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Introduction.

Let us consider the following problem:

Problem 1 Let P be a covering property. For what kind

of compact spaces K does Cp(K) satisfy P hereditarily?

The most important covering property, beyond compactness,

is paracompactness.

For this property, the solution to the above problem is known.
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Theorem TFAE for a compact space K :

A. Cp(K) is hereditarily paracompact.

B. Cp(K) is hereditarily Lindelöf.

C. K is hereditarily separable.

For various generalizations of paracompactness,

we do not have such clearcut solutions to Problem 1.

For example, a paper by Tkachuk lists twenty problems

on metacompactness of Cp -spaces, and they seem to remain unsolved.

Here I will consider a generalization of metacompactness.

A space X is σ -metacompact if every open cover of X

has a σ -point-finite open refinement.

With this property, some solutions exist for Problem 1.

-



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.

A space X is countably metacompact



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.

A space X is countably metacompact

if every countable open cover of X has a point-finite open refinement.



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.

A space X is countably metacompact

if every countable open cover of X has a point-finite open refinement.

X is metacompact iff X is σ -metacompact and countably metacompact.



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.

A space X is countably metacompact

if every countable open cover of X has a point-finite open refinement.

X is metacompact iff X is σ -metacompact and countably metacompact.

Through this connection, results on σ -metacompactness



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.

A space X is countably metacompact

if every countable open cover of X has a point-finite open refinement.

X is metacompact iff X is σ -metacompact and countably metacompact.

Through this connection, results on σ -metacompactness

can sometimes be used to reduce problems on metacompactness



Gulko has shown that for every Corson compact space K ,

the space Cp(K) is hereditarily σ -metacompact.

Dow, Junnila and Pelant (DJP) showed that

if T̄ is the one-point compactification of a tree T ,

then Cp(T̄ ) is hereditarily σ -metacompact;

we also showed that Cp(βω) is not σ -metacompact.

A space X is countably metacompact

if every countable open cover of X has a point-finite open refinement.

X is metacompact iff X is σ -metacompact and countably metacompact.

Through this connection, results on σ -metacompactness

can sometimes be used to reduce problems on metacompactness

to problems on countable metacompactness.
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Property (∗) .

A family L of subsets of a space X is a k -network of X

provided that for every compact closed subset C of X

and for every nbhd G of the set C ,

there exists a finite K ⊂ L such that K ⊂
⋃
K ⊂ G .

In a locally compact space, k -networks are related to quasi-bases.

A family H of subsets of a space X is a quasi-base of X

if {H ∈ H : x ∈ IntH} is a nbhd base of x in X for each x ∈ X .

Every quasi-base is a k -network.

Lemma A family L in a locally compact regular space X

is a k -network of X if, and only if,

the family
{⋃
N : N ∈ [L]<ω

}
is a quasi-base of X .
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If F consists of closed sets, then for every x ∈ X ,

the family
{⋃
H : H ∈

[
(F)x

]<ω}
contains a nbhd base of x .

I will consider compact spaces which have a k -network F
satisfying the following property.

(∗) For all x ∈ X and S ∈ F , there exists a finite E ⊂ S such that

for each F ∈ F , if x ∈ F and F ∩ S 6= ∅ , then F ∩ E 6= ∅ .

The main result of this talk is the following

Theorem If a compact space K has a k -network with property (∗) ,

then Cp(K) is hereditarily σ -metacompact.
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A standard proof shows that the property

of having a k -network with (∗) is productive.

To find interesting classes of spaces which have k -networks with (∗),

I look at conditions on families of sets which imply property (∗).

A family N of subsets of a space X is pointwise closure-preserving

provided that (N )x is closure-preserving for each x ∈ X .

Lemma If K is compact and F closure-preserving and closed in K ,

then there exists a finite E ⊂ K such that F ∩E 6= ∅ for every F ∈ F .

Corollary Every pointwise closure-preserving family

of compact closed sets has property (∗) .
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It follows that Cp(K) is hereditarily σ -metacompact if K is compact

and K has a pointwise closure-preserving closed k -network.

(In particular, if K has a pointwise closure-preserving closed quasi-base.)

Note that if a T1 -space X has only one non-isolated point,

then X has a pointwise closure-preserving clopen base.

As a special case, for every cardinal κ ,

the one-point compactification A(κ) of the discrete space κ

has a pointwise closure-preserving clopen base;

by previous observations, such a base has property (∗).

It follows that for any two cardinals κ and λ ,

the power A(κ)λ of A(κ) has a clopen base with property (∗).

-



The following example shows that spaces of type A(κ)λ



The following example shows that spaces of type A(κ)λ

do not allways have a pointwise closure-preserving closed k -network.



The following example shows that spaces of type A(κ)λ

do not allways have a pointwise closure-preserving closed k -network.

Example Consider the space A(ω1)ω .



The following example shows that spaces of type A(κ)λ

do not allways have a pointwise closure-preserving closed k -network.

Example Consider the space A(ω1)ω .

Dow, Raminez Martinez and Tkachuk have shown that 〈∞,∞, . . .〉
does not have a closure-preserving neighborhood base in A(ω1)ω .



The following example shows that spaces of type A(κ)λ

do not allways have a pointwise closure-preserving closed k -network.

Example Consider the space A(ω1)ω .

Dow, Raminez Martinez and Tkachuk have shown that 〈∞,∞, . . .〉
does not have a closure-preserving neighborhood base in A(ω1)ω .

It follows that A(ω1)ω does not have

a pointwise closure-preserving k -network consisting of closed sets.
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Proposition Every stratifiable space has a

pointwise closure-preserving closed quasi-base.

Metrizable spaces are stratifiable

and compact stratifiable spaces are metrizable.

Corollary A compact metrizable space

has a closed k-network with property (∗) .

It will turn out that the above result can also be obtained

as a consequence of supercompactness of compact metrizable spaces.
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Proposition Each of the following conditions implies property (∗)
for a family L of subsets of a space X :

(i) L consists of connected rim-finite closed sets.

(ii) L consists of closed ≤-intervals, where ≤ is a lattice ordering of X .

(iii) L is pointwise monotone (i.e., a rank-one family).

Proof. If (i) holds, then L meets the finite subset ∂M of M

whenever L,M ∈ L , L ∩M 6= ∅ and L ∩ (X rM) 6= ∅ .
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Let c, d ∈ X be such that c ≤ d , [c, d] ∩ [a, b] 6= ∅ and x ∈ [c, d] .

Since [a, b] ∩ [c, d] 6= ∅ , we have a ≤ d and c ≤ b .

It follows, since c ≤ x ≤ d , that u ∈ [c, d] .

Under (iii), if L,M ∈ L , L ∩M 6= ∅ and L ∩ (X rM) 6= ∅ ,

then M ⊂ L .

Spaces with a k -network satisfying (i) above include “tree-like spaces”.

I will consider spaces with a k -network satisfying (ii) in more detail.

Spaces with a k -network satisfying (iii) include “non-Archimedean spaces”,

i.e., spaces with a pointwise monotone base.
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and it would follow from a result of Zenor



Next I indicate some spaces which fail to have a k -network with (∗).

One example is provided by the separable compact space βω .

By a result of DJP, Cp(βω) is not σ -metacompact.

It follows that βω does not have a k -network with (∗).

There also exist scattered examples:

a scattered compact space K1 was constructed by DJP such that

every point-finite open family is countable in Cp(K1).

It follows that Cp(K1) is not hereditarily σ -metacompact:

otherwise Cp(K1) would be hereditarily Lindelöf
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Next I indicate some spaces which fail to have a k -network with (∗).

One example is provided by the separable compact space βω .

By a result of DJP, Cp(βω) is not σ -metacompact.

It follows that βω does not have a k -network with (∗).

There also exist scattered examples:

a scattered compact space K1 was constructed by DJP such that

every point-finite open family is countable in Cp(K1).

It follows that Cp(K1) is not hereditarily σ -metacompact:

otherwise Cp(K1) would be hereditarily Lindelöf

and it would follow from a result of Zenor

that K1 would be hereditarily separable, which it is not.

Hence K1 does not have a k -network with property (∗).
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Above, the compact spaces failed to have a k -network with (∗)
because their Cp -spaces were not hereditarily σ -metacompact.

Now I will describe another scattered example,

whose Cp -space is hereditarily σ -metacompact.

Example Let T be a special Aronzajn-tree

such that every chain of T has a supremum.

With the usual tree topology, T is a locally compact Hausdorff space.

We can show that no Hausdorff compactification of T

has a k -network with (∗).

In particular, the one-point compactification T of T

does not have a k -network with property (∗),

while a result of DJP shows that Cp(T ) is hereditarily σ -metacompact.
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Supercompact spaces.

The results above can be applied to supercompact spaces.

A family L of sets is linked if L ∩N 6= ∅ for all L,N ∈ L ,

and L is binary if every linked subfamily of L is fixed.

A space is supercompact if it has a binary subbase for closed sets.

Supercompact spaces form an important and extensive class of spaces.

For example, compact metrizable spaces, compact topological groups

and linearly orderable compact spaces are all supercompact.

I considered spaces defined in terms of special k -networks.

The following simple and well-known results help us

to link supercompact spaces with those spaces.
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Lemma Let F be a family of closed subsets of a compact space X .

A. If F is a subbase of closed subsets of X and F is closed under finite

intersections, then F is a k -network of X .

B. If X is T1 and F is a k -network of X , then F is a subbase of closed

subsets of X .

For a binary family F , also the family {
⋂
H : H ⊂ F} is binary.

Hence the above lemma has the following consequence.

Corollary A. Every supercompact space has a binary closed k -network.

B. Every compact T1 -space with a binary closed k -network

is supercompact.

-



Our next results show that the binary property,

for a family of closed compact sets, can be characterized

by the condition which we obtain by changing “finite set”

to “singleton” in the definition of property (∗).



Our next results show that the binary property,

for a family of closed compact sets, can be characterized

by the condition which we obtain by changing “finite set”

to “singleton” in the definition of property (∗).

super(∗) For all x ∈ X and S ∈ F , there exists e ∈ S such that



Our next results show that the binary property,

for a family of closed compact sets, can be characterized

by the condition which we obtain by changing “finite set”

to “singleton” in the definition of property (∗).

super(∗) For all x ∈ X and S ∈ F , there exists e ∈ S such that

for each F ∈ F , if x ∈ F and F ∩ S 6= ∅ , then e ∈ F .



Our next results show that the binary property,

for a family of closed compact sets, can be characterized

by the condition which we obtain by changing “finite set”

to “singleton” in the definition of property (∗).

super(∗) For all x ∈ X and S ∈ F , there exists e ∈ S such that

for each F ∈ F , if x ∈ F and F ∩ S 6= ∅ , then e ∈ F .

A family L of sets is centered if every finite subfamily of L is fixed.



Our next results show that the binary property,

for a family of closed compact sets, can be characterized

by the condition which we obtain by changing “finite set”

to “singleton” in the definition of property (∗).

super(∗) For all x ∈ X and S ∈ F , there exists e ∈ S such that

for each F ∈ F , if x ∈ F and F ∩ S 6= ∅ , then e ∈ F .

A family L of sets is centered if every finite subfamily of L is fixed.

Lemma Let A be a family of subsets of a set S .

Every linked subfamily of A is centered iff for all B ∈ A and s ∈ S ,

the family {A ∩B : A ∈ (A)s and A ∩B 6= ∅} is centered.
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Proof. If every linked subfamily of A is centered,

then A satisfies the condition stated in the proposition,

because for all s ∈ S and B ∈ A , the family

{B} ∪ {A ∈ (A)s : A ∩B 6= ∅} is linked and therefore centered.

For the other direction, assume that A satisfies the stated condition.

Let H ⊂ A be linked. By induction on n ∈ N ,

it is easy to show that each J ∈ [H]n is fixed.
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Since every centered family consisting of compact closed sets is fixed,

the above lemma has the following consequence.

Proposition A family F of compact closed subsets is binary

iff F has property super(∗) .

Corollary Each supercompact space has a closed k -network with (∗) .

Corollary For every supercompact space X ,

the space Cp(X) is hereditarily σ -metacompact.

The Aronzajn tree T considered earlier was such that

no T2 -compactification of T has a closed k -network with (∗).

It follows that no T2 -compactification of T is supercompact.
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The class of compact spaces which have a closed k -network with (∗)
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Example Banakh, Kosztolowicz and Turek have shown that I×A(c)

contains a non-supercompact closed subspace X .

The space I has a pointwise closure-preserving closed quasi-base

and the space A(c) has a pointwise closure-preserving clopen base.

Hence I×A(c) has a pointwise closure-preserving closed quasi-base,

and so the closed subspace X has such a quasi-base F .

The family F is a k -network of X and it has property (∗).
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For a set Γ of mappings on X , let R(Γ) = {g(X) : g ∈ Γ} .

Proposition A family F of non-empty compact closed subsets of X

is binary iff there exists a set Φ of retractions of X s.t. R(Φ) = F
and ϕ ◦ ψ ◦ ϕ = ψ ◦ ϕ whenever ϕ,ψ ∈ Φ and ϕ(X) ∩ ψ(X) 6= ∅ .

Remark The following hold for two retractions f and g of X :

(a) if f ◦ g ◦ f = g ◦ f , then f(X) ∩ g(X) 6= ∅ ;

(b) if f ◦ g ◦ f = g ◦ f , then the mapping g ◦ f is a retraction.

(c) if f and g commute, then f ◦ g ◦ f = g ◦ f .
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So every supercompact space X has a closed k -network {ϕ(X) : ϕ ∈ Φ} ,

where Φ is a set of retractions of X such that

ϕ ◦ ψ ◦ ϕ = ψ ◦ ϕ whenever ϕ,ψ ∈ F and ϕ(X) ∩ ψ(X) 6= ∅ .

The construction given for Φ does not produce continuous mappings

and I do not know if each supercompact space X has such a set Φ

consisting of continuous retractions.

However, I can indicate one important class of supercompact spaces,

which have k -networks defined in this way

by a set of continuous retractions.
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Example Let (X,≤) be a lattice,

and let F be the family consisting of all closed intervals of (X,≤).

The proof of an earlier proposition shows that F has property super(∗).

The family F can also be defined in terms of a set Φ

of continuous retractions X → X satisfying the previous condition.

For all a, b ∈ X with a ≤ b , define fa,b : X → X by the condition

fa,b(x) = (a ∨ x) ∧ b .

It is easy to see that fa,b is a retraction and fa,b(X) = [a, b] .

Let Φ = {fa,b : a, b ∈ X and a ≤ b} .

To show that Φ satisfies the previous condition,

let fa,b, fc,d ∈ Φ be such that fa,b(X) ∩ fc,d(X) 6= ∅ .
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For every x ∈ X , we have fc,d(x) ∈ [c, d] and so fa,b(fc,d(x)) ∈ [c, d] .

Since fc,d is a retraction and fc,d(X) = [c, d] , it follows

that fc,d(fa,b(fc,d(x))) = fa,b(fc,d(x)) for every x ∈ X ,

i.e., that fc,d ◦ fa,b ◦ fc,d = fa,b ◦ fc,d .

The topology of X which has the family F as a subbase of closed sets

is called the interval topology of the lattice (X,≤).

This topology was defined by Frink.

The importance of the interval topology is due to the result of Frink

that the interval topology of a complete lattice is compact.
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When the interval topology is compact, it follows from the foregoing

that the defining subbase of closed sets is binary.

Hence we have the result of van Mill and Schrijver

that a complete lattice with interval topology is supercompact.

Note that if the interval topology is compact,

then the defining closed subbase is also a k -network.

It was observed above that the equation f ◦ g ◦ f = g ◦ f holds

if the retractions f and g commute.

The next result shows that, for a large class of lattices,

the defining subbase of the interval topology can be given

in terms of a “conditionally commuting” family of retractions.
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Proposition The following conditions are mutually equivalent

when (X,≤) is a lattice and the retractions fa,b are as above.

A. The lattice (X,≤) is modular.

B. fa,b ◦ fc,d = fa∨c,b∧d whenever fa,b(X) ∩ fc,d(X) 6= ∅ .

C. fa,b ◦ fc,d = fc,d ◦ fa,b whenever fa,b(X) ∩ fc,d(X) 6= ∅ .
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At the end, I will briefly consider a strong sufficient condition

for hereditary σ -metacompactness.

A family L of subsets of a space X is σ–point–finitely expandable

if L =
⋃
n∈ω Ln , where each Ln is point–finitely expandable

(i.e., for each n , there exist open sets GL ⊃ L , for L ∈ Ln
s.t. for every x ∈ X , the family {L ∈ Ln : x ∈ GL} is finite).

Proposition (DJP) TFAE for a compact space K :

A. Cp(K) has a σ -point-finitely expandable network.

B. Cp(K) is hereditarily σ -metacompact and norm-σ -fragmented.

C. C(K) has a network which is σ -point-finitely expandable in Cp(K) .
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Some compact spaces K such that Cp(K) has a

σ -point-finitely expandable network were indicated by DJP;

for example, all Corson compact spaces K have this property.

I will now indicate further examples of such compact spaces.

Proposition If the compactum K has a closed k -network with (∗) ,

then Cp(K) has a σ -point-finitely expandable network

iff Cp(K) is norm-σ -fragmented.

Corollary For every i ∈ I , let Ki be a compact space

s.t. Ki has a closed k -network with property (∗) and

Cp(Ki) has a σ -point-finitely expandable network.

Then Cp(
∏
i∈I Ki) has such a network.

Proof. Use the above results and a theorem of Kenderov and Moors

which shows that Cp(
∏
i∈I Ki) is norm-σ -fragmented.
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This result can be applied to dyadic and polyadic spaces.

Recall that a topological space X is dyadic provided that

X is the continuous image of {0, 1}κ for some cardinal κ .

The more general class of polyadic spaces was defined by Mrowka:

X is polyadic if X is the continuous image

of A(κ)λ for some cardinals κ and λ .

Theorem Let X be a polyadic space.

Then Cp(X) has a σ -point-finitely expandable network.

-



By the famous Kuzminov - Ivanovski Theorem,

every compact Hausdorff topological group is dyadic.

As a consequence, the following resul obtains:



By the famous Kuzminov - Ivanovski Theorem,

every compact Hausdorff topological group is dyadic.

As a consequence, the following resul obtains:

Corollary Cp(G) has a σ -point-finitely expandable network

for every compact Hausdorff topological group G .



By the famous Kuzminov - Ivanovski Theorem,

every compact Hausdorff topological group is dyadic.

As a consequence, the following resul obtains:

Corollary Cp(G) has a σ -point-finitely expandable network

for every compact Hausdorff topological group G .

Mills has shown that

all compact Hausdorff topological groups are supercompact.



By the famous Kuzminov - Ivanovski Theorem,

every compact Hausdorff topological group is dyadic.

As a consequence, the following resul obtains:

Corollary Cp(G) has a σ -point-finitely expandable network

for every compact Hausdorff topological group G .

Mills has shown that

all compact Hausdorff topological groups are supercompact.

Bell has shown that there are dyadic spaces which are not supercompact.



By the famous Kuzminov - Ivanovski Theorem,

every compact Hausdorff topological group is dyadic.

As a consequence, the following resul obtains:

Corollary Cp(G) has a σ -point-finitely expandable network

for every compact Hausdorff topological group G .

Mills has shown that

all compact Hausdorff topological groups are supercompact.

Bell has shown that there are dyadic spaces which are not supercompact.

Some results about supercompact spaces K with special properties

imply that Cp(K) is norm-σ -fragmented.



By the famous Kuzminov - Ivanovski Theorem,

every compact Hausdorff topological group is dyadic.

As a consequence, the following resul obtains:

Corollary Cp(G) has a σ -point-finitely expandable network

for every compact Hausdorff topological group G .

Mills has shown that

all compact Hausdorff topological groups are supercompact.

Bell has shown that there are dyadic spaces which are not supercompact.

Some results about supercompact spaces K with special properties

imply that Cp(K) is norm-σ -fragmented.

We can apply the previous results on such spaces to exhibit

further Cp(K)-spaces with a σ -point-finitely expandable network.
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The basic example of a supercompact space is a compact orderable space.

A result of Jayne, Namioka and Rogers shows that

Cp(X) is norm-σ -fragmentable for a compact orderable space X .

It follows that Cp(X) has a σ -point-finitely expandable network.

If Y is the continuous image of X , then Cp(Y ) embeds in Cp(X)

and therefore also Cp(Y ) has such a network.

A deep result of M.E. Rudin states that a compact T2 -space Z

is the continuous image of an orderable compact space

iff Z is monotonically normal.

A remarkable result of Bula, Nikiel, Tuncali and Tymchatum shows that

continuous images of compact orderable spaces are supercompact.

A combination of these results and the previous considerations

gives the the following result.
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Theorem Let K be a closed sublattice of a product of finitely many

linearly ordered compact spaces. Then Cp(K) has a σ -point-finitely

expandable network.

Proof. The relative topology of the lattice K in the product

is the interval topology, and hence K is supercompact.

A result of Kubis, Molto and Troyanski shows

that Cp(K) is norm-σ -fragmented.
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A final observation.

Example The Helly space H is the subspace of II

consisting of all non-decreasing functions.

Clearly, H is a closed sublattice of II ,
and results of Frink show that the topology

which H inherits from II coincides with

the interval topology of the lattice H .

It follows that H is supercompact.

Kortezov has shown in that Cp(H) is norm-σ -fragmented.

Hence Cp(H) has a σ -point-finitely expandable network.


