Baire-one functions on topological spaces: some recent results and open questions

Olena Karlova

Yuriy Fedkovych Chernivtsi National University, Ukraine

$$
\begin{aligned}
& \text { T O P O S Y M } 2022 \\
& \text { July 25, Prague }
\end{aligned}
$$

- Baire-1 functions vs F_{σ}-measurable functions
- Homotopic Baire-1 class
- Fragmentability and extension property

BAIRE-ONE FUNCTIONS vs F_{σ}-MEASURABLE FUNCTIONS

Definitions and notations

- A function $f: X \rightarrow Y$ is of the first Baire class, $f \in \mathrm{~B}_{1}(X, Y)$, if f is a pointwise limit of a sequence of continuous maps $f_{n}: X \rightarrow Y$
\checkmark A function $f: X \rightarrow Y$ is F_{σ}-measurable, $f \in \mathscr{F}_{\sigma}(X, Y)$, or of the first Borel class, if for any open subset V of Y there exists a sequence of closed sets in X such that $f^{-1}(V)=\bigcup_{n \in \omega} F_{n}$

$$
B_{1}(\mathbb{R}, \mathbb{R})=\mathscr{F}_{\sigma}(\mathbb{R}, \mathbb{R})
$$

Lebesgue-Hausdorff Theorem

Theorem (Lebesgue, Hausdorff)

$$
\mathscr{F}_{\sigma}(X, Y)=\mathrm{B}_{1}(X, Y)
$$

- X is a metrizable space and $Y=[0,1]^{\omega}$, or
- X is a metrizable separable space with $\operatorname{dim} X=0$ and Y is a metrizable separable space.

The case of connected Y

The case of connected Y

Theorem (Fosgerau, Veselý, 1993)

For a Polish space Y the following conditions are equivalent:
(1) Y is connected and locally path-connected,
(2) $\mathscr{F}_{\sigma}(X, Y)=\mathrm{B}_{1}(X, Y)$ for any perfectly normal X,
(3) $\mathscr{F}_{\sigma}([0,1], Y)=\mathrm{B}_{1}([0,1], Y)$.

The case of disconnected Y. Necessary condition

$\Delta f: X \rightarrow Y$ is functionally F_{σ}-measurable, $f \in \mathscr{F}_{\sigma}^{*}(X, Y)$, if for any open set $V \subseteq Y$ there exists a sequence $\left(F_{n}\right)_{n \in \omega}$ of zero-sets in X such that $f^{-1}(V)=\bigcup_{n \in \omega} F_{n}$

The case of disconnected Y. Necessary condition

$\Delta f: X \rightarrow Y$ is functionally F_{σ}-measurable, $f \in \mathscr{F}_{\sigma}^{*}(X, Y)$, if for any open set $V \subseteq Y$ there exists a sequence $\left(F_{n}\right)_{n \in \omega}$ of zero-sets in X such that $f^{-1}(V)=\bigcup_{n \in \omega} F_{n}$

- $F_{\sigma}^{*}(X, Y) \subseteq F_{\sigma}(X, Y)$ and $F_{\sigma}(X, Y)=\mathscr{F}_{\sigma}^{*}(X, Y)$ for any normal space X

The case of disconnected Y. Necessary condition

- $f: X \rightarrow Y$ is functionally F_{σ}-measurable, $f \in \mathscr{F}_{\sigma}^{*}(X, Y)$, if for any open set $V \subseteq Y$ there exists a sequence $\left(F_{n}\right)_{n \in \omega}$ of zero-sets in X such that $f^{-1}(V)=\bigcup_{n \in \omega} F_{n}$
- $F_{\sigma}^{*}(X, Y) \subseteq F_{\sigma}(X, Y)$ and $F_{\sigma}(X, Y)=\mathscr{F}_{\sigma}^{*}(X, Y)$ for any normal space X

Let X be a topological space, Y is disconnected space such that $\mathscr{F}_{\sigma}^{*}(X, Y) \subseteq B_{1}(X, Y)$. Then every zero-set $F \subseteq X$ can be written as

$$
F=\bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{k n},
$$

where $\left(U_{k n}\right)$ is a clopen set in X for all $k, n \in \omega$.

Almost strongly zero-dimensional space

Δ A subset F of a topological space X is called $a C$-set if it can be written as an intersection of a sequence of clopen sets in X.

Almost strongly zero-dimensional space

A subset F of a topological space X is called $a C$-set if it can be written as an intersection of a sequence of clopen sets in X.

- A space X is almost zero-dimensional (AZD), if every point $x \in X$ has arbitrarily small neighborhoods that are intersection of clopen subsets.

Almost strongly zero-dimensional space

Δ A subset F of a topological space X is called $a C$-set if it can be written as an intersection of a sequence of clopen sets in X.

- A space X is almost zero-dimensional (AZD), if every point $x \in X$ has arbitrarily small neighborhoods that are intersection of clopen subsets.
strongly zero-dim \Rightarrow zero-dim \Rightarrow AZD \Rightarrow totally disconnected

Almost strongly zero-dimensional space

\bullet We say that a set A is $a C_{\sigma}$-set if

$$
A=\bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{k n},
$$

where $U_{k n}$ are clopen.

Almost strongly zero-dimensional space

\bullet We say that a set A is $a C_{\sigma^{-}}$set if

$$
A=\bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{k n},
$$

where $U_{k n}$ are clopen.
It is well-known that
a completely regular space X is strongly zero-dimensional if and every zero-set is a C-set.

Almost strongly zero-dimensional space

- We say that a set A is $a C_{\sigma^{-}}$set if

$$
A=\bigcup_{k \in \omega} \bigcap_{n \in \omega} U_{k n},
$$

where $U_{k n}$ are clopen.
It is well-known that
a completely regular space X is strongly zero-dimensional if and every zero-set is a C-set.

Definition

A completely regular space X is called almost strongly zero-dimensional (ASZD) if every zero-set $F \subseteq X$ is C_{σ}.

Y is metrizable and separable

Theorem (K., 2017)

If X is a completely regular space and Y is a disconnected metrizable separable space, then the following conditions are equivalent:
(1) X is almost strongly zero-dimensional;
(2) $\mathscr{F}_{\sigma}^{*}(X, Y)=\mathrm{B}_{1}(X, Y)$.

Y is metrizable

\checkmark A family $\mathcal{A}=\left(A_{i}: i \in I\right)$ of subsets of a topological space X is called strongly functionally discrete, if there exists a discrete family ($U_{i}: i \in I$) of cozero subsets of X such that $\overline{A_{i}} \subseteq U_{i}$ for every $i \in I$.
\bullet A family \mathcal{B} of sets of a topological space X is called a base for a map $f: X \rightarrow Y$ if the preimage $f^{-1}(V)$ of an arbitrary open set V in Y is a union of sets from \mathcal{B}.
\checkmark If \mathcal{B} is a countable union of strongly functionally discrete families, we say that f is σ-strongly functionally discrete, $f \in \Sigma^{s}(X, Y)$.

If Y is metrizable and separable space, then

every function $f: X \rightarrow Y$ is σ-strongly functionally discrete.

Y is metrizable

Theorem (K., 2017)

If X is a completely regular space with $\operatorname{dim} X=0$ and Y is a metrizable space, then

$$
\mathscr{F}_{\sigma}^{*}(X, Y) \cap \Sigma^{s}(X, Y)=\mathrm{B}_{1}(X, Y) .
$$

Y is metrizable

Theorem (K., 2017)

If X is a completely regular space with $\operatorname{dim} X=0$ and Y is a metrizable space, then

$$
\mathscr{F}_{\sigma}^{*}(X, Y) \cap \Sigma^{s}(X, Y)=\mathrm{B}_{1}(X, Y) .
$$

Theorem (K., 2017)

If X is a completely regular space and Y is a disconnected metrizable separable space, then the following conditions are equivalent:
(1) X is almost strongly zero-dimensional;
(2) $\mathscr{F}_{\sigma}^{*}(X, Y)=\mathrm{B}_{1}(X, Y)$.

A question

Do there exists a completely regular (metrizable separable) almost strongly zero-dimensional space X with $\operatorname{dim} X>0$?

A question

Do there exists a completely regular (metrizable separable) almost strongly zero-dimensional space X with $\operatorname{dim} X>0$?
strongly zero-dim \Rightarrow zero-dim $\Rightarrow \mathrm{AZD} \Rightarrow$ totally disconnected

Properties of ASZD spaces

Theorem (K., 2022)

(1) $\operatorname{dim} X=0 \Rightarrow X$ is ASZD $\Rightarrow X$ is totally separated
(2) If X is countably compact or X is a continuous image of a Polish space, then X is ASZD $\Leftrightarrow \operatorname{dim} X=0$.
(3) If X is a perfectly normal with $\operatorname{dim} X=0$ and $\varphi: X \rightarrow \mathbb{R}$ is piecewise continuous. Then the graph $\Gamma_{\varphi} \subseteq X \times \mathbb{R}$ is ASZD.

Y is not metrizable

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally convex space, then

$$
C B_{\alpha}(X \times Y, Z) \subseteq B_{\alpha+1}(X \times Y, Z)
$$

Y is not metrizable

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally convex space, then

$$
C B_{\alpha}(X \times Y, Z) \subseteq B_{\alpha+1}(X \times Y, Z)
$$

$f:[0,1] \times[0,1] \rightarrow[0,1], f \in C B_{1} \Rightarrow f \in B_{2} \Leftrightarrow f=\lim f_{n}, f_{n} \in B_{1}$

Y is not metrizable

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally convex space, then

$$
C B_{\alpha}(X \times Y, Z) \subseteq B_{\alpha+1}(X \times Y, Z)
$$

$f:[0,1] \times[0,1] \rightarrow[0,1], f \in C B_{1} \Rightarrow f \in B_{2} \Leftrightarrow f=\lim f_{n}, f_{n} \in B_{1}$

Question (O. Sobchuk and V. Mykhaylyuk, 1995)

Is every function $f \in C B_{1}([0,1] \times[0,1],[0,1])$ a pointwise limit of separately continuous functions $f_{n}:[0,1] \times[0,1] \rightarrow[0,1]$?

Y is not metrizable

Question (O. Sobchuk and V. Mykhaylyuk, 1995)

Is every function $f \in C B_{1}([0,1] \times[0,1],[0,1])$ a pointwise limit of separately continuous functions $f_{n}:[0,1] \times[0,1] \rightarrow[0,1]$?

\Uparrow

Question (T. Banakh)

$$
\mathscr{F}_{\sigma}\left([0,1], C_{p}([0,1])\right)=B_{1}\left([0,1], C_{p}([0,1])\right) ?
$$

Y is not metrizable

Question (O. Sobchuk and V. Mykhaylyuk, 1995)

Is every function $f \in C B_{1}([0,1] \times[0,1],[0,1])$ a pointwise limit of separately continuous functions $f_{n}:[0,1] \times[0,1] \rightarrow[0,1]$?

\Uparrow

Question (T. Banakh)

$$
\mathscr{F}_{\sigma}\left([0,1], C_{p}([0,1])\right)=B_{1}\left([0,1], C_{p}([0,1])\right) ?
$$

$$
\mathscr{F}_{\sigma}\left([0,1], C_{p}([0,1])\right) \subset B_{2}\left([0,1], C_{p}([0,1])\right)
$$

HOMOTOPIC BAIRE-1 CLASS

An equivalent definition of the fist Baire class

Definition

We say that $f \in \mathrm{~B}_{1}(X, Y)$ if there exists a continuous map $H: X \times \omega \rightarrow Y$ such that $f(x)=\lim _{n \rightarrow \infty} H(x, n)$ for every $x \in X$.

The first homotopic Baire class

Definition

We say that $f \in \mathrm{hB}_{1}(X, Y)$ if there exists a continuous map $H: X \times[0,+\infty) \rightarrow Y$ such that $f(x)=\lim _{n \rightarrow \infty} H(x, n)$ for every $x \in X$.

The first homotopic Baire class

Definition

We say that $f \in \mathrm{hB}_{1}(X, Y)$ if there exists a continuous map $H: X \times[0,+\infty) \rightarrow Y$ such that $f(x)=\lim _{n \rightarrow \infty} H(x, n)$ for every $x \in X$.

If Y is contractible, then $\mathrm{B}_{1}(X, Y)=\mathrm{hB}_{1}(X, Y)$.

The first homotopic Baire class

Question (S. Maksymenko).
Let S^{1} be the unit circle in \mathbb{C}. Is it true that $\mathrm{B}_{1}\left(S^{1}, S^{1}\right)=\mathrm{hB}_{1}\left(S^{1}, S^{1}\right)$?

The first homotopic Baire class

Question (S. Maksymenko).
Let S^{1} be the unit circle in \mathbb{C}. Is it true that $\mathrm{B}_{1}\left(S^{1}, S^{1}\right)=\mathrm{hB}_{1}\left(S^{1}, S^{1}\right)$?

General problem
To describe classes of spaces X and Y such that $\mathrm{B}_{1}(X, Y)=\mathrm{hB}_{1}(X, Y)$.

B_{1}-Lifting property

A continuous map $f: X \rightarrow Y$ is a weak local homeomorphism if $\forall y \in Y$ $\exists V \ni y, U \subseteq X$ such that $\left.f\right|_{U}: U \rightarrow V$ is a homeomorphism.

B_{1}-Lifting property

A continuous map $f: X \rightarrow Y$ is a weak local homeomorphism if $\forall y \in Y$ $\exists V \ni y, U \subseteq X$ such that $\left.f\right|_{U}: U \rightarrow V$ is a homeomorphism.

Assume that X, Y and Z are topological spaces and $\varphi: Z \rightarrow Y$ is a weak local homeomorphism. We say that the triple (X, Y, Z) has \mathscr{P}-Lifting Property whenever for all $f \in \mathscr{P}(X, Y)$ there exists $g \in \mathscr{P}(X, Z)$ such that $f=\varphi \circ g$.

Results and questions

Lifting Theorem for B_{1}-functions (K. and Maksymenko, 2020)

Let X, Y, Z be topological spaces and Y is a paracompact space weakly covered by a metrizable path-connected and locally path-connected space Z. Then (X, Y, Z) has B_{1}-Lifting Property.

Results and questions

Lifting Theorem for B_{1}-functions (K. and Maksymenko, 2020)

Let X, Y, Z be topological spaces and Y is a paracompact space weakly covered by a metrizable path-connected and locally path-connected space Z. Then (X, Y, Z) has B_{1}-Lifting Property.

Theorem (K. and Maksymenko, 2020)

Any open path-connected subset of a normed space is weakly covered by a contractible and locally contractible metrizable space.

Results and questions

Theorem (K. and Maksymenko, 2020)

Let X be a topological space and Y be a path-connected metrizable ANR. Then

$$
\mathrm{B}_{1}(X, Y)=h \mathrm{~B}_{1}(X, Y)
$$

Results and questions

Question 1

Do there exists a path-connected subset $X \subseteq \mathbb{R}^{2}$ such that $\mathrm{B}_{1}(X, X) \neq \mathrm{hB}_{1}(X, X)$?

Results and questions

Question 1

Do there exists a path-connected subset $X \subseteq \mathbb{R}^{2}$ such that $\mathrm{B}_{1}(X, X) \neq \mathrm{hB}_{1}(X, X)$?

$$
f \in \mathrm{hB}_{1}(X, X)
$$

Results and questions

Question 1

Do there exists a path-connected subset $X \subseteq \mathbb{R}^{2}$ such that $\mathrm{B}_{1}(X, X) \neq \mathrm{hB}_{1}(X, X)$?

$$
\begin{gathered}
f \in \mathrm{hB}_{1}(X, X) \\
\Downarrow \\
f \text { is a uniform limit of a sequence of } f_{n} \in \mathrm{hB}_{1}(X, X)
\end{gathered}
$$

Results and questions

Question 1

Do there exists a path-connected subset $X \subseteq \mathbb{R}^{2}$ such that $\mathrm{B}_{1}(X, X) \neq \mathrm{hB}_{1}(X, X)$?

$$
\begin{gathered}
f \in \mathrm{hB}_{1}(X, X) \\
\Downarrow
\end{gathered}
$$

f is a uniform limit of a sequence of $f_{n} \in \mathrm{hB}_{1}(X, X)$
\Downarrow

Question 2

Assume that $X \subseteq \mathbb{R}^{2}$ is a path-connected space. Is it true that $\mathrm{hB}_{1}(X, X)$ is closed under uniform limits?

FRAGMENTABILITY

Definition

Let X be a topological space, (Y, d) be a metric space and $\varepsilon>0$.

A function $f: X \rightarrow Y$ is fragmented, if for every $\varepsilon>0$ it is ε-fragmented, i.e. there exists a sequence $\mathscr{U}=\left(U_{\xi}: \xi \in[0, \alpha)\right)$ in X of open sets such that

- $\operatorname{diam} f\left(U_{\xi+1} \backslash U_{\xi}\right)<\varepsilon$ for all $\xi \in[0, \alpha)$;
- $\emptyset=U_{0} \subset U_{1} \subset U_{2} \subset \ldots$;
- $U_{\gamma}=\bigcup_{\xi<\gamma} U_{\xi}$ for every limit ordinal $\gamma \in[0, \alpha)$.

We call α an index of ε-fragmentability of f.

Theorem (Jayne, Orihuela, Pallarés and Vera, 1992)

Let X be a perfectly paracompact hereditarily Baire space, Y be a convex subset of a Banach space. The following are equivalent:

- f is fragmented;
- f is of the first Baire class.

Functionally fragmented maps

A function $f: X \rightarrow Y$ is fragmented, if for every $\varepsilon>0$ there exists a sequence $\mathscr{U}=\left(U_{\xi}: \xi \in[0, \alpha)\right)$ in X of open sets such that

- $\operatorname{diam} f\left(U_{\xi+1} \backslash U_{\xi}\right)<\varepsilon$ for all $\xi \in[0, \alpha)$;
- $\emptyset=U_{0} \subset U_{1} \subset U_{2} \subset \ldots$;
- $U_{\gamma}=\bigcup_{\xi<\gamma} U_{\xi}$ for every limit ordinal $\gamma \in[0, \alpha)$.

Functionally fragmented maps

A function $f: X \rightarrow Y$ is fragmented, if for every $\varepsilon>0$ there exists a sequence $\mathscr{U}=\left(U_{\xi}: \xi \in[0, \alpha)\right)$ in X of open sets such that

- $\operatorname{diam} f\left(U_{\xi+1} \backslash U_{\xi}\right)<\varepsilon$ for all $\xi \in[0, \alpha)$;
- $\emptyset=U_{0} \subset U_{1} \subset U_{2} \subset \ldots$;
- $U_{\gamma}=\bigcup_{\xi<\gamma} U_{\xi}$ for every limit ordinal $\gamma \in[0, \alpha)$.

An ε-fragmented map $f: X \rightarrow Y$ is

- functionally ε-fragmented if every U_{ξ} is a cozero set in X;
functionally ε-countably fragmented if \mathscr{U} can be chosen to be countable;
- functionally countably fragmented if f is functionally ε-countably fragmented for all $\varepsilon>0$.

Functionally fragmented maps

Relations between different types of fragmentability

(1) Let X be a topological space, (Y, d) be a metric space, $\varepsilon>0$ and $f: X \rightarrow Y$ be a map. If one of the following conditions holds

- Y is separable and f is continuous,
- X is hereditarily Lindelöf and f is fragmented,
- X is compact and $f \in \mathrm{~B}_{1}(X, Y)$,
- X is Lindelöf, $f \in \mathrm{~B}_{1}(X, Y)$ and fragmented,
- X is Lindelöf, f is functionally fragmented, then f is functionally countably fragmented.

Relations between different types of fragmentability

(1) Let X be a topological space, (Y, d) be a metric space, $\varepsilon>0$ and $f: X \rightarrow Y$ be a map. If one of the following conditions holds

- Y is separable and f is continuous,
- X is hereditarily Lindelöf and f is fragmented,
- X is compact and $f \in \mathrm{~B}_{1}(X, Y)$,
- X is Lindelöf, $f \in \mathrm{~B}_{1}(X, Y)$ and fragmented,
- X is Lindelöf, f is functionally fragmented, then f is functionally countably fragmented.
(2) If one of the following conditions holds
- f is functionally countably fragmented,
- X is perfectly paracompact and f is fragmented,
- X is paracompact and f is functionally fragmented, then $f \in B_{1}(X, \mathbb{R})$.

Relations between different types of fragmentability

(1) Let X be a topological space, (Y, d) be a metric space, $\varepsilon>0$ and $f: X \rightarrow Y$ be a map. If one of the following conditions holds

- Y is separable and f is continuous,
- X is hereditarily Lindelöf and f is fragmented,
- X is compact and $f \in \mathrm{~B}_{1}(X, Y)$,
- X is Lindelöf, $f \in \mathrm{~B}_{1}(X, Y)$ and fragmented,
- X is Lindelöf, f is functionally fragmented, then f is functionally countably fragmented.
(2) If one of the following conditions holds
- f is functionally countably fragmented,
- X is perfectly paracompact and f is fragmented,
- X is paracompact and f is functionally fragmented, then $f \in B_{1}(X, \mathbb{R})$.
(3) If X is hereditarily Baire and $f \in B_{1}(X, \mathbb{R})$, then f is fragmented.

Further relations $(Y=\mathbb{R})$

- X is compact
- X is Lindelöf
- X is perfectly paracompact
- X is hereditarily Baire
- X is paracompact

Further relations $(Y=\mathbb{R})$

- X is compact
- X is Lindelöf
- X is perfectly paracompact
- X is hereditarily Baire

Question

Let X be paracompact, $f: X \rightarrow \mathbb{R}$ be fragmented and $f \in B_{1}$. Is f functionally fragmented?

Application of fragmentability to extension of B_{1}-functions

Theorem (O. Kalenda and J. Spurný, 2005)

Let E be a Lindelöf subspace of a completely regular space X and $f: E \rightarrow \mathbb{R}$ be a Baire-one function. If

- E is G_{δ}, or
- E is hereditarily Baire, then there exists a Baire-one function $g: X \rightarrow \mathbb{R}$ such that $g=f$ on E.

Questions

(1) Let X be a hereditarily Baire completely regular space and f a Baire-one function on X. Can f be extended to a Baire-one function on βX ?
(2) Let X be a normal space, Y a closed hereditarily Baire subset of X and f a Baire-one function on Y. Can f be extended to a Baire-one function on X ?
(3) Let X be a normal space, $Y=\bigcap_{n \in \omega} G_{n} \subseteq X$ is an intersection of co-zero sets and f a Baire-one function on Y. Can f be extended to a Baire-one function on X ?

Application of fragmentability to extension of B_{1}-functions

Theorem (K. and Mykhaylyuk, 2020)

Let X be a completely regular space and $f: X \rightarrow \mathbb{R}$ be a Baire-one function. Consider the following conditions:
(i) f is functionally countably fragmented,
(ii) f is extendable to a Baire-one function on βX,
(iii) f is extendable to a Baire-one function on any completely regular space $Y \supseteq X$,
(iv) f is extendable to a Baire-one function on any compactification Y of X,
(v) f is fragmented.

Then (i) \Leftrightarrow (ii).
If X is Lindelöff, then

$$
(\mathrm{i}) \Leftrightarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii}) \Leftrightarrow(\mathrm{iv}) \Leftrightarrow(\mathrm{v})
$$

Corollary

Question 1 (O. Kalenda and J. Spurny)

Let X be a hereditarily Baire completely regular space and f a Baire-one function on X. Can f be extended to a Baire-one function on βX ?

Corollary

Question 1 (O. Kalenda and J. Spurny)

Let X be a hereditarily Baire completely regular space and f a Baire-one function on X. Can f be extended to a Baire-one function on βX ?

Theorem (K. and Mykhaylyuk, 2020)
There exist a completely metrizable locally compact space X and a Baire one function $f: X \rightarrow[0,1]$ such that f is not countably fragmented, in particular, f can not be extended to a Baire one function $g: \beta X \rightarrow[0,1]$.

Corollary

- For every ordinal $\alpha \in\left[\omega, \omega_{1}\right)$ there exists a function $f:[0,1] \rightarrow[0,1]$ such that the index of the 1 -fragmentability of f is $\alpha+1$.

Corollary

- For every ordinal $\alpha \in\left[\omega, \omega_{1}\right)$ there exists a function $f:[0,1] \rightarrow[0,1]$ such that the index of the 1 -fragmentability of f is $\alpha+1$.
- For every $\alpha<\omega_{1}$ we put $X_{\alpha}=[0,1]$ and consider the completely metrizable locally compact space $X=\underset{\alpha<\omega_{1}}{\bigoplus} X_{\alpha}$.
Now for every $\alpha<\omega_{1}$ we choose a countably fragmented function $f_{\alpha}: X_{\alpha} \rightarrow[0,1]$ such that the index of fragmentability of f is greater than α. Now we consider the function $f: X \rightarrow[0,1], f(x)=f_{\alpha}(x)$ if $x \in X_{\alpha}$. Since every f_{α} is a Baire one function, f is a Baire one function too. Moreover, it is clear that f is not countably fragmented.

POSTSCRIPTUM

POSTSCRIPTUM

I express my boundless

 gratitude to the Ukrainian Armed Forces for theircourage and self-sacrifice, which made it possible
for me to be here

POSTSCRIPTUM

Thank you for the attention!
Glory to Ukraine!

