Baire-one functions on topological spaces: some recent results and open questions

Olena Karlova

Yuriy Fedkovych Chernivtsi National University, Ukraine

T O P O S Y M 2 0 2 2 July 25, Prague

- Baire-1 functions vs F_{σ} -measurable functions
- Homotopic Baire-1 class
- Fragmentability and extension property

BAIRE-ONE FUNCTIONS vs $F_{\sigma}\text{-}\mathsf{MEASURABLE}$ FUNCTIONS

- A function $f: X \to Y$ is of the first Baire class, $f \in B_1(X, Y)$, if f is a pointwise limit of a sequence of continuous maps $f_n: X \to Y$
- ◆ A function $f: X \to Y$ is F_{σ} -measurable, $f \in \mathscr{F}_{\sigma}(X, Y)$, or of the first Borel class, if for any open subset V of Y there exists a sequence of closed sets in X such that $f^{-1}(V) = \bigcup_{n \in \omega} F_n$

$$B_1(\mathbb{R},\mathbb{R}) = \mathscr{F}_{\sigma}(\mathbb{R},\mathbb{R})$$

Lebesgue-Hausdorff Theorem

Theorem (Lebesgue, Hausdorff)

$$\mathscr{F}_{\sigma}(X,Y) = B_1(X,Y)$$

- X is a metrizable space and $Y=[0,1]^{\omega},$ or
- X is a metrizable separable space with $\dim X = 0$ and Y is a metrizable separable space.

The case of connected Y

Theorem (Fosgerau, Veselý, 1993)

For a Polish space Y the following conditions are equivalent:

Y is connected and locally path-connected,

2
$$\mathscr{F}_{\sigma}(X,Y) = B_1(X,Y)$$
 for any perfectly normal X ,

3 $\mathscr{F}_{\sigma}([0,1],Y) = B_1([0,1],Y).$

• $f: X \to Y$ is functionally F_{σ} -measurable, $f \in \mathscr{F}^*_{\sigma}(X, Y)$, if for any open set $V \subseteq Y$ there exists a sequence $(F_n)_{n \in \omega}$ of zero-sets in X such that $f^{-1}(V) = \bigcup_{n \in \omega} F_n$

The case of disconnected Y. Necessary condition

- $f: X \to Y$ is functionally F_{σ} -measurable, $f \in \mathscr{F}^*_{\sigma}(X, Y)$, if for any open set $V \subseteq Y$ there exists a sequence $(F_n)_{n \in \omega}$ of zero-sets in X such that $f^{-1}(V) = \bigcup_{n \in \omega} F_n$
- $\label{eq:F} \$ \ F_\sigma^*(X,Y) \subseteq F_\sigma(X,Y) \ \text{and} \ F_\sigma(X,Y) = \mathscr{F}_\sigma^*(X,Y) \ \text{for any normal space} \ X$

The case of disconnected Y. Necessary condition

- $f: X \to Y$ is functionally F_{σ} -measurable, $f \in \mathscr{F}^*_{\sigma}(X, Y)$, if for any open set $V \subseteq Y$ there exists a sequence $(F_n)_{n \in \omega}$ of zero-sets in X such that $f^{-1}(V) = \bigcup_{n \in \omega} F_n$
- $\label{eq:F} \$ \ F_\sigma^*(X,Y) \subseteq F_\sigma(X,Y) \ \text{and} \ F_\sigma(X,Y) = \mathscr{F}_\sigma^*(X,Y) \ \text{for any normal space} \ X$

Let X be a topological space, Y is disconnected space such that $\mathscr{F}^*_{\sigma}(X,Y) \subseteq B_1(X,Y)$. Then every zero-set $F \subseteq X$ can be written as

$$F = \bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{kn},$$

where (U_{kn}) is a clopen set in X for all $k, n \in \omega$.

A subset F of a topological space X is called a C-set if it can be written as an intersection of a sequence of clopen sets in X.

- A subset F of a topological space X is called a C-set if it can be written as an intersection of a sequence of clopen sets in X.
- A space X is almost zero-dimensional (AZD), if every point $x \in X$ has arbitrarily small neighborhoods that are intersection of clopen subsets.

- A subset F of a topological space X is called a C-set if it can be written as an intersection of a sequence of clopen sets in X.
- A space X is almost zero-dimensional (AZD), if every point $x \in X$ has arbitrarily small neighborhoods that are intersection of clopen subsets.

strongly zero-dim \Rightarrow zero-dim \Rightarrow AZD \Rightarrow totally disconnected

• We say that a set A is a
$$C_{\sigma}$$
-set if

$$A = \bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{kn},$$

where U_{kn} are clopen.

$$lacksim$$
 We say that a set A is $a \; C_{\sigma} ext{-set}$ if

$$A = \bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{kn},$$

where U_{kn} are clopen.

It is well-known that

a completely regular space X is strongly zero-dimensional if and every zero-set is a $C\mbox{-set}.$

$$lacksim$$
 We say that a set A is $a \; C_{\sigma} ext{-set}$ if

$$A = \bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{kn},$$

where U_{kn} are clopen.

It is well-known that

a completely regular space X is strongly zero-dimensional if and every zero-set is a C-set.

Definition

A completely regular space X is called *almost strongly zero-dimensional* (ASZD) if every zero-set $F \subseteq X$ is C_{σ} .

Y is metrizable and separable

Theorem (K., 2017)

If X is a completely regular space and Y is a disconnected metrizable separable space, then the following conditions are equivalent:

- $\bullet X \text{ is almost strongly zero-dimensional};$
- $\mathfrak{F}_{\sigma}^*(X,Y) = \mathcal{B}_1(X,Y).$

Y is metrizable

- A family $\mathcal{A} = (A_i : i \in I)$ of subsets of a topological space X is called *strongly functionally discrete*, if there exists a discrete family $(U_i : i \in I)$ of cozero subsets of X such that $\overline{A_i} \subseteq U_i$ for every $i \in I$.
- A family \mathcal{B} of sets of a topological space X is called *a base* for a map $f: X \to Y$ if the preimage $f^{-1}(V)$ of an arbitrary open set V in Y is a union of sets from \mathcal{B} .
- If \mathcal{B} is a countable union of strongly functionally discrete families, we say that f is σ -strongly functionally discrete, $f \in \Sigma^s(X, Y)$.

If Y is metrizable and separable space, then

every function $f: X \to Y$ is σ -strongly functionally discrete.

Y is metrizable

Theorem (K., 2017)

If X is a completely regular space with $\mathrm{dim} X=0$ and Y is a metrizable space, then

 $\mathscr{F}^*_{\sigma}(X,Y) \cap \Sigma^s(X,Y) = B_1(X,Y).$

Y is metrizable

Theorem (K., 2017)

If X is a completely regular space with $\mathrm{dim} X=0$ and Y is a metrizable space, then

$$\mathscr{F}^*_{\sigma}(X,Y) \cap \Sigma^s(X,Y) = B_1(X,Y).$$

Theorem (K., 2017)

If X is a completely regular space and Y is a disconnected metrizable separable space, then the following conditions are equivalent:

- $\ \, \bullet \ \, X \text{ is almost strongly zero-dimensional;}$
- $\mathfrak{F}_{\sigma}^*(X,Y) = \mathcal{B}_1(X,Y).$

Do there exists a completely regular (metrizable separable) almost strongly zero-dimensional space X with $\dim X > 0$?

Do there exists a completely regular (metrizable separable) almost strongly zero-dimensional space X with $\dim X > 0$?

strongly zero-dim \Rightarrow zero-dim \Rightarrow AZD \Rightarrow totally disconnected

Theorem (K., 2022)

- $(1) \dim X = 0 \ \Rightarrow \ X \text{ is ASZD } \Rightarrow \ X \text{ is totally separated}$
- ② If X is countably compact or X is a continuous image of a Polish space, then X is ASZD $\Leftrightarrow \dim X = 0$.
- ③ If X is a perfectly normal with dimX = 0 and $\varphi : X \to \mathbb{R}$ is piecewise continuous. Then the graph $\Gamma_{\varphi} \subseteq X \times \mathbb{R}$ is ASZD.

Y is not metrizable

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally convex space, then

 $CB_{\alpha}(X \times Y, Z) \subseteq B_{\alpha+1}(X \times Y, Z).$

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally convex space, then

$$CB_{\alpha}(X \times Y, Z) \subseteq B_{\alpha+1}(X \times Y, Z).$$

 $f:[0,1]\times[0,1]\to[0,1], f\in CB_1\Rightarrow f\in B_2\Leftrightarrow f=\lim f_n, f_n\in B_1$

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally convex space, then

$$CB_{\alpha}(X \times Y, Z) \subseteq B_{\alpha+1}(X \times Y, Z).$$

 $f:[0,1]\times [0,1] \rightarrow [0,1], f \in CB_1 \Rightarrow f \in B_2 \Leftrightarrow f = \lim f_n, f_n \in B_1$

Question (O. Sobchuk and V. Mykhaylyuk, 1995)

Is every function $f \in CB_1([0,1] \times [0,1], [0,1])$ a pointwise limit of separately continuous functions $f_n : [0,1] \times [0,1] \to [0,1]$?

Question (O. Sobchuk and V. Mykhaylyuk, 1995)

Is every function $f \in CB_1([0,1] \times [0,1], [0,1])$ a pointwise limit of separately continuous functions $f_n : [0,1] \times [0,1] \rightarrow [0,1]$?

1

Question (T. Banakh)

 $\mathscr{F}_{\sigma}([0,1], C_p([0,1])) = B_1([0,1], C_p([0,1]))$?

Question (O. Sobchuk and V. Mykhaylyuk, 1995)

Is every function $f \in CB_1([0,1] \times [0,1], [0,1])$ a pointwise limit of separately continuous functions $f_n : [0,1] \times [0,1] \rightarrow [0,1]$?

1

Question (T. Banakh)

 $\mathscr{F}_{\sigma}([0,1], C_p([0,1])) = B_1([0,1], C_p([0,1]))$?

 $\mathscr{F}_{\sigma}([0,1], C_p([0,1])) \subset B_2([0,1], C_p([0,1]))$

HOMOTOPIC BAIRE-1 CLASS

An equivalent definition of the fist Baire class

Definition

We say that $f \in B_1(X, Y)$ if there exists a continuous map $H: X \times \omega \to Y$ such that $f(x) = \lim_{n \to \infty} H(x, n)$ for every $x \in X$.

The first homotopic Baire class

Definition

We say that $f \in hB_1(X, Y)$ if there exists a continuous map $H: X \times [0, +\infty) \to Y$ such that $f(x) = \lim_{n \to \infty} H(x, n)$ for every $x \in X$.

Definition

We say that $f \in hB_1(X, Y)$ if there exists a continuous map $H: X \times [0, +\infty) \to Y$ such that $f(x) = \lim_{n \to \infty} H(x, n)$ for every $x \in X$.

If Y is contractible, then $B_1(X, Y) = hB_1(X, Y)$.

Question (S. Maksymenko).

Let S^1 be the unit circle in \mathbb{C} . Is it true that $B_1(S^1, S^1) = hB_1(S^1, S^1)$?

Question (S. Maksymenko).

Let S^1 be the unit circle in \mathbb{C} . Is it true that $B_1(S^1, S^1) = hB_1(S^1, S^1)$?

General problem

To describe classes of spaces X and Y such that $B_1(X, Y) = hB_1(X, Y)$.

A continuous map $f: X \to Y$ is a weak local homeomorphism if $\forall y \in Y$ $\exists V \ni y, U \subseteq X$ such that $f|_U: U \to V$ is a homeomorphism. A continuous map $f: X \to Y$ is a weak local homeomorphism if $\forall y \in Y$ $\exists V \ni y, U \subseteq X$ such that $f|_U: U \to V$ is a homeomorphism.

Assume that X, Y and Z are topological spaces and $\varphi : Z \to Y$ is a weak local homeomorphism. We say that the triple (X, Y, Z) has \mathscr{P} -Lifting **Property** whenever for all $f \in \mathscr{P}(X, Y)$ there exists $g \in \mathscr{P}(X, Z)$ such that $f = \varphi \circ g$.

Lifting Theorem for B₁-functions (K. and Maksymenko, 2020)

Let X, Y, Z be topological spaces and Y is a paracompact space weakly covered by a metrizable path-connected and locally path-connected space Z. Then (X, Y, Z) has B₁-Lifting Property.

Lifting Theorem for B₁-functions (K. and Maksymenko, 2020)

Let X, Y, Z be topological spaces and Y is a paracompact space weakly covered by a metrizable path-connected and locally path-connected space Z. Then (X, Y, Z) has B₁-Lifting Property.

Theorem (K. and Maksymenko, 2020)

Any open path-connected subset of a normed space is weakly covered by a contractible and locally contractible metrizable space.

Theorem (K. and Maksymenko, 2020)
Let X be a topological space and Y be a path-connected metrizable ANR.
Then
$$B_1(X,Y) = hB_1(X,Y).$$

Do there exists a path-connected subset $X \subseteq \mathbb{R}^2$ such that $B_1(X, X) \neq hB_1(X, X)$?

Do there exists a path-connected subset $X \subseteq \mathbb{R}^2$ such that $B_1(X,X) \neq hB_1(X,X)$?

 $f \in hB_1(X, X)$

Do there exists a path-connected subset $X \subseteq \mathbb{R}^2$ such that $B_1(X,X) \neq hB_1(X,X)$?

$$f \in \mathrm{hB}_1(X,X) \\ \Downarrow \\ f \text{ is a uniform limit of a sequence of } f_n \in \mathrm{hB}_1(X,X)$$

Do there exists a path-connected subset $X \subseteq \mathbb{R}^2$ such that $B_1(X,X) \neq hB_1(X,X)$?

$$\begin{array}{c} f\in \mathrm{hB}_1(X,X)\\ \Downarrow\\ f \text{ is a uniform limit of a sequence of } f_n\in \mathrm{hB}_1(X,X)\\ \Downarrow\end{array}$$

Question 2

Assume that $X \subseteq \mathbb{R}^2$ is a path-connected space. Is it true that $hB_1(X, X)$ is closed under uniform limits?

FRAGMENTABILITY

Let X be a topological space, (Y, d) be a metric space and $\varepsilon > 0$.

A function $f: X \to Y$ is *fragmented*, if for every $\varepsilon > 0$ it is ε -*fragmented*, i.e. there exists a sequence $\mathscr{U} = (U_{\xi} : \xi \in [0, \alpha))$ in X of open sets such that

- $\operatorname{diam} f(U_{\xi+1} \setminus U_{\xi}) < \varepsilon$ for all $\xi \in [0, \alpha)$;
- $\emptyset = U_0 \subset U_1 \subset U_2 \subset \ldots;$
- $U_{\gamma} = \bigcup_{\xi < \gamma} U_{\xi}$ for every limit ordinal $\gamma \in [0, \alpha)$.

We call α an index of ε -fragmentability of f.

Theorem (Jayne, Orihuela, Pallarés and Vera, 1992)

Let X be a perfectly paracompact hereditarily Baire space, Y be a convex subset of a Banach space. The following are equivalent:

- f is fragmented;
- f is of the first Baire class.

Functionally fragmented maps

A function $f: X \to Y$ is *fragmented*, if for every $\varepsilon > 0$ there exists a sequence $\mathscr{U} = (U_{\xi}: \xi \in [0, \alpha))$ in X of open sets such that

- diam $f(U_{\xi+1} \setminus U_{\xi}) < \varepsilon$ for all $\xi \in [0, \alpha)$;
- $\emptyset = U_0 \subset U_1 \subset U_2 \subset \ldots;$
- $U_{\gamma} = \bigcup_{\xi < \gamma} U_{\xi}$ for every limit ordinal $\gamma \in [0, \alpha)$.

A function $f: X \to Y$ is *fragmented*, if for every $\varepsilon > 0$ there exists a sequence $\mathscr{U} = (U_{\xi}: \xi \in [0, \alpha))$ in X of open sets such that

- $\operatorname{diam} f(U_{\xi+1} \setminus U_{\xi}) < \varepsilon$ for all $\xi \in [0, \alpha)$;
- $\emptyset = U_0 \subset U_1 \subset U_2 \subset \ldots;$
- $U_{\gamma} = \bigcup_{\xi < \gamma} U_{\xi}$ for every limit ordinal $\gamma \in [0, \alpha)$.

An ε -fragmented map $f: X \to Y$ is

- functionally ε -fragmented if every U_{ξ} is a cozero set in X;
- functionally ε -countably fragmented if \mathscr{U} can be chosen to be countable;
- functionally countably fragmented if f is functionally ε -countably fragmented for all $\varepsilon > 0$.

Functionally fragmented maps

Relations between different types of fragmentability

- Let X be a topological space, (Y, d) be a metric space, $\varepsilon > 0$ and $f: X \to Y$ be a map. If one of the following conditions holds
 - Y is separable and f is continuous,
 - X is hereditarily Lindelöf and f is fragmented,
 - X is compact and $f \in B_1(X, Y)$,
 - X is Lindelöf, $f\in {\rm B}_1(X,Y)$ and fragmented,
 - X is Lindelöf, f is functionally fragmented,

then f is functionally countably fragmented.

Relations between different types of fragmentability

- Let X be a topological space, (Y, d) be a metric space, $\varepsilon > 0$ and $f: X \to Y$ be a map. If one of the following conditions holds
 - Y is separable and f is continuous,
 - X is hereditarily Lindelöf and f is fragmented,
 - X is compact and $f \in B_1(X, Y)$,
 - X is Lindelöf, $f \in B_1(X, Y)$ and fragmented,
 - X is Lindelöf, f is functionally fragmented,

then f is functionally countably fragmented.

- If one of the following conditions holds
 - f is functionally countably fragmented,
 - X is perfectly paracompact and f is fragmented,
 - X is paracompact and f is functionally fragmented,

then $f \in B_1(X, \mathbb{R})$.

Relations between different types of fragmentability

- Let X be a topological space, (Y,d) be a metric space, $\varepsilon > 0$ and $f: X \to Y$ be a map. If one of the following conditions holds
 - Y is separable and f is continuous,
 - X is hereditarily Lindelöf and f is fragmented,
 - X is compact and $f \in B_1(X, Y)$,
 - X is Lindelöf, $f\in {\rm B}_1(X,Y)$ and fragmented,
 - X is Lindelöf, f is functionally fragmented,
 - then f is functionally countably fragmented.
- If one of the following conditions holds
 - f is functionally countably fragmented,
 - $\bullet~X$ is perfectly paracompact and f is fragmented,
 - X is paracompact and f is functionally fragmented,

then $f \in B_1(X, \mathbb{R})$.

③ If X is hereditarily Baire and $f \in B_1(X, \mathbb{R})$, then f is fragmented.

Further relations $(Y = \mathbb{R})$

- X is compact
- X is Lindelöf
- X is perfectly paracompact
- X is hereditarily Baire
- X is paracompact

Further relations $(Y = \mathbb{R})$

- X is compact
- X is Lindelöf
- X is perfectly paracompact
- X is hereditarily Baire
- X is paracompact

Question

Let X be paracompact, $f: X \to \mathbb{R}$ be fragmented and $f \in B_1$. Is f functionally fragmented?

Application of fragmentability to extension of B_1 -functions

Theorem (O. Kalenda and J. Spurný, 2005)

Let E be a Lindelöf subspace of a completely regular space X and $f:E\to\mathbb{R}$ be a Baire-one function. If

- E is G_{δ} , or
- E is hereditarily Baire,

then there exists a Baire-one function $g: X \to \mathbb{R}$ such that g = f on E.

- Let X be a hereditarily Baire completely regular space and f a Baire-one function on X. Can f be extended to a Baire-one function on βX?
- Let X be a normal space, Y a closed hereditarily Baire subset of X and f a Baire-one function on Y. Can f be extended to a Baire-one function on X?
- O Let X be a normal space, Y = ∩_{n∈ω} G_n ⊆ X is an intersection of co-zero sets and f a Baire-one function on Y. Can f be extended to a Baire-one function on X?

Application of fragmentability to extension of B_1 -functions

Theorem (K. and Mykhaylyuk, 2020)

Let X be a completely regular space and $f: X \to \mathbb{R}$ be a Baire-one function. Consider the following conditions:

- (i) f is functionally countably fragmented,
- (ii) f is extendable to a Baire-one function on βX ,
- (iii) f is extendable to a Baire-one function on any completely regular space $Y \supseteq X$,
- (iv) f is extendable to a Baire-one function on any compactification Y of X,
- (v) f is fragmented.
- Then (i) \Leftrightarrow (ii).
- If X is Lindelöff, then

 $(\mathsf{i}) \Leftrightarrow (\mathsf{ii}) \Leftrightarrow (\mathsf{iii}) \Leftrightarrow (\mathsf{iv}) \Leftrightarrow (\mathsf{v})$

Question 1 (O. Kalenda and J. Spurny)

Let X be a hereditarily Baire completely regular space and f a Baire-one function on X. Can f be extended to a Baire-one function on βX ?

Question 1 (O. Kalenda and J. Spurny)

Let X be a hereditarily Baire completely regular space and f a Baire-one function on X. Can f be extended to a Baire-one function on βX ?

Theorem (K. and Mykhaylyuk, 2020)

There exist a completely metrizable locally compact space X and a Baire one function $f: X \to [0, 1]$ such that f is not countably fragmented, in particular, f can not be extended to a Baire one function $g: \beta X \to [0, 1]$.

• For every ordinal $\alpha \in [\omega, \omega_1)$ there exists a function $f : [0, 1] \rightarrow [0, 1]$ such that the index of the 1-fragmentability of f is $\alpha + 1$.

- For every ordinal $\alpha \in [\omega, \omega_1)$ there exists a function $f : [0, 1] \rightarrow [0, 1]$ such that the index of the 1-fragmentability of f is $\alpha + 1$.
- For every $\alpha < \omega_1$ we put $X_{\alpha} = [0, 1]$ and consider the completely metrizable locally compact space $X = \bigoplus_{\alpha < \omega_1} X_{\alpha}$.

Now for every $\alpha < \omega_1$ we choose a countably fragmented function $f_\alpha: X_\alpha \to [0,1]$ such that the index of fragmentability of f is greater than α . Now we consider the function $f: X \to [0,1]$, $f(x) = f_\alpha(x)$ if $x \in X_\alpha$. Since every f_α is a Baire one function, f is a Baire one function too. Moreover, it is clear that f is not countably fragmented.

POSTSCRIPTUM

I express my boundless gratitude to the Ukrainian Armed Forces for their courage and self-sacrifice, which made it possible for me to be here

Thank you for the attention!

Glory to Ukraine!