Topologies related to (I)-envelopes

Ondřej F.K. Kalenda¹ and Matias Raja²

¹Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University

²Departamento de Matemáticas Universidad de Murcia Murcia, Spain

Prague Symposia on General Topology and its Relations to Modern Analysis and Algebra Prague, July 25–29, 2022

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Theorem [Fonf & Lindenstrauss, 2003]

Let X be a (real) Banach space, $K \subset X^*$ convex, weak*-compact, $B \subset K$ a boundary, i.e.,

$$\forall x \in X \exists b \in B \colon b(x) = \max \langle K, x \rangle,$$

then B(I)-generates K, i.e.,

$$B = \bigcup_n B_n \Rightarrow K = \overline{\operatorname{conv} \bigcup_n \overline{\operatorname{conv} B_n}^{w^*}}^{\|\cdot\|}$$

Theorem [Fonf & Lindenstrauss, 2003]

Let X be a (real) Banach space, $K \subset X^*$ convex, weak*-compact, $B \subset K$ a boundary, i.e.,

$$\forall x \in X \exists b \in B \colon b(x) = \max \langle K, x \rangle,$$

then B(I)-generates K, i.e.,

$$B = \bigcup_n B_n \Rightarrow K = \overline{\operatorname{conv} \bigcup_n \overline{\operatorname{conv} B_n}^{W^*}}^{\|\cdot\|}$$

Definition [OK, 2007]

Let X be a Banach space and $A \subset X^*$. The (I)-envelope of A is defined by

(I)-env(A) =
$$\bigcap \left\{ \overline{\operatorname{conv} \bigcup_{n=1}^{\infty} \overline{\operatorname{conv} A_n}^{w^*}}^{\|\cdot\|}; A = \bigcup_{n=1}^{\infty} A_n \right\}.$$

► (I)-env(A) is a norm-closed convex set containing A.

(日)

(I)-env(A) is a norm-closed convex set containing A. conv A^{||·||} ⊂ (I)-env(A) ⊂ conv A^{w*}.

(日) (圖) (E) (E) (E)

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

• A is norm-separable
$$\Rightarrow$$
 (I)-env(A) = $\overline{\operatorname{conv} A}^{\|\cdot\|}$.

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

A proof of James' compactness theorem in separable Banach spaces and in some more general Banach spaces (with weak*-sequentially compact dual unit ball).

• Image: A image:

- A proof of James' compactness theorem in separable Banach spaces and in some more general Banach spaces (with weak*-sequentially compact dual unit ball).
- A geometric reformulation of Simons equality.

A (1) < (1) < (2) < (2) </p>

- A proof of James' compactness theorem in separable Banach spaces and in some more general Banach spaces (with weak*-sequentially compact dual unit ball).
- A geometric reformulation of Simons equality.
- A characterization of Grothendieck spaces: X is Grothendieck \Leftrightarrow (I)-env(X) = X^{**}.

A (1) < (1) < (2) < (2) </p>

- A proof of James' compactness theorem in separable Banach spaces and in some more general Banach spaces (with weak*-sequentially compact dual unit ball).
- A geometric reformulation of Simons equality.
- ► A characterization of Grothendieck spaces: X is Grothendieck ⇔ (I)-env(X) = X^{**}.
- [Bendová 2014] A characterization of quantitatively Grothedieck spaces:

X is c-Grothendieck \Leftrightarrow (I)-env $(B_X) \supset \frac{1}{c} \cdot B_{X^{**}}$.

(日)

Question Is there a (locally convex) topology τ on X^* such that

$$\forall A \subset X^* \colon (\mathsf{I})\operatorname{-env}(A) = \overline{\operatorname{conv} A}^{\tau} ?$$

< 回 > < 回 > < 回 > -

Question

Is there a (locally convex) topology τ on X^* such that

$$\forall A \subset X^*$$
: (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$?

Remark

Sometimes yes.

•
$$X^*$$
 separable $\Rightarrow \tau = \|\cdot\|$ works.

A (1) < (2) < (3) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (4) < (

Question

Is there a (locally convex) topology τ on X^* such that

$$\forall A \subset X^*$$
: (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$?

Remark

Sometimes yes.

- X^* separable $\Rightarrow \tau = \|\cdot\|$ works.
- ► [Fonf & Lindenstrauss, 2003] X separable, $\ell_1 \not\subset X \Rightarrow \tau = \|\cdot\|$ works.

< 同 > < 回 > < 回 > -

э

Lemma [OK, 2007]

Let X be a Banach space, $A \subset X^*$ and $\eta \in X^*$. The following assertions are equivalent.

- 1. $\eta \notin (I)$ -env(A).
- 2. There is a sequence (x_n) in B_X such that $\sup_{\xi \in A} \limsup_{n \to \infty} \operatorname{Re} \xi(x_n) < \inf_{n \in \mathbb{N}} \operatorname{Re} \eta(x_n).$
- 3. There is a sequence (x_n) in B_X such that $\sup_{\xi \in A} \limsup_{n \to \infty} \operatorname{Re} \xi(x_n) < \liminf_{n \to \infty} \operatorname{Re} \eta(x_n).$
- 4. There is a sequence (x_n) in B_X such that $\sup_{\xi \in A} \limsup_{n \to \infty} \operatorname{Re} \xi(x_n) < \limsup_{n \to \infty} \operatorname{Re} \eta(x_n).$

・ロト ・四ト ・ヨト ・ヨト

э

Locally convex case - a positive result

Notation For a Banach space X set $B_1(X) = \{x^{**} \in X^{**} ; \exists (x_n) \text{ a sequence in } X : x_n \xrightarrow{w^*} x^{**}\},\ C(X) = \{x^{**} \in X^{**} ; \exists C \subset X \text{ countable} : x^{**} \in \overline{C}^{w^*}\}.$

(日本)(日本)(日本)(日本)

Locally convex case - a positive result

Notation For a Banach space X set $B_1(X) = \{x^{**} \in X^{**} ; \exists (x_n) \text{ a sequence in } X : x_n \xrightarrow{w^*} x^{**}\},\ C(X) = \{x^{**} \in X^{**} ; \exists C \subset X \text{ countable} : x^{**} \in \overline{C}^{w^*}\}.$ Proposition

Let *X* be a Banach space and $A \subset X^*$. Then

 $\overline{\operatorname{conv} A}^{\sigma(X^*,C(X))} \subset (\mathsf{I})\operatorname{-env}(A) \subset \overline{\operatorname{conv} A}^{\sigma(X^*,B_1(X))}.$

|▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Locally convex case - a positive result

Notation For a Banach space X set $B_1(X) = \{x^{**} \in X^{**} ; \exists (x_n) \text{ a sequence in } X : x_n \xrightarrow{w^*} x^{**}\},\ C(X) = \{x^{**} \in X^{**} ; \exists C \subset X \text{ countable} : x^{**} \in \overline{C}^{w^*}\}.$ Proposition

Let X be a Banach space and $A \subset X^*$. Then

$$\overline{\operatorname{conv} A}^{\sigma(X^*,C(X))} \subset (\mathsf{I})\operatorname{-env}(A) \subset \overline{\operatorname{conv} A}^{\sigma(X^*,B_1(X))}$$

Theorem

Assume that X is a Banach space not containing an isomorphic copy of ℓ^1 . Then $B_1(X) = C(X)$, hence for any set $A \subset X^*$ we have

(I)-env
$$\mathbf{A} = \overline{\operatorname{conv} \mathbf{A}}^{\sigma(X^*, B_1(X))}$$

イロト イヨト イヨト イヨト 三日

Lemma

Let X be a Banach space.

• Let $Y \subset X^*$ be a linear subspace. Then (I)-env(Y) = { $\eta \in X^*$; \forall (x_n) sequence in B_X :

$$x_n \stackrel{\sigma(X,Y)}{\longrightarrow} \mathbf{0} \Rightarrow \eta(x_n) \to \mathbf{0}\}.$$

Lemma

Let X be a Banach space.

Let Y ⊂ X* be a linear subspace. Then (I)-env(Y) = {η ∈ X* ; ∀(x_n) sequence in B_X : x_n ^{σ(X,Y)} 0 ⇒ η(x_n) → 0}.
Assume that x** ∈ X**. Then (I)-env(ker x**) = {ker x** x** ∈ B₁(X) X* x** ∉ B₁(X).

< 国 > < 国 > < 国 > -

Lemma

Let X be a Banach space.

Let Y ⊂ X* be a linear subspace. Then (I)-env(Y) = {η ∈ X* ; ∀(x_n) sequence in B_X : x_n ^{σ(X,Y)} 0 ⇒ η(x_n) → 0}.
Assume that x** ∈ X**. Then (I)-env(ker x**) = {ker x** x** ∈ B₁(X) X* x** ∉ B₁(X).

Corollary

Let X be a Banach space. Assume that there is a locally convex topology τ on X* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$. Then $(X^*, \tau)^* = B_1(X)$.

・ロト ・四ト ・ヨト ・ヨト

Let X be a Banach space. The following assertions are equivalent.

1. There is a locally convex topology τ on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$.

2. (I)-env(A) =
$$\overline{\operatorname{conv} A}^{\sigma(X^*,B_1(X))}$$
 for each $A \subset X^*$.

< 同 > < 回 > < 回 > <

э

Let X be a Banach space. The following assertions are equivalent.

1. There is a locally convex topology τ on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$.

2. (I)-env(A) =
$$\overline{\operatorname{conv} A}^{\sigma(X^*,B_1(X))}$$
 for each $A \subset X^*$.

Example

There is no locally convex topology τ on $(\ell^1)^*$ such that (I)-env $(A) = \overline{\operatorname{conv} A}^{\tau}$ for each $A \subset (\ell^1)^*$.

< 同 > < 回 > < 回 > <

Let X be a Banach space. The following assertions are equivalent.

1. There is a locally convex topology τ on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$.

2. (I)-env(A) =
$$\overline{\operatorname{conv} A}^{\sigma(X^*,B_1(X))}$$
 for each $A \subset X^*$.

Example

There is no locally convex topology τ on $(\ell^1)^*$ such that (I)-env $(A) = \overline{\operatorname{conv} A}^{\tau}$ for each $A \subset (\ell^1)^*$.

Proof

$$\blacktriangleright B_1(\ell^1) = \ell^1 \Rightarrow \sigma((\ell^1)^*, B_1(\ell^1)) = w^*$$

Let X be a Banach space. The following assertions are equivalent.

1. There is a locally convex topology τ on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$.

2. (I)-env(A) =
$$\overline{\operatorname{conv} A}^{\sigma(X^*,B_1(X))}$$
 for each $A \subset X^*$.

Example

There is no locally convex topology τ on $(\ell^1)^*$ such that (I)-env $(A) = \overline{\operatorname{conv} A}^{\tau}$ for each $A \subset (\ell^1)^*$.

Proof

$$B_1(\ell^1) = \ell^1 \Rightarrow \sigma((\ell^1)^*, B_1(\ell^1)) = w^*$$
$$A = c_0 \subset \ell^\infty = (\ell^1)^*$$

< □→ < □→ < □→ □ □

Similar examples may be found in X^* in the following cases:

 X is a non-reflexive weakly sequentially complete Banach space;

<回><モン<

Similar examples may be found in X^* in the following cases:

- X is a non-reflexive weakly sequentially complete Banach space;
- X contains a complemented copy of ℓ^1 ;

- 同下 - ヨト - ヨト

Similar examples may be found in X^* in the following cases:

- X is a non-reflexive weakly sequentially complete Banach space;
- X contains a complemented copy of ℓ^1 ;
- X = C(K) where K is an uncountable metrizable compact space.

<回>< E> < E> < E> = E

Question

Is it true that $\ell_1 \not\subset X$ if and only if there is a locally convex topology τ on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$?

< 同 > < 回 > < 回 > <

э

Question

Is it true that $\ell_1 \not\subset X$ if and only if there is a locally convex topology τ on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A}^{\tau}$ for each $A \subset X^*$?

Question

Is there a locally convex topology on X^* such that (I)-env(A) = $\overline{\operatorname{conv} A^{\tau}}$ for each bounded $A \subset X^*$?

Topological case - a naive try

Definition For $A \subset X^*$ define (I)-cl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Topological case – a naive try

Definition For $A \subset X^*$ define (I)-cl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$ (I)-ccl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{\operatorname{conv} A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$

・ロト ・四ト ・ヨト

Topological case - a naive try

Definition For $A \subset X^*$ define (I)-cl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$ (I)-ccl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{\operatorname{conv} A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$

Facts

(I)-cl and (I)-ccl are idempotent closure operators.

(日)

Topological case - a naive try

Definition For $A \subset X^*$ define (I)-cl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$ (I)-ccl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{\operatorname{conv} A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$

Facts

(I)-cl and (I)-ccl are idempotent closure operators.

$$\blacktriangleright (I)-cl(A) = (I)-ccl(A).$$

(日)

Topological case – a naive try

Definition For $A \subset X^*$ define (I)-cl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$ (I)-ccl $(A) = \bigcap \left\{ \overline{\bigcup_{n=1}^{\infty} \overline{\operatorname{conv} A_n}^{w^*}} ; A = \bigcup_{n=1}^{\infty} A_n \right\}$

Facts

(I)-cl and (I)-ccl are idempotent closure operators.

$$(I)-cl(A) = (I)-ccl(A).$$

Example

Let X = C[0, 1] and let A consist of countably supported probabilities on [0, 1]. Then A is convex and (I)-cl(A) = (I)-ccl(A) = A $\subsetneq P[0, 1] = (I)$ -env(A).

$$cl_{IF}(A) = \bigcap \left\{ \bigcup_{k=1}^{n} (I) - env(A_k) ; A = \bigcup_{k=1}^{n} A_k \right\}$$

▲御▶ ▲ 国▶ ▲ 国▶ …

$$\mathsf{cl}_{\mathit{IF}}(A) = \bigcap \left\{ \bigcup_{k=1}^{n} (\mathsf{I})\operatorname{-env}(A_k) \; ; \; A = \bigcup_{k=1}^{n} A_k \right\}$$

Proposition

cl_{IF} is a closure operator.

<回><モン<

$$\mathsf{cl}_{\mathit{IF}}(A) = \bigcap \left\{ \bigcup_{k=1}^{n} (\mathsf{I})\operatorname{-env}(A_k) \; ; \; A = \bigcup_{k=1}^{n} A_k \right\}$$

Proposition

- cl_{IF} is a closure operator.
- If α is a closure operator such that α(A) ⊂ (I)-env(A) for each A,

$$\mathsf{cl}_{\mathit{IF}}(A) = \bigcap \left\{ \bigcup_{k=1}^{n} (\mathsf{I})\operatorname{-env}(A_k) \; ; \; A = \bigcup_{k=1}^{n} A_k \right\}$$

Proposition

- cl_{IF} is a closure operator.
- If α is a closure operator such that α(A) ⊂ (I)-env(A) for each A, then α(A) ⊂ cl_{IF}(A) for each A.

Let X be a Banach space. TFAE:

 There is a topology τ on X* such that (I)-env(A) = conv A^τ for each A ⊂ X*.

- 同下 - ヨト - ヨト

Let X be a Banach space. TFAE:

 There is a topology τ on X* such that (I)-env(A) = conv A^τ for each A ⊂ X*.

2. (I)-env(
$$A$$
) = cl_{IF}(conv A) for $A \subset X^*$.

- 同下 - ヨト - ヨト

Let X be a Banach space. TFAE:

- There is a topology *τ* on X* such that (I)-env(A) = conv A^τ for each A ⊂ X*.
- 2. (I)-env(A) = cl_{IF}(conv A) for $A \subset X^*$.
- 3. (I)-env $(A_1 \cup \cdots \cup A_n) = (I)$ -env $(A_1) \cup \cdots \cup (I)$ -env (A_n) whenever $A_1, \ldots, A_n \subset X^*$ are convex and $A_1 \cup \cdots \cup A_n$ is convex as well.

-

Let X be a Banach space. TFAE:

- There is a topology *τ* on X* such that (I)-env(A) = conv A^τ for each A ⊂ X*.
- 2. (I)-env(A) = cl_{*IF*}(conv A) for $A \subset X^*$.
- 3. (I)-env $(A_1 \cup \cdots \cup A_n) = (I)$ -env $(A_1) \cup \cdots \cup (I)$ -env (A_n) whenever $A_1, \ldots, A_n \subset X^*$ are convex and $A_1 \cup \cdots \cup A_n$ is convex as well.

Question

Does 3 hold for any Banach space? Does it hold for $X = \ell^1$?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let X be a Banach space. TFAE:

- There is a topology τ on X* such that (I)-env(A) = conv A^τ for each A ⊂ X*.
- 2. (I)-env(A) = cl_{IF}(conv A) for $A \subset X^*$.
- 3. (I)-env $(A_1 \cup \cdots \cup A_n) = (I)$ -env $(A_1) \cup \cdots \cup (I)$ -env (A_n) whenever $A_1, \ldots, A_n \subset X^*$ are convex and $A_1 \cup \cdots \cup A_n$ is convex as well.

Question

Does 3 hold for any Banach space? Does it hold for $X = \ell^1$?

Thank you for your attention.