The double density spectrum of a topological space

István Juhász

Alfréd Rényi Institute of Mathematics

TOPOSYM 2022, July 28, 2022

István Juhász (Rényi Institute)

double density spectrum

2022 1/10

István Juhász (Rényi Institute)

2022 2/10

2

イロト イヨト イヨト イヨト

STARTING POINT: Different dense subspaces of a space may have different densities!

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X.

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$.

★ 문 + ★ 문 +

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$,

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$. Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$.

< 回 > < 回 > < 回 > -

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$. Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for X T_2 ,

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

EXAMPLE.

3

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

EXAMPLE. For $\mathbb{C}_{\kappa} = D(2)^{\kappa}$:

3

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

EXAMPLE. For $\mathbb{C}_{\kappa} = D(2)^{\kappa}$:

 $dd(\mathbb{C}_{\kappa}) = [\log \kappa, \kappa]$

3

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

EXAMPLE. For $\mathbb{C}_{\kappa} = D(2)^{\kappa}$:

 $dd(\mathbb{C}_{\kappa}) = [\log \kappa, \kappa]$

 $d(\mathbb{C}_{\kappa}) = \log \kappa$ is well known,

イロト イポト イヨト イヨト 三臣

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

EXAMPLE. For $\mathbb{C}_{\kappa} = D(2)^{\kappa}$:

 $dd(\mathbb{C}_{\kappa}) = [\log \kappa, \kappa]$

 $d(\mathbb{C}_{\kappa}) = \log \kappa$ is well known, and $d(\sigma(\kappa)) = \delta(\mathbb{C}_{\kappa}) = \kappa$.

STARTING POINT: Different dense subspaces of a space may have different densities!

SOME NOTATION:

 $\mathcal{D}(X) = \{D \subset X : \overline{D} = X\}$

 $dd(X) = \{d(D) : D \in \mathcal{D}(X)\}$ is the double density spectrum of X. NOTE. $\kappa \in dd(X)$ iff there is $D \in \mathcal{D}(X)$ s.t. $|D| = d(D) = \kappa$. $d(X) = \min dd(X)$ and $\delta(X) = \sup dd(X)$, i.e. $dd(X) \subset [d(X), \delta(X)]$.

Clearly, $\delta(X) \leq \min\{|X|, \pi(X)\}$. So, $\delta(X) \leq 2^{2^{d(X)}}$ for $X T_2$, and $\delta(X) \leq 2^{d(X)}$ for $X T_3$.

EXAMPLE. For $\mathbb{C}_{\kappa} = D(2)^{\kappa}$:

 $dd(\mathbb{C}_{\kappa}) = [\log \kappa, \kappa]$

 $d(\mathbb{C}_{\kappa}) = \log \kappa$ is well known, and $d(\sigma(\kappa)) = \delta(\mathbb{C}_{\kappa}) = \kappa$.

SOME HISTORY

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨト

イロト イ理ト イヨト イヨト

SOME HISTORY

1) A. Berner and I. Juhász, The sup = max problem for δ , Proc. AMS, 99 (1987), pp. 585 - 588.

```
If X is T_2 and cf(\delta(X)) = \omega then \delta(X) \in dd(X),
```

イロト イ押ト イヨト イヨト

SOME HISTORY

1) A. Berner and I. Juhász, The sup = max problem for δ , Proc. AMS, 99 (1987), pp. 585 - 588.

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240.

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240.

Is $\delta(X) = \pi(X)$ for compact X?

イロト イ団ト イヨト イヨト

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240. Is $\delta(X) = \pi(X)$ for compact X?

3) I. Juhász and S. Shelah, $\delta(X) = \pi(X)$ for compact *X*, Top. Appl., 32 (1989), pp. 289-294.

(日)

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240. Is $\delta(X) = \pi(X)$ for compact X?

3) I. Juhász and S. Shelah, $\delta(X) = \pi(X)$ for compact *X*, Top. Appl., 32 (1989), pp. 289-294.

If X is compact T_2 then $\delta(X) = \pi(X) \in dd(X)$,

(日)

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240. Is $\delta(X) = \pi(X)$ for compact X?

3) I. Juhász and S. Shelah, $\delta(X) = \pi(X)$ for compact *X*, Top. Appl., 32 (1989), pp. 289-294.

If X is compact T_2 then $\delta(X) = \pi(X) \in dd(X)$, so, $\delta(X) = \max dd(X)$.

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240. Is $\delta(X) = \pi(X)$ for compact X?

3) I. Juhász and S. Shelah, $\delta(X) = \pi(X)$ for compact *X*, Top. Appl., 32 (1989), pp. 289-294.

If X is compact T_2 then $\delta(X) = \pi(X) \in dd(X)$, so, $\delta(X) = \max dd(X)$.

 $\pi(X) = \delta(X)$ is relatively easy for regular $\pi(X)$ (Shapirovskij)

イロン イロン イヨン イヨン 二日

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240. Is $\delta(X) = \pi(X)$ for compact X?

3) I. Juhász and S. Shelah, $\delta(X) = \pi(X)$ for compact *X*, Top. Appl., 32 (1989), pp. 289-294.

If X is compact T_2 then $\delta(X) = \pi(X) \in dd(X)$, so, $\delta(X) = \max dd(X)$. $\pi(X) = \delta(X)$ is relatively easy for regular $\pi(X)$ (Shapirovskij)

but hard if $\pi(X)$ is singular.

If X is T_2 and $cf(\delta(X)) = \omega$ then $\delta(X) \in dd(X)$, and there are no further restrictions for $\delta(X) \in dd(X)$.

2) Weston, J. H. and Shilleto, J. Cardinalities of dense sets. General Topology and Appl. 6 (1976), no. 2, 227–240. Is $\delta(X) = \pi(X)$ for compact X?

3) I. Juhász and S. Shelah, $\delta(X) = \pi(X)$ for compact *X*, Top. Appl., 32 (1989), pp. 289-294.

If X is compact T_2 then $\delta(X) = \pi(X) \in dd(X)$, so, $\delta(X) = \max dd(X)$. $\pi(X) = \delta(X)$ is relatively easy for regular $\pi(X)$ (Shapirovskij)

but hard if $\pi(X)$ is singular.

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨト

Juhász-van Mill-Soukup-Szentmiklóssy:

イロト イ理ト イヨト イヨト

New results

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space

★ ∃ > < ∃ >

New results

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math.,

イロト イ理ト イヨト イヨト

New results

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

< 47 ▶

- A B M A B M
Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

I(X) is the set of isolated points of X.

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

I(X) is the set of isolated points of X.

PROPOSITION. (i) If $I(X) \in \mathcal{D}(X)$ then $dd(X) = \{d(X)\} = \{|I(X)|\}$.

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

I(X) is the set of isolated points of X.

PROPOSITION. (i) If $I(X) \in \mathcal{D}(X)$ then $dd(X) = \{d(X)\} = \{|I(X)|\}$. (ii) If $I(X) \notin \mathcal{D}(X)$ and $Y = X \setminus \overline{I(X)}$ then

$$dd(X) = \{|I(X)| + \kappa : \kappa \in dd(Y)\}.$$

イロト イ押ト イヨト イヨト

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

I(X) is the set of isolated points of X.

PROPOSITION. (i) If $I(X) \in \mathcal{D}(X)$ then $dd(X) = \{d(X)\} = \{|I(X)|\}$. (ii) If $I(X) \notin \mathcal{D}(X)$ and $Y = X \setminus \overline{I(X)}$ then

$$dd(X) = \{|I(X)| + \kappa : \kappa \in dd(Y)\}.$$

From here on: space = crowded T_2 -space.

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

I(X) is the set of isolated points of X.

PROPOSITION. (i) If $I(X) \in \mathcal{D}(X)$ then $dd(X) = \{d(X)\} = \{|I(X)|\}$. (ii) If $I(X) \notin \mathcal{D}(X)$ and $Y = X \setminus \overline{I(X)}$ then

$$dd(X) = \{|I(X)| + \kappa : \kappa \in dd(Y)\}.$$

From here on: space = crowded T_2 -space.

Juhász-van Mill-Soukup-Szentmiklóssy:

On the double density spectrum of a topological space (to appear in Israel J. Math., https://arxiv.org/pdf/2109.10823.pdf)

I(X) is the set of isolated points of X.

PROPOSITION. (i) If $I(X) \in \mathcal{D}(X)$ then $dd(X) = \{d(X)\} = \{|I(X)|\}$. (ii) If $I(X) \notin \mathcal{D}(X)$ and $Y = X \setminus \overline{I(X)}$ then

$$dd(X) = \{|I(X)| + \kappa : \kappa \in dd(Y)\}.$$

From here on: space = crowded T_2 -space.

æ

◆□ > ◆圖 > ◆臣 > ◆臣 > ○

Let $S = {\kappa_n : n < \omega} \subset dd(X)$ be increasing with $\kappa = \sup S$.

イロト イ団ト イヨト イヨト

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ U \in \tau^+(X) : \forall V \in \tau^+(U) (\lambda(V) = \lambda(U)) \}$$

is a π -base for X.

< 47 ▶

- A B M A B M

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ U \in \tau^+(X) : \forall V \in \tau^+(U) (\lambda(V) = \lambda(U)) \}$$

is a π -base for *X*. Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$.

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ \boldsymbol{U} \in \tau^+(\boldsymbol{X}) : \ \forall \ \boldsymbol{V} \in \tau^+(\boldsymbol{U}) \left(\lambda(\boldsymbol{V}) = \lambda(\boldsymbol{U})
ight) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ U \in \tau^+(X) : \forall V \in \tau^+(U) \left(\lambda(V) = \lambda(U) \right) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L}(\lambda(U) < \kappa)$.

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ \boldsymbol{U} \in \tau^+(\boldsymbol{X}) : \ \forall \ \boldsymbol{V} \in \tau^+(\boldsymbol{U}) \left(\lambda(\boldsymbol{V}) = \lambda(\boldsymbol{U})
ight) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L}(\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$,

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ \boldsymbol{U} \in au^+(\boldsymbol{X}) : \ orall \ \boldsymbol{V} \in au^+(\boldsymbol{U}) \left(\lambda(\boldsymbol{V}) = \lambda(\boldsymbol{U})
ight) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$,

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ \boldsymbol{U} \in \tau^+(\boldsymbol{X}) : \ \forall \ \boldsymbol{V} \in \tau^+(\boldsymbol{U}) \left(\lambda(\boldsymbol{V}) = \lambda(\boldsymbol{U})
ight) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$.

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ \boldsymbol{U} \in \tau^+(\boldsymbol{X}) : \ \forall \ \boldsymbol{V} \in \tau^+(\boldsymbol{U}) \left(\lambda(\boldsymbol{V}) = \lambda(\boldsymbol{U})
ight) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \le d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$.

イロト イポト イヨト イヨト

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ \boldsymbol{U} \in \tau^+(\boldsymbol{X}) : \ \forall \ \boldsymbol{V} \in \tau^+(\boldsymbol{U}) \left(\lambda(\boldsymbol{V}) = \lambda(\boldsymbol{U})
ight) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L}(\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint.

(日)

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ oldsymbol{U} \in au^+(oldsymbol{X}): \ orall \, oldsymbol{V} \in au^+(oldsymbol{U}) \, (\lambda(oldsymbol{V}) = \lambda(oldsymbol{U})) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L}(\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint. Again, there are $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

イロン イ理 とく ヨン・

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ oldsymbol{U} \in au^+(oldsymbol{X}): \ orall \, oldsymbol{V} \in au^+(oldsymbol{U}) \, (\lambda(oldsymbol{V}) = \lambda(oldsymbol{U})) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint. Again, there are $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

In both cases, with $V = \bigcup_n V_n$, $D = \bigcup_n D_n$ we have $D \in \mathcal{D}(V)$ and $|D| = d(D) = \kappa$,

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ oldsymbol{U} \in au^+(oldsymbol{X}): \ orall \, oldsymbol{V} \in au^+(oldsymbol{U}) \, (\lambda(oldsymbol{V}) = \lambda(oldsymbol{U})) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint. Again, there are $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

In both cases, with $V = \bigcup_n V_n$, $D = \bigcup_n D_n$ we have $D \in \mathcal{D}(V)$ and $|D| = d(D) = \kappa$, hence $\kappa \in dd(V)$,

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ oldsymbol{U} \in au^+(oldsymbol{X}): \ orall \, oldsymbol{V} \in au^+(oldsymbol{U}) \, (\lambda(oldsymbol{V}) = \lambda(oldsymbol{U})) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint. Again, there are $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

In both cases, with $V = \bigcup_n V_n$, $D = \bigcup_n D_n$ we have $D \in \mathcal{D}(V)$ and $|D| = d(D) = \kappa$, hence $\kappa \in dd(V)$, and so $\kappa \in dd(X)$ as well.

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ oldsymbol{U} \in au^+(oldsymbol{X}) : \, orall \, oldsymbol{V} \in au^+(oldsymbol{U}) \, (\lambda(oldsymbol{V}) = \lambda(oldsymbol{U})) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint. Again, there are $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

In both cases, with $V = \bigcup_n V_n$, $D = \bigcup_n D_n$ we have $D \in \mathcal{D}(V)$ and $|D| = d(D) = \kappa$, hence $\kappa \in dd(V)$, and so $\kappa \in dd(X)$ as well. QED

Let $S = \{\kappa_n : n < \omega\} \subset dd(X)$ be increasing with $\kappa = \sup S$. For each $U \in \tau^+(X)$ let $\lambda(U) = \sup(\kappa \cap dd(U))$. Then

$$\mathcal{L} = \{ oldsymbol{U} \in au^+(oldsymbol{X}) : \, orall \, oldsymbol{V} \in au^+(oldsymbol{U}) \, (\lambda(oldsymbol{V}) = \lambda(oldsymbol{U})) \}$$

is a π -base for X.

Case 1. $\exists U \in \mathcal{L}$ with $\lambda(U) = \kappa$. By T_2 , there are disjoint $\{V_n : n < \omega\} \subset \tau^+(U)$ and $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$. Case 2. $\forall U \in \mathcal{L} (\lambda(U) < \kappa)$. For $\mathcal{U} \subset \mathcal{L}$ maximal disjoint $\cup \mathcal{U} \in \mathcal{D}(X)$, $|\mathcal{U}| \leq d(X) < \kappa$ and $dd(\cup \mathcal{U}) = dd(X)$, so $\sup\{\lambda(U) : U \in \mathcal{U}\} = \kappa$. By induction pick $V_n \in \mathcal{U}$ so that $\max\{\lambda(V_i) : i < n, \kappa_n\} < \lambda(V_n) < \kappa$. The V_n 's are distinct, hence disjoint. Again, there are $D_n \in \mathcal{D}(V_n)$ with $\kappa_n < |D_n| = d(D_n) < \kappa$.

In both cases, with $V = \bigcup_n V_n$, $D = \bigcup_n D_n$ we have $D \in \mathcal{D}(V)$ and $|D| = d(D) = \kappa$, hence $\kappa \in dd(V)$, and so $\kappa \in dd(X)$ as well. QED

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨト

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$.

< ロ > < 同 > < 回 > < 回 >

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE:

< ロ > < 同 > < 回 > < 回 >

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \le 2^{2^{\kappa}}$.

イロト イポト イヨト イヨト

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \le 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

イロト イポト イヨト イヨト

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with $\min S = \kappa$.

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with $\min S = \kappa$. TFAE:

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

(ii) There is a dense subspace X of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

(ii) There is a dense subspace X of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).

(iii) There is a T_3 space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace X of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X?

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace X of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X?
THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace *X* of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X? 2. Is $dd(X) = [d(X), \delta(X)]$ for all compact X??

イロト イ押ト イヨト イヨト

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace *X* of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X? 2. Is $dd(X) = [d(X), \delta(X)]$ for all compact X??

イロト イ押ト イヨト イヨト

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace *X* of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X?

- 2. Is $dd(X) = [d(X), \delta(X)]$ for all compact X??
- 3. Is dd(X) closed for every compact X?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace X of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X?

2. Is $dd(X) = [d(X), \delta(X)]$ for all compact X??

3. Is dd(X) closed for every compact X?

(YES for all three under GCH :-)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{2^{\kappa}}$.

(ii) There is a (crowded T_2) space X s.t. S = dd(X).

THEOREM

Let *S* be a set of infinite cardinals with min $S = \kappa$. TFAE: (i) *S* is ω -closed and sup $S \leq 2^{\kappa}$.

- (ii) There is a dense subspace X of $\mathbb{C}_{2^{\kappa}}$ s.t. S = dd(X).
- (iii) There is a T_3 space X s.t. S = dd(X).

QUESTIONS. 1. Can we characterize dd(X) for compact X?

2. Is $dd(X) = [d(X), \delta(X)]$ for all compact X??

3. Is dd(X) closed for every compact X?

(YES for all three under GCH :-)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

István Juhász (Rényi Institute)

イロト イヨト イヨト イヨト

Q1. is open.

э

イロト イヨト イヨト イヨト

Q1. is open. For 2. and 3. we have consistent counterexamples.

< 47 ▶

→ ∃ →

Q1. is open. For 2. and 3. we have consistent counterexamples. We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $l \in \mathcal{I}$ let $B(s, l) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap l \subset |s|\}.$

A B A A B A

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $l \in \mathcal{I}$ let $B(s, l) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap l \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ \mathcal{B}(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

(日)

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{B(s, l) : s \in 2^{<\omega} \land l \in \mathcal{I}\}.$ NOTE. $\{B(s, \emptyset) : s \in 2^{<\omega}\}$ is the standard base for the Baire space,

hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 .

イロン イ理 とくほ とくほ とう

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ \mathcal{B}(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

NOTE. { $B(s, \emptyset) : s \in 2^{<\omega}$ } is the standard base for the Baire space, hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 . Each B(s, I) is infinite.

イロン イ理 とくほ とくほ とう

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ B(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

NOTE. { $B(s, \emptyset) : s \in 2^{<\omega}$ } is the standard base for the Baire space, hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 . Each B(s, I) is infinite.

PROPOSITION. (i) $\mathcal{B}_{\mathcal{I}}$ is a clopen and σ -centered base for $X_{\mathcal{I}}$.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ \mathcal{B}(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

NOTE. { $B(s, \emptyset) : s \in 2^{<\omega}$ } is the standard base for the Baire space, hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 . Each B(s, I) is infinite.

PROPOSITION. (i) $\mathcal{B}_{\mathcal{I}}$ is a clopen and σ -centered base for $X_{\mathcal{I}}$. (ii) $\pi(X_{\mathcal{I}}) = cof(\mathcal{I})$.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ B(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

NOTE. { $B(s, \emptyset) : s \in 2^{<\omega}$ } is the standard base for the Baire space, hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 . Each B(s, I) is infinite.

PROPOSITION. (i) $\mathcal{B}_{\mathcal{I}}$ is a clopen and σ -centered base for $X_{\mathcal{I}}$.

(ii) $\pi(X_{\mathcal{I}}) = cof(\mathcal{I}).$

So, $d(C) = \omega$ and $\pi(C) = cof(\mathcal{I})$ for any compactification C of $X_{\mathcal{I}}$.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ B(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

NOTE. { $B(s, \emptyset) : s \in 2^{<\omega}$ } is the standard base for the Baire space, hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 . Each B(s, I) is infinite.

PROPOSITION. (i) $\mathcal{B}_{\mathcal{I}}$ is a clopen and σ -centered base for $X_{\mathcal{I}}$.

(ii) $\pi(X_{\mathcal{I}}) = cof(\mathcal{I}).$

So, $d(C) = \omega$ and $\pi(C) = cof(\mathcal{I})$ for any compactification C of $X_{\mathcal{I}}$. Trivially, $dd(X_{\mathcal{I}}) \subset dd(C)$.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing σ -centered 0-dimensional topologies on $[\omega]^{\omega}$ from appropriate ideals on ω .

Our (separable) compact examples will be the compactifications of these "ideal spaces".

DEFINITION. Let \mathcal{I} be any ideal on ω with $[\omega]^{<\omega} \subset \mathcal{I}$.

1) For $s \in 2^{<\omega}$, $I \in \mathcal{I}$ let $B(s, I) = \{A \in [\omega]^{\omega} : s \subset \chi_A \land A \cap I \subset |s|\}.$

2) $\tau_{\mathcal{I}}$ is the topology generated by $\mathcal{B}_{\mathcal{I}} = \{ B(s, I) : s \in 2^{<\omega} \land I \in \mathcal{I} \}.$

NOTE. { $B(s, \emptyset) : s \in 2^{<\omega}$ } is the standard base for the Baire space, hence $X_{\mathcal{I}} = \langle [\omega]^{\omega}, \tau_{\mathcal{I}} \rangle$ is T_2 . Each B(s, I) is infinite.

PROPOSITION. (i) $\mathcal{B}_{\mathcal{I}}$ is a clopen and σ -centered base for $X_{\mathcal{I}}$.

(ii) $\pi(X_{\mathcal{I}}) = cof(\mathcal{I}).$

So, $d(C) = \omega$ and $\pi(C) = cof(\mathcal{I})$ for any compactification C of $X_{\mathcal{I}}$. Trivially, $dd(X_{\mathcal{I}}) \subset dd(C)$. DEFINITION. (i) $\mathcal{A} \subset [\omega]^{\omega}$ is full if $A \in \mathcal{A}$ and $B =^* A$ imply $B \in \mathcal{A}$.

イロト イ団ト イヨト イヨト

A D M A A A M M

LEMMA

If \mathcal{A} is full then $\mathcal{A} \in \mathcal{D}(X_{\mathcal{I}})$ iff \mathcal{A} is \mathcal{I} -avoiding.

LEMMA

If \mathcal{A} is full then $\mathcal{A} \in \mathcal{D}(X_{\mathcal{I}})$ iff \mathcal{A} is \mathcal{I} -avoiding. If \mathcal{A} is full and \mathcal{I} -avoiding s.t. no $\mathcal{B} \subset \mathcal{A}$ with $|\mathcal{B}| < |\mathcal{A}|$ is \mathcal{I} -avoiding then $|\mathcal{A}| \in dd(X_{\mathcal{I}}) \subset dd(\mathcal{C})$.

LEMMA

If \mathcal{A} is full then $\mathcal{A} \in \mathcal{D}(X_{\mathcal{I}})$ iff \mathcal{A} is \mathcal{I} -avoiding. If \mathcal{A} is full and \mathcal{I} -avoiding s.t. no $\mathcal{B} \subset \mathcal{A}$ with $|\mathcal{B}| < |\mathcal{A}|$ is \mathcal{I} -avoiding then $|\mathcal{A}| \in dd(X_{\mathcal{I}}) \subset dd(\mathcal{C})$.

DEFINITION. \mathcal{I} is weakly λ -complete if for every $\mathcal{A} \in [\mathcal{I}]^{\lambda}$ there is $\mathcal{B} \in [\mathcal{A}]^{\lambda}$ with $\cup \mathcal{B} \in \mathcal{I}$.

LEMMA

If \mathcal{A} is full then $\mathcal{A} \in \mathcal{D}(X_{\mathcal{I}})$ iff \mathcal{A} is \mathcal{I} -avoiding. If \mathcal{A} is full and \mathcal{I} -avoiding s.t. no $\mathcal{B} \subset \mathcal{A}$ with $|\mathcal{B}| < |\mathcal{A}|$ is \mathcal{I} -avoiding then $|\mathcal{A}| \in dd(X_{\mathcal{I}}) \subset dd(C)$.

DEFINITION. \mathcal{I} is weakly λ -complete if for every $\mathcal{A} \in [\mathcal{I}]^{\lambda}$ there is $\mathcal{B} \in [\mathcal{A}]^{\lambda}$ with $\cup \mathcal{B} \in \mathcal{I}$.

LEMMA

Assume that $\rho = cf(\rho) > \omega$ and \mathcal{I} is weakly ρ -complete.

< ロ > < 同 > < 回 > < 回 >

LEMMA

If \mathcal{A} is full then $\mathcal{A} \in \mathcal{D}(X_{\mathcal{I}})$ iff \mathcal{A} is \mathcal{I} -avoiding. If \mathcal{A} is full and \mathcal{I} -avoiding s.t. no $\mathcal{B} \subset \mathcal{A}$ with $|\mathcal{B}| < |\mathcal{A}|$ is \mathcal{I} -avoiding then $|\mathcal{A}| \in dd(X_{\mathcal{I}}) \subset dd(C)$.

DEFINITION. \mathcal{I} is weakly λ -complete if for every $\mathcal{A} \in [\mathcal{I}]^{\lambda}$ there is $\mathcal{B} \in [\mathcal{A}]^{\lambda}$ with $\cup \mathcal{B} \in \mathcal{I}$.

LEMMA

Assume that $\rho = cf(\rho) > \omega$ and \mathcal{I} is weakly ρ -complete. Then $\lambda \notin dd(C)$ whenever $cf(\lambda) = \rho$.

< ロ > < 同 > < 回 > < 回 >

LEMMA

If \mathcal{A} is full then $\mathcal{A} \in \mathcal{D}(X_{\mathcal{I}})$ iff \mathcal{A} is \mathcal{I} -avoiding. If \mathcal{A} is full and \mathcal{I} -avoiding s.t. no $\mathcal{B} \subset \mathcal{A}$ with $|\mathcal{B}| < |\mathcal{A}|$ is \mathcal{I} -avoiding then $|\mathcal{A}| \in dd(X_{\mathcal{I}}) \subset dd(C)$.

DEFINITION. \mathcal{I} is weakly λ -complete if for every $\mathcal{A} \in [\mathcal{I}]^{\lambda}$ there is $\mathcal{B} \in [\mathcal{A}]^{\lambda}$ with $\cup \mathcal{B} \in \mathcal{I}$.

LEMMA

Assume that $\rho = cf(\rho) > \omega$ and \mathcal{I} is weakly ρ -complete. Then $\lambda \notin dd(C)$ whenever $cf(\lambda) = \rho$.

< ロ > < 同 > < 回 > < 回 >

István Juhász (Rényi Institute)

イロト イヨト イヨト イヨト

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$,

• • • • • • • • • • • • •

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$,

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa;$

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete.

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.
THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Let S be a set of uncountable regular cardinals that embed in $\mathcal{P}(\omega)/fin$.

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Let *S* be a set of uncountable regular cardinals that embed in $\mathcal{P}(\omega)/fin$. There is a separable compactum *C* such that

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Let *S* be a set of uncountable regular cardinals that embed in $\mathcal{P}(\omega)/\text{fin}$. There is a separable compactum *C* such that

$$\ \, \bigcirc \ \ \, \pi(\mathcal{C}) = \sup \mathcal{S};$$

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Let *S* be a set of uncountable regular cardinals that embed in $\mathcal{P}(\omega)/\text{fin}$. There is a separable compactum *C* such that

$$\bigcirc \pi(\mathcal{C}) = \sup \mathcal{S};$$

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Let *S* be a set of uncountable regular cardinals that embed in $\mathcal{P}(\omega)/\text{fin}$. There is a separable compactum *C* such that

$$\textcircled{0} \quad \pi(\mathcal{C}) = \sup \mathcal{S};$$

$$\bigcirc$$
 $S \subset dd(C);$

if
$$|S| + \omega < \mu = cf(\mu) \notin S$$
 then $cf(\lambda) = \mu$ implies $\lambda \notin dd(C)$.

THEOREM

Assume that $\kappa = cf(\kappa) > \omega$ and $\{I_{\alpha} : \alpha < \kappa\} \subset [\omega]^{\omega}$ is mod finite strictly increasing s.t. $\bigcup \{I_{\alpha} : \alpha < \kappa\} = \omega$, and \mathcal{I} is the ideal generated by $\{I_{\alpha} : \alpha < \kappa\}$. Then, for any compactification *C* of $X_{\mathcal{I}}$, $d(C) = \omega, \pi(C) = \kappa$, and $\lambda \in dd(C) \cap (\omega, \kappa)$ implies $cf(\lambda) = \omega$.

Proof. $cof(\mathcal{I}) = \kappa$; if $\omega < \varrho = cf(\varrho) < \kappa$ then \mathcal{I} is weakly ϱ -complete. NOTE. \mathfrak{b} embeds in $\mathcal{P}(\omega)/fin$. We may also have $\mathfrak{b} = \omega_1$, $\mathfrak{c} = cf(\mathfrak{c})$ is big, and \mathfrak{c} embeds in $\mathcal{P}(\omega)/fin$.

THEOREM

Let *S* be a set of uncountable regular cardinals that embed in $\mathcal{P}(\omega)/\text{fin}$. There is a separable compactum *C* such that

$$\textcircled{0} \quad \pi(\mathcal{C}) = \sup \mathcal{S};$$

$$\bigcirc$$
 $S \subset dd(C);$

if
$$|S| + \omega < \mu = cf(\mu) \notin S$$
 then $cf(\lambda) = \mu$ implies $\lambda \notin dd(C)$.

István Juhász (Rényi Institute)

2

イロト イヨト イヨト イヨト

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$.

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

A D M A A A M M

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

THEOREM

It is consistent to have a separable compactum *C* such that $\{\aleph_{\alpha} : 2 \leq \alpha < \omega_1\} \subset dd(C)$ but $\aleph_1, \aleph_{\omega_1} \notin dd(C)$, hence dd(C) is not ω_1 -closed.

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

THEOREM

It is consistent to have a separable compactum *C* such that $\{\aleph_{\alpha} : 2 \leq \alpha < \omega_1\} \subset dd(C)$ but $\aleph_1, \aleph_{\omega_1} \notin dd(C)$, hence dd(C) is not ω_1 -closed.

PROBLEMS. (i) Let *S* be an ω -closed set of infinite cardinals such that $\sup S = \max S \le 2^{\min S}$.

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

THEOREM

It is consistent to have a separable compactum *C* such that $\{\aleph_{\alpha} : 2 \leq \alpha < \omega_1\} \subset dd(C)$ but $\aleph_1, \aleph_{\omega_1} \notin dd(C)$, hence dd(C) is not ω_1 -closed.

PROBLEMS. (i) Let *S* be an ω -closed set of infinite cardinals such that $\sup S = \max S \le 2^{\min S}$. Is there a ompactum *K* s.t. dd(K) = S?

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

THEOREM

It is consistent to have a separable compactum *C* such that $\{\aleph_{\alpha} : 2 \leq \alpha < \omega_1\} \subset dd(C)$ but $\aleph_1, \aleph_{\omega_1} \notin dd(C)$, hence dd(C) is not ω_1 -closed.

PROBLEMS. (i) Let *S* be an ω -closed set of infinite cardinals such that sup $S = \max S \le 2^{\min S}$. Is there a ompactum *K* s.t. dd(K) = S? (ii) Does $2^{\kappa} > \kappa^+$ imply the existence of a ompactum *K* of density κ s.t. $dd(K) \ne [\kappa, \pi(K)]$?

イロト イポト イヨト イヨト

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

THEOREM

It is consistent to have a separable compactum *C* such that $\{\aleph_{\alpha} : 2 \leq \alpha < \omega_1\} \subset dd(C)$ but $\aleph_1, \aleph_{\omega_1} \notin dd(C)$, hence dd(C) is not ω_1 -closed.

PROBLEMS. (i) Let *S* be an ω -closed set of infinite cardinals such that $\sup S = \max S \le 2^{\min S}$. Is there a ompactum *K* s.t. dd(K) = S? (ii) Does $2^{\kappa} > \kappa^+$ imply the existence of a ompactum *K* of density κ s.t. $dd(K) \ne [\kappa, \pi(K)]$? How about $\kappa = \omega$?

イロト イポト イヨト イヨト

Proof. For each $\kappa \in S$ apply previous thm to get the ideal $\mathcal{I}(\kappa)$ and a compactification $C(\kappa)$ of $X_{\mathcal{I}(\kappa)}$. Then $C = \prod \{C(\kappa) : \kappa \in S\}$ works.

THEOREM

It is consistent to have a separable compactum *C* such that $\{\aleph_{\alpha} : 2 \leq \alpha < \omega_1\} \subset dd(C)$ but $\aleph_1, \aleph_{\omega_1} \notin dd(C)$, hence dd(C) is not ω_1 -closed.

PROBLEMS. (i) Let *S* be an ω -closed set of infinite cardinals such that $\sup S = \max S \le 2^{\min S}$. Is there a ompactum *K* s.t. dd(K) = S? (ii) Does $2^{\kappa} > \kappa^+$ imply the existence of a ompactum *K* of density κ s.t. $dd(K) \neq [\kappa, \pi(K)]$? How about $\kappa = \omega$?

THANK YOU FOR YOUR ATTENTION!

3 3 3