x)$.

Give a criterion for subsets of $L^{p}(X)$ to be compact.

Theorem 3.2 (A.N. Kolmogorov (1931), M. Riesz (1933))

A subset $F \subset L^{p}(\mathbb{R}^{n})$ is relatively compact if and only if the following are satisfied. For $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $\|\tau_{a}f - f\|_{p} < \epsilon$ for $\forall f \in F$ and $\forall a \in \mathbb{R}^{n}$ with $|a| < \delta$.

For [∀] $\epsilon > 0$, [∃] r > 0 s.t. $\|f \chi_{\mathbb{R}^n \setminus B(0,r)}\|_p < \epsilon$ for [∀] $f \in F$.

For $f : \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$, $\tau_a f(x) = f(x - a)$. For $E \subset X$, χ_E is the characteristic function of E, and for $f : X \to \mathbb{R}$, $f\chi_E(x) = f(x) \cdot \chi_E(x)$.

For
$$f \in L^p(X)$$
 and $r > 0$, define $A_r f : X \to \mathbb{R}$ by
 $A_r f(x) = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f\chi_{B(x,r)}(y) d\mu(y),$

which is called the **average function** of f.

For $f \in L^p(X)$ and r > 0, define $A_r f : X \to \mathbb{R}$ by $A_r f(x) = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f\chi_{B(x,r)}(y) d\mu(y),$

which is called the **average function** of f.

Theorem 3.3 (P. Górka-A. Macios (2014))

Let X be doubling and p > 1. Suppose that $\inf\{\mu(B(x,r)) \mid x \in X\} > 0$ for $\forall r > 0$. Then $F \underset{bounded}{\subset} L^p(X)$ is relatively compact if and only if the following hold.

• For
$$\forall \epsilon > 0$$
, $\exists \delta > 0$ s.t. for $\forall f \in F$ and
 $\forall r \in (0, \delta)$, $||A_r f - f||_p < \epsilon$.

2 For $\forall \epsilon > 0$, $\exists E \subset X \text{ s.t. } \|f\chi_{X \setminus E}\|_p < \epsilon$ for $\forall f \in F$

(ㅋㅋ ㅋ콜ㅋ ㅋㅋㅋ ㅋㅋ ㅋㅋ

Theorem C

Let X be doubling. Suppose that (*) for $\forall x \in X$ and $\forall r > 0$,

 $\mu(B(x,r) \triangle B(y,r)) \rightarrow 0 \text{ as } y \rightarrow x.$

Then $F \underset{bounded}{\subset} L^{p}(X)$ is relatively compact if and only if the following are satisfied. a) For $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. for $\forall f \in F$ and $\forall r \in (0, \delta)$, $||A_{r}f - f||_{p} < \epsilon$. b) For $\forall \epsilon > 0$, $\exists E \underset{bounded}{\subset} X$ s.t. $||f\chi_{X \setminus E}||_{p} < \epsilon$ for $\forall f \in F$.

Consider the following conditions between d and μ . (\star) For $\forall x \in X$,

$$(0,\infty)
i r \mapsto \mu(B(x,r)) \in (0,\infty)$$

is continuous. (*) For $\forall x \in X$ and $\forall r \in (0, \infty)$, $\mu(B(x, r) \triangle B(y, r)) \rightarrow 0$ as $y \rightarrow x$. (†) For $\forall r \in (0, \infty)$,

$$X
i x \mapsto \mu(B(x,r)) \in (0,\infty)$$

(日) (문) (문) (문) (문)

is continuous.

Then $(\star) \Rightarrow (\star) \Rightarrow (\dagger)$.

Fix $\forall x_0 \in X$. For $n \in \mathbb{N}$, let $L(n) = \{f \in LIP_b(X) \mid ||f||_p \le n, \text{ lip } f \le n, \text{ supp } f \subset B(x_0, n)\}.$ Then $LIP_b(X) = \bigcup_{n \in \mathbb{N}} L(n).$

lip f is the lipschitz constant of f and supp f is the support of f. f = -200

Fix $\forall x_0 \in X$. For $n \in \mathbb{N}$, let $L(n) = \{f \in LIP_b(X) \mid ||f||_p \le n, \text{lip } f \le n, \text{supp } f \subset B(x_0, n)\}.$ Then $LIP_b(X) = \bigcup_{n \in \mathbb{N}} L(n).$ If X is doubling and satisfies (*), then L(n) is compact by Theorem C.

lip f is the lipschitz constant of f and supp f is the support of f. = -22