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Ondřej F.K. Kalenda and Matias Raja Topologies related to (I)-envelopes



(I)-generation and (I)-envelopes

Theorem [Fonf & Lindenstrauss, 2003]
Let X be a (real) Banach space, K ⊂ X ∗ convex,
weak*-compact, B ⊂ K a boundary, i.e.,

∀x ∈ X ∃b ∈ B : b(x) = max ⟨K , x⟩ ,
then B (I)-generates K , i.e.,

B =
⋃

n Bn ⇒ K = conv
⋃

n convBn
w∗∥·∥

.

Definition [OK, 2007]
Let X be a Banach space and A ⊂ X ∗. The (I)-envelope of A is
defined by

(I)-env(A) =
⋂conv

∞⋃
n=1

convAn
w∗

∥·∥

; A =
∞⋃

n=1

An

 .
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Basic properties

▶ (I)-env(A) is a norm-closed convex set containing A.

▶ convA
∥·∥ ⊂ (I)-env(A) ⊂ convA

w∗
.

▶ (I)-env(A) =⋂{⋃∞
n=1 convAn

w∗∥·∥
; An ↗ A,An bounded

}
.

▶ (I)-env((I)-env(A)) = (I)-env(A).

▶ A is norm-separable ⇒ (I)-env(A) = convA
∥·∥

.
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Some applications of (I)-envelopes

▶ A proof of James’ compactness theorem in separable
Banach spaces and in some more general Banach spaces
(with weak∗-sequentially compact dual unit ball).

▶ A geometric reformulation of Simons equality.
▶ A characterization of Grothendieck spaces:

X is Grothendieck ⇔ (I)-env(X ) = X ∗∗.
▶ [Bendová 2014] A characterization of quantitatively

Grothedieck spaces:
X is c-Grothendieck ⇔ (I)-env(BX ) ⊃ 1

c · BX∗∗ .
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▶ [Bendová 2014] A characterization of quantitatively
Grothedieck spaces:

X is c-Grothendieck ⇔ (I)-env(BX ) ⊃ 1
c · BX∗∗ .
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Our main problem

Question
Is there a (locally convex) topology τ on X ∗ such that

∀A ⊂ X ∗ : (I)-env(A) = convA
τ

?

Remark
Sometimes yes.
▶ X ∗ separable ⇒ τ = ∥·∥ works.
▶ [Fonf & Lindenstrauss, 2003]

X separable, ℓ1 ̸⊂ X ⇒ τ = ∥·∥ works.
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Separation lemma

Lemma [OK, 2007]
Let X be a Banach space, A ⊂ X ∗ and η ∈ X ∗. The following
assertions are equivalent.

1. η /∈ (I)-env(A).
2. There is a sequence (xn) in BX such that

supξ∈A lim supn→∞ Re ξ(xn) < infn∈N Re η(xn).

3. There is a sequence (xn) in BX such that
supξ∈A lim supn→∞ Re ξ(xn) < lim infn→∞ Re η(xn).

4. There is a sequence (xn) in BX such that
supξ∈A lim supn→∞ Re ξ(xn) < lim supn→∞ Re η(xn).

Ondřej F.K. Kalenda and Matias Raja Topologies related to (I)-envelopes



Locally convex case – a positive result

Notation
For a Banach space X set
B1(X ) = {x∗∗ ∈ X ∗∗ ; ∃(xn) a sequence in X : xn

w∗
−→ x∗∗},

C(X ) = {x∗∗ ∈ X ∗∗ ; ∃C ⊂ X countable : x∗∗ ∈ C
w∗

}.

Proposition
Let X be a Banach space and A ⊂ X ∗. Then

convA
σ(X∗,C(X)) ⊂ (I)-env(A) ⊂ convA

σ(X∗,B1(X))
.

Theorem
Assume that X is a Banach space not containing an isomorphic
copy of ℓ1. Then B1(X ) = C(X ), hence for any set A ⊂ X ∗ we
have

(I)-envA = convA
σ(X∗,B1(X))

.
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Locally convex case – a necessary condition

Lemma
Let X be a Banach space.
▶ Let Y ⊂ X ∗ be a linear subspace. Then

(I)-env(Y ) = {η ∈ X ∗ ; ∀(xn) sequence in BX :

xn
σ(X ,Y )−→ 0 ⇒ η(xn) → 0}.

▶ Assume that x∗∗ ∈ X ∗∗. Then

(I)-env(ker x∗∗) =

{
ker x∗∗ x∗∗ ∈ B1(X )

X ∗ x∗∗ /∈ B1(X ).

Corollary
Let X be a Banach space. Assume that there is a locally
convex topology τ on X ∗ such that (I)-env(A) = convA

τ
for

each A ⊂ X ∗. Then (X ∗, τ)∗ = B1(X ).
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Locally convex case – a counterexample

Proposition
Let X be a Banach space. The following assertions are
equivalent.

1. There is a locally convex topology τ on X ∗ such that
(I)-env(A) = convA

τ
for each A ⊂ X ∗.

2. (I)-env(A) = convA
σ(X∗,B1(X))

for each A ⊂ X ∗.

Example
There is no locally convex topology τ on (ℓ1)∗ such that
(I)-env(A) = convA

τ
for each A ⊂ (ℓ1)∗.

Proof
▶ B1(ℓ

1) = ℓ1 ⇒ σ((ℓ1)∗,B1(ℓ
1)) = w∗

▶ A = c0 ⊂ ℓ∞ = (ℓ1)∗
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Some more counterexamples

Similar examples may be found in X ∗ in the following cases:
▶ X is a non-reflexive weakly sequentially complete Banach

space;

▶ X contains a complemented copy of ℓ1;
▶ X = C(K ) where K is an uncountable metrizable compact

space.
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Locally convex case – open problems

Question
Is it true that ℓ1 ̸⊂ X if and only if there is a locally convex
topology τ on X ∗ such that (I)-env(A) = convA

τ
for each

A ⊂ X ∗?

Question
Is there a locally convex topology on X ∗ such that
(I)-env(A) = convA

τ
for each bounded A ⊂ X ∗?

Ondřej F.K. Kalenda and Matias Raja Topologies related to (I)-envelopes



Locally convex case – open problems

Question
Is it true that ℓ1 ̸⊂ X if and only if there is a locally convex
topology τ on X ∗ such that (I)-env(A) = convA

τ
for each

A ⊂ X ∗?

Question
Is there a locally convex topology on X ∗ such that
(I)-env(A) = convA

τ
for each bounded A ⊂ X ∗?
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Topological case – a naive try

Definition
For A ⊂ X ∗ define

▶ (I)-cl(A) =
⋂{⋃∞

n=1 An
w∗∥·∥

; A =
⋃∞

n=1 An

}

▶ (I)-ccl(A) =
⋂{⋃∞

n=1 convAn
w∗∥·∥

; A =
⋃∞

n=1 An

}
Facts
▶ (I)-cl and (I)-ccl are idempotent closure operators.
▶ (I)-cl(A) = (I)-ccl(A).

Example
Let X = C[0,1] and let A consist of countably supported
probabilities on [0,1]. Then A is convex and
(I)-cl(A) = (I)-ccl(A) = A ⫋ P[0,1] = (I)-env(A).
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Topological case – the maximal closure operator

Definition
For A ⊂ X ∗ define

clIF (A) =
⋂{

n⋃
k=1

(I)-env(Ak ) ; A =
n⋃

k=1

Ak

}

Proposition
▶ clIF is a closure operator.
▶ If α is a closure operator such that α(A) ⊂ (I)-env(A) for

each A, then α(A) ⊂ clIF (A) for each A.
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each A, then α(A) ⊂ clIF (A) for each A.
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Topological case – the key problem

Theorem
Let X be a Banach space. TFAE:

1. There is a topology τ on X ∗ such that (I)-env(A) = convA
τ

for each A ⊂ X ∗.

2. (I)-env(A) = clIF (convA) for A ⊂ X ∗.
3. (I)-env(A1 ∪ · · · ∪ An) = (I)-env(A1) ∪ · · · ∪ (I)-env(An)

whenever A1, . . . ,An ⊂ X ∗ are convex and A1 ∪ · · · ∪ An is
convex as well.

Question
Does 3 hold for any Banach space? Does it hold for X = ℓ1?

Thank you for your attention.
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