Periodicity of solenoidal automorphisms

Faiz Imam

Graduate Student

Department of Mathematics BITS-Pilani, Hyderabad Campus India

Co-author: Sharan Gopal

Prague, 29 July TOPOSYM 2022

This work was performed within the ECRA-SERB-DST project, which is supported by DST, Govt. of India, with grant ref. ECR/2017/000741.

- A dynamical system is a pair (X, f) where X is a topological space and f is a continuous self map on X.
- Given a point x ∈ X, the sequence (x, f(x), f²(x),...) is called the trajectory of x.
- A point x ∈ X is called a periodic point of f if fⁿ(x) = x for some n ∈ N and the least such n is called the period of x.

The problems of characterizing the sets of periods and periodic points of a family of dynamical systems have been well-studied in the literature.

To put formally, we seek the following:

If \mathfrak{F} is a family of maps on a space X, then give a characterization of the collections:

 $\{Per(f) : f \in \mathfrak{F}\}$ where, $Per(f) = \{n \in \mathbb{N} : f \text{ has a periodic point of period } n\}$,

and

 $\{P(f): f \in \mathfrak{F}\}\$ where , $P(f) = \{x \in X : x \text{ is a periodic point of } f\}.$

The Dyadic Solenoid

Consider the solid torus :

$$\mathsf{T} = S^1 \times D^2 = \{(\phi, x, y) | \ 0 \le \phi < 1, \ x^2 + y^2 \le 1\}.$$

Fix a $\lambda \in \mathbb{R}$ such that $\lambda \in \left(0, \frac{1}{2}\right)$.

Define F: T \rightarrow T such that

$$\mathsf{F}(\phi, x, y) = \left(2\phi \left(mod \ 1\right), \lambda x + \frac{1}{2} \ \cos 2\pi\phi, \lambda y + \frac{1}{2} \ \sin 2\pi\phi\right)$$

The map F stretches by a factor of 2 in the S^1 -direction, contracts by a factor of λ in the D^2 -direction.

F wraps the image twice inside T and the image $F^{n+1}(T)$ is contained inside $int(F^n(T))$.

The set $S = \bigcap_{n=0}^{\infty} F^n(T)$ is a dyadic solenoid.

The Dyadic Solenoid

Definition

A compact connected finite-dimensional abelian group is called a **solenoid**.

Equivalently, a topological group Σ is a solenoid if and only if its Pontryagin dual group $\widehat{\Sigma}$ is (isomorphic to) a subgroup of the discrete additive group, \mathbb{Q}^n and contains \mathbb{Z}^n i.e., $\mathbb{Z}^n \leq \widehat{\Sigma} \leq \mathbb{Q}^n$. In particular, when

- $\widehat{\Sigma} = \mathbb{Z}^n$, Σ is an *n*-dim Torus.
- $\widehat{\Sigma} = \mathbb{Q}^n$, Σ is called a *n*-dim Full Solenoid.
- $\mathbb{Z}^n < \widehat{\Sigma} < \mathbb{Q}^n$, $\Sigma :=$ General Solenoid (n-dim).

Inverse Limit

Let X_k be a topological space for each $k \in \mathbb{N}_0$ and $f_k : X_k \to X_{k-1}$ be a continuous map for each $k \in \mathbb{N}$. Then the subspace of $\prod_{k=0}^{\infty} X_k$ defined as $\lim_{k \to \infty} (X_k, f_k) = \{(x_k) \in \prod_{k=0}^{\infty} X_k : x_{k-1} = f_k(x_k), \forall k \in \mathbb{N}\}$ is called the inverse limit of the sequence of maps (f_k) .

Inverse Limit

Let X_k be a topological space for each $k \in \mathbb{N}_0$ and $f_k : X_k \to X_{k-1}$ be a continuous map for each $k \in \mathbb{N}$. Then the subspace of $\prod_{k=0}^{\infty} X_k$ defined as $\lim_{k \to \infty} (X_k, f_k) = \{(x_k) \in \prod_{k=0}^{\infty} X_k : x_{k-1} = f_k(x_k), \forall k \in \mathbb{N}\}$ is called the inverse limit of the sequence of maps (f_k) .

One dimensional solenoid

Let $A = (a_1, a_2, \cdots)$ be a sequence of integers such that $a_k \ge 2$ for every $k \in \mathbb{N}$. The solenoid corresponding to the sequence A, denoted by Σ_A , is defined as $\Sigma_A = \{(x_k) \in (S^1)^{(\mathbb{N}_0)} : x_{k-1} = a_k x_k \pmod{1} \text{ for every } k \in \mathbb{N}\}.$

Relation between both descriptions

The dual of a one dimensional solenoid Σ_A , where $A = (a_k)$ is isomorphic to the subgroup of \mathbb{Q} generated by $\{\frac{1}{a_1a_2\cdots a_k} : k \in \mathbb{N}\}$.

Height Sequences

Let $S \subset \mathbb{Q}$ and $x \in S$. For a $p \in P$, the *p*-height of *x* with respect to *S*, denoted by $h_p^{(S)}(x)$ is defined as the largest non-negative integer *n*, if it exists, such that $\frac{x}{p^n} \in S$; otherwise, define $h_p^{(S)}(x) = \infty$. Thus, we have a sequence $(h_p^{(S)}(x))$, *p* ranging over prime numbers in the usual order, with values in $\mathbb{N}_0 \cup \{\infty\}$. We call such sequences as *height sequences*.

Solenoid as an inverse limit

Height Sequences

If (u_p) and (v_p) are two height sequences such that $u_p = v_p$ for all but finitely many primes and $u_p = \infty \Leftrightarrow v_p = \infty$, then they are said to be equivalent. If S is a subgroup of \mathbb{Q} , then there is a unique height sequence (up to equivalence) associated to all non-zero elements of S. Also, two subgroups of \mathbb{Q} are isomorphic if and only if their associated height sequences are equivalent.

Height Sequences

If (u_p) and (v_p) are two height sequences such that $u_p = v_p$ for all but finitely many primes and $u_p = \infty \Leftrightarrow v_p = \infty$, then they are said to be equivalent. If S is a subgroup of \mathbb{Q} , then there is a unique height sequence (up to equivalence) associated to all non-zero elements of S. Also, two subgroups of \mathbb{Q} are isomorphic if and only if their associated height sequences are equivalent.

Terminology

The field of p-adic numbers, \mathbb{Q}_p is the completion of \mathbb{Q} under the p-adic norm, defined by $|\frac{a}{b}|_p = \frac{1}{p^n}$, where n is the integer such that $\frac{a}{b} = p^n \frac{a'}{b'}$ and p divides neither a' nor b'.Let $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \le 1\}$ denote the ring of p-adic integers. Then define $n_p^{(S)} = \sup\{h_p^{(S)}(x) : x \in S \cap \mathbb{Z}_p^*\}$, where \mathbb{Z}_p^* is the multiplicative group $\{x \in \mathbb{Z}_p : |x|_p = 1\}$.

The group of adeles $\mathbb{Q}_{\mathbb{A}}$ is defined as the restricted product $\mathbb{R} \times \prod_{p \in P} \mathbb{Q}_p$ with respect to \mathbb{Z}_p i.e., for any $(a_{\infty}, a_2, a_3, ...) \in \mathbb{Q}_{\mathbb{A}}$, $a_p \in \mathbb{Z}_p$ for all but finitely many p.

Note: Since every rational number has p-adic norm equal to 1 for all but finitely many p, we have a diagonal inclusion $\delta : \mathbb{Q} \to \mathbb{Q}_{\mathbb{A}}$ given by $(\delta(r))_p = r$ for every $p \leq \infty$ and for every $r \in \mathbb{Q}$.

Dual group of ${\mathbb Q}$

For any $a = (a_p) \in \mathbb{Q}_{\mathbb{A}}$, we can associate a character ψ_a of \mathbb{Q} as

$$\psi_{\mathsf{a}}(\mathsf{r})=\mathsf{e}^{-2\pi i \mathsf{ra}_{\infty}}\prod_{\mathsf{p}<\infty} \mathsf{e}^{2\pi i \{\mathsf{ra}_{\mathsf{p}}\}_{\mathsf{p}}}$$
 ,

where $\{x\}_p$ is the *p*-adic fractional part of *x* (i.e., the sum of the terms "with" negative power of *p* in the *p*-adic expansion of *x*). The map $\psi : \mathbb{Q}_{\mathbb{A}} \to \widehat{\mathbb{Q}}$ given by

$$a \mapsto \psi_a$$

is a surjective homomorphism with $\delta(\mathbb{Q})$ as the kernel. Thus $\widehat{\mathbb{Q}}$ is isomorphic to $\frac{\mathbb{Q}_{\mathbb{A}}}{\delta(\mathbb{Q})}$. It is also stated in the article that if K is any finite field extension of \mathbb{Q} , then $\widehat{\mathbb{K}}$ is isomorphic to $\frac{\mathbb{K}_{\mathbb{A}}}{\delta(\mathbb{K})}$.

K. Conrad "The character group of Q." Unpublished (2010)

Theorem (Sharan, Raja, 2017)

Let Σ , n_p and D_{∞} be defined as above. Then $\Sigma = \frac{\mathbb{Q}_{\mathbb{A}}}{\delta(\mathbb{Q}) + L}$, where $L = \prod_{p \leq \infty} U_p$ and $U_p = \begin{cases} (0) & \text{if } p \in D_{\infty} \cup \{\infty\} \\ p^{n_p} \mathbb{Z}_p & \text{if } p \notin D_{\infty} \cup \{\infty\} \end{cases}$.

Theorem (Sharan, Raja, 2017)

Let Σ , L and D_{∞} be defined as in above.

$$P(\alpha) = \frac{\delta(\mathbb{Q}) + \prod' \mathbb{Q}_p}{\delta(\mathbb{Q}) + L}$$

, where $\prod' \mathbb{Q}_p := \{x \in \mathbb{Q}_{\mathbb{A}} : x_p = 0 \text{ for every } p \in D_{\infty} \cup \{\infty\}$ and $x_p \in p^{n_p} \mathbb{Z}_p$ for all but finitely many p in $P \setminus D_{\infty}\}$. The above characterizations depend upon the description of the subgroups of \mathbb{Q} using the notion of p-heights. However, no such description is available for the subgroups of \mathbb{Q}^n for n > 1. In fact, [Kechris] ¹ says that there is probably "no reasonably simple classification" of these groups.

¹A. S. Kechris, On the classification problem for rank 2 torsion-free abelian groups, J. London Math. Soc. (2) **62** (2000), 437-450.

Solenoid as an inverse limit

Theorem (Sharan, Faiz, 2021)

Let ϕ be an automorphism of a one dimensional solenoid Σ_A induced by $\frac{\alpha}{\beta}$, where $A = (\beta b_k)$, each b_k being co-prime to β . For each $l \in \mathbb{N}$, define $U_l = \bigcap_{p \in P} \left(\frac{1}{p^{e_{p,l}}} \mathbb{Z}_p \cap \mathbb{Q} \cap S^1 \right)$, where $p^{e_{p,l}} = \frac{1}{|\alpha^l - \beta^l|_p}$. If $\gamma_{k,l} : U_l \to U_l$ is the map defined as $\gamma_{k,l}(x) = \beta b_k x \pmod{1}$ for each $k \in \mathbb{N}$ and $l \in \mathbb{N}$, then $P(\phi) = \bigcup_{l=1}^{\infty} \lim_{\substack{\leftarrow \\ k}} (U_l, \gamma_{k,l})$.

Solenoid as an inverse limit

Theorem (Sharan, Faiz, 2021)

Let ϕ be an automorphism of a one dimensional solenoid Σ_A induced by $\frac{\alpha}{\beta}$, where $A = (\beta b_k)$, each b_k being co-prime to β . For each $l \in \mathbb{N}$, define $U_l = \bigcap_{p \in P} \left(\frac{1}{p^{e_{p,l}}} \mathbb{Z}_p \cap \mathbb{Q} \cap S^1 \right)$, where $p^{e_{p,l}} = \frac{1}{|\alpha^l - \beta^l|_p}$. If $\gamma_{k,l} : U_l \to U_l$ is the map defined as $\gamma_{k,l}(x) = \beta b_k x \pmod{1}$ for each $k \in \mathbb{N}$ and $l \in \mathbb{N}$, then $P(\phi) = \bigcup_{l=1}^{\infty} \lim_{\substack{k \\ k}} (U_l, \gamma_{k,l})$.

Remark

The set of periodic points of period *I* is equal to $\lim_{\substack{\leftarrow \\ k}} (U_I, \gamma_{k,I})$. Here U_I is a subgroup of S^1 and the map $\gamma_{k,I}$ is the restriction of γ_k to U_I , where γ_k is a map on S^1 such that $\Sigma_{(nb_k)} = \lim_{\substack{\leftarrow \\ k}} (S^1, \gamma_k)$.

Theorem (Sharan, Faiz, 2021)

Let ϕ be an automorphism of a one dimensional solenoid Σ_A induced by $\frac{\alpha}{\beta}$ and for every $l \in \mathbb{N}$, let $e_{p,l} = \frac{1}{|\alpha^l - \beta^l|_p}$. Then the number of periodic points of ϕ with a period l is $\prod_{p \notin D_{\infty}^{(S)}} p^{e_{p,l}}$.

Remark

The above theorem about the number of periodic points, which follows from the above description, is in accordance with a similar result in [Richard Miles, "Periodic points of endomorphisms on solenoids and related groups" *Bulletin of the London Mathematical Society.* 2008, 40(4): 696-704.]

We now extend our result about periodic points to some automorphisms of certain higher dimensional solenoids i.e n-dimensional solenoids which are conjugate to product of "n" one-dimensional solenoids.

We now extend our result about periodic points to some automorphisms of certain higher dimensional solenoids i.e n-dimensional solenoids which are conjugate to product of "n" one-dimensional solenoids.

n-dimensional solenoids

For a positive integer n > 1, let $\pi^n : \mathbb{R}^n \to \mathbb{T}^n$ be the homomorphism defined as $\pi^n((x_1, x_2, ..., x_n)) = (x_1 \pmod{1}, x_2 \pmod{1}, ..., x_n \pmod{1}).$ Let $\overline{M} = (M_k)_{k=1}^{\infty} = (M_1, M_2, ...)$ be a sequence of $n \times n$ matrices with integer entries and non-zero determinant.

We now extend our result about periodic points to some automorphisms of certain higher dimensional solenoids i.e n-dimensional solenoids which are conjugate to product of "n" one-dimensional solenoids.

n-dimensional solenoids

For a positive integer n > 1, let $\pi^n : \mathbb{R}^n \to \mathbb{T}^n$ be the homomorphism defined as $\pi^n((x_1, x_2, ..., x_n)) = (x_1 \pmod{1}, x_2 \pmod{1}, ..., x_n \pmod{1}).$ Let $\overline{M} = (M_k)_{k=1}^{\infty} = (M_1, M_2, ...)$ be a sequence of $n \times n$ matrices with integer entries and non-zero determinant. Then, the n-dimensional solenoid $\sum_{\overline{M}}$ is defined as $\sum_{\overline{M}} = \{(\mathbf{x}_k) \in (\mathbb{T}^n)^{\mathbb{N}_0} : \pi^n(M_k \mathbf{x}_k) = \mathbf{x}_{k-1} \text{ for every } k \in \mathbb{N}\}.$ In other words, $\sum_{\overline{M}} = \lim_{\substack{\leftarrow \\ k}} (\mathbb{T}^n, \delta_k)$, where $\delta_k : \mathbb{T}^n \to \mathbb{T}^n$ is defined as $\delta_k(\mathbf{x}) = \pi^n(M_k \mathbf{x})$

Theorem (Sharan, Faiz, 2021)

For each
$$l \in \mathbb{N}$$
, define $V_l = \prod_{i=1}^n \left(\bigcap_{p \in P} \left(\frac{1}{p^{e_{p,l,i}}} \mathbb{Z}_p \cap \mathbb{Q} \cap S^1 \right) \right)$,
where $p^{e_{p,l,i}} = \frac{1}{|\alpha_i^l - \beta_i^l|_p}$. If $\delta_{k,l} : V_l \to V_l$ is the map defined as
 $\delta_{k,l}(\mathbf{x}) = \pi^n(M_k \mathbf{x})$ for each $k \in \mathbb{N}$ and $l \in \mathbb{N}$, then
 $P(\phi) = \bigcup_{l=1}^{\infty} \lim_{\substack{\leftarrow k \\ k}} (V_l, \delta_{k,l})$.

Theorem (Sharan, Faiz, 2021)

For each
$$l \in \mathbb{N}$$
, define $V_l = \prod_{i=1}^n \left(\bigcap_{p \in P} \left(\frac{1}{p^{e_{p,l,i}}} \mathbb{Z}_p \cap \mathbb{Q} \cap S^1 \right) \right)$,
where $p^{e_{p,l,i}} = \frac{1}{|\alpha_i^l - \beta_i^l|_p}$. If $\delta_{k,l} : V_l \to V_l$ is the map defined as
 $\delta_{k,l}(\mathbf{x}) = \pi^n(M_k \mathbf{x})$ for each $k \in \mathbb{N}$ and $l \in \mathbb{N}$, then
 $P(\phi) = \bigcup_{l=1}^{\infty} \lim_{\substack{\leftarrow k \\ k}} (V_l, \delta_{k,l}).$

Remark

The set of periodic points of ϕ with a period I is equal to $\lim_{\substack{\leftarrow k \\ k}} (V_I, \delta_{k,I})$. Here, V_I is a subgroup of \mathbb{T}^n and $\delta_{k,I}$ is the restriction of δ_k to V_I , where each δ_k is a map on \mathbb{T}^n such that $\sum_{\overline{M}} = \lim_{\substack{\leftarrow k \\ k}} (\mathbb{T}^n, \delta_k)$.

Previous Work on Periodicity of Solenoidal Automorphisms

- In paper [5], the authors give a characterization of the sets of periodic points of automorphisms on the following solenoids.
 - n-dim Tori $(\widehat{\Sigma} = \mathbb{Z}^n)$
 - n-dim Full Solenoids $(\widehat{\Sigma} = \mathbb{Q}^n)$
 - 1-dim Solenoids ($\mathbb{Z} \leq \widehat{\Sigma} \leq \mathbb{Q})$
- In the paper [4], the authors give a characterization of the sets of periodic points of automorphisms on the following solenoids using the concept of inverse limits.
 - 1-dim Solenoids
 - $\bullet\,$ n-dim Solenoids which are product of "n" : 1-dim Solenoids

[4] S. Gopal and F. Imam, *Periodic points of solenoidal automorphisms in terms of inverse limits*, Applied General Topology **22(2)** (2021), 321-330.

[5] S. Gopal and C. R. E. Raja, *Periodic points of solenoidal automorphisms*, Topology Proceedings **50** (2017), 49 - 57.

Preliminaries

- A finite algebraic extension of the field of rational numbers Q is defined as an algebraic number field K.
- We denote by P^K, the set of all places of K, i.e, the equivalence classes of valuations of K (where two valuations φ₁ and φ₂ are said to be equivalent if there is an s > 0 such that φ₁(r) = φ₂(r)^s for every r ∈ K). A place is called finite if it contains a non-archimedian valuation and infinite otherwise.
- The collection of finite places will be denoted by $P_f^{\mathbb{K}}$ whereas $P_{\infty}^{\mathbb{K}}$ denotes the set of infinite places. It may be noted that $P_{\infty}^{\mathbb{K}}$ is a finite set.
- For each v ∈ P^K, K_v denotes the completion of K with respect to v and ℜ_v = {x ∈ K_v : |x|_v ≤ 1}. ℜ_v is always a compact subset of K_v and when v ∈ P^K_f, ℜ_v is an open, unique maximal compact subring of K_v. We also consider ℜ^{*}_v := {x ∈ ℜ_v : |x|_v = 1} in our discussion.
- The adele ring of \mathbb{K} , denoted by $\mathbb{K}_{\mathbb{A}}$ is then defined as $\mathbb{K}_{\mathbb{A}} = \{(x_{\nu}) \in \prod_{\nu \in \mathbb{P}^{\mathbb{K}}} \mathbb{K}_{\nu} / x_{\nu} \in \Re_{\nu} \text{ for all but finitely many } \nu \in P_{f}^{\mathbb{K}} \}.$

- If K is an algebraic number field, then for each p ∈ P^Q, there exists finitely many v ∈ P^K such that v lies above p (denoted as v|_p).
- We consider solenoids of any arbitrary dimension *n* such that $\widehat{\Sigma}$ is an additive subgroup of an algebraic number field \mathbb{K} .
- Now consider K_A, the ring of adeles of K. For any p ∈ P^Q, Z_p can be considered as a subring of Q_A by identifying c ∈ Z_p with x ∈ Q_A, when x_p = c and x_q = 0 for q ≠ p.
- Similarly $\prod_{v|\rho} \mathbb{K}_v$ can be considered as a subring of $\mathbb{K}_{\mathbb{A}}$ by identifying $\prod_{v|\rho} a_v \in \prod_{v|\rho} \mathbb{K}_v$ with $b \in \mathbb{K}_{\mathbb{A}}$, when $b_v = a_v$ for $v|_{\rho}$ and $b_w = 0$ otherwise.
- From Lemma 6.101 of [Kato], it follows that there is an isomorphism (of topological groups) $\alpha : \mathbb{K}_{\mathbb{A}} \to (\mathbb{Q}_{\mathbb{A}})^n$ such that $\alpha \left(\prod_{\nu|_{p}} \Re_{\nu}\right)$ is equal to $(\mathbb{Z}_{p})^n$ for almost all finite p.

Notations and Assumptions

- We further assume that $\alpha \left(\prod_{v|_p} \Re_v\right) = (\mathbb{Z}_p)^n$ for all the finite places. We write $\alpha(x) = (x^{(1)}, x^{(2)}, \cdots, x^{(n)}) \in (\mathbb{Q}_{\mathbb{A}})^n$, for each $x \in \mathbb{K}_{\mathbb{A}}$ and write $x^{(j)} = \left(x_p^{(j)}\right)_{p \in P^{\mathbb{Q}}}$, for each $x^{(j)} \in \mathbb{Q}_{\mathbb{A}}$.
- For every r∈ K, we write β(r) = (r⁽¹⁾, r⁽²⁾, ..., r⁽ⁿ⁾) ∈ Qⁿ where r = ∑_{i=1}ⁿ r⁽ⁱ⁾α_i and {α₁, α₂, ..., α_n} is a Q-basis for K. Then, β is an isomorphism from K to Qⁿ. We further assume that β(Σ̂) is a Zⁿ-module and also Zⁿ ⊆ β(Σ̂).
- For a = (a_v)_{v∈P^K} ∈ K_A, let ā_p = ∏_{v|p} a_v ∈ ∏_{v|p} K_v, for every p ∈ P^Q. We know that ∏_{v|p} K_v is a vector space over Q_p. It follows from Lemma 6.69 and 6.101 of [Kato] that the Q_p-coordinates of ā_p are same as (a⁽¹⁾_p, a⁽²⁾_p, ..., a⁽ⁿ⁾_p), where (a⁽¹⁾, a⁽²⁾, ..., a⁽ⁿ⁾) = α(a) and a^(j) = (a^(j)_q)_{a∈P^Q}.

Definitions

• Consider the map $\eta : \mathbb{Q}_{\mathbb{A}} \to \widehat{\mathbb{Q}}$ given by $\eta(x) = \eta_x$, where $\eta_x : \mathbb{Q} \to S^1$ is defined as $\eta_x(r) = e^{-2\pi i \kappa_\infty r} \cdot \prod_{p < \infty} e^{2\pi i \{x_p r\}_p}$

and $x = (x_p)_{p \in P^Q}$. It is known that this map η is a surjective homomorphism.

• Now, consider the map $\xi : (\mathbb{Q}_{\mathbb{A}})^n \to \widehat{\mathbb{Q}^n}$ given by $\xi(\bar{x}) = \xi_{\bar{x}}$, where $\xi_{\bar{x}} : \mathbb{Q}^n \to S^1$ is defined as $\xi_{\bar{x}}(\bar{r}) = \eta_{\chi^{(1)}}(r^{(1)}) \cdot \eta_{\chi^{(2)}}(r^{(2)}) \cdots \eta_{\chi^{(n)}}(r^{(n)})$, where $\bar{x} = (x^{(1)}, x^{(2)}, \cdots, x^{(n)}) \in (\mathbb{Q}_{\mathbb{A}})^n$ and $\bar{r} = (r^{(1)}, r^{(2)}, \cdots, r^{(n)}) \in \mathbb{Q}^n$. Observe that ξ is a homomorphism.

• Note that
$$\xi_{(\bar{x})}(\bar{r}) = e^{-2\pi i \sum_{j=1}^{n} x_{\infty}^{(j)} r^{(j)}} \cdot \prod_{p < \infty} e^{2\pi i \sum_{j=1}^{n} \{x_{p}^{(j)} r^{(j)}\}_{p}}.$$

• Now, define $\omega : \mathbb{K}_{\mathbb{A}} \to \widehat{\mathbb{Q}^n}$ as $\omega(a) = \omega_a$, where $\omega_a = \xi \circ \alpha(a)$; in other words, if $a \in \mathbb{K}_{\mathbb{A}}$ and $\alpha(a) = (a^{(1)}, a^{(2)}, \cdots, a^{(n)})$, then $\omega_a(\bar{r}) = e^{-2\pi i \sum_{j=1}^n a^{(j)}_{\infty} r^{(j)}} \cdot \prod_{p < \infty} e^{2\pi i \sum_{j=1}^n \{a^{(j)}_p r^{(j)}\}_p}$.

Definitions

- Since ξ and α are homomorphisms, ω is also a homomorphism. Finally, define ψ : K_A → K̂ as ψ(a) = ψ_a, for every a ∈ K_A, where ψ_a : K → S¹ is given by ψ_a(r) = ω_a ∘ β(r), for every r ∈ K.
- Note that if $\alpha(a) = (a^{(1)}, a^{(2)}, \dots, a^{(n)}) \in (\mathbb{Q}_{\mathbb{A}})^n$ and $\beta(r) = (r^{(1)}, r^{(2)}, \dots, r^{(n)}) \in \mathbb{Q}^n$ then $\psi_a(r) = w_a \circ \beta(r) = w_a(r^{(1)}, r^{(2)}, \dots, r^{(n)}) = \xi_{\alpha(a)}(r^{(1)}, r^{(2)}, \dots, r^{(n)}) = \xi_{(a^{(1)}, a^{(2)}, \dots, a^{(n)})}(r^{(1)}, r^{(2)}, \dots, r^{(n)}) = e^{-2\pi i \sum_{j=1}^n a^{(j)}_\infty r^{(j)}} \cdot \prod_{p < \infty} e^{2\pi i \sum_{j=1}^n \{a^{(j)}_p r^{(j)}\}_p} .$
- Note that ψ is a homomorphism.

Proposition

 ψ is a surjective homomorphism that is trivial on $i(\mathbb{K})$.

- Since $\widehat{\Sigma}$ is a subgroup of \mathbb{K} , we have $\widehat{\widehat{\Sigma}} = \widehat{\mathbb{K}}/ann(\widehat{\Sigma})$ and thus, $\Sigma = \widehat{\mathbb{K}}/ann(\widehat{\Sigma})$. Define $\psi' : \mathbb{K}_{\mathbb{A}} \to \Sigma$ as $\psi' = \pi \circ \psi$, where $\pi : \widehat{\mathbb{K}} \to \Sigma$ is the quotient map.
- Since π and ψ are surjective, ψ' is surjective. We will now find Ker ψ' and thus obtain Σ as a quotient of $\mathbb{K}_{\mathbb{A}}$.

• For every
$$p \in P_f^{\mathbb{Q}}$$
 and $1 \le j \le n$, define $m_p^{(j)} = \sup\{|r^{(j)}|_p : r \in \widehat{\Sigma}\}$, where $\beta(r) = (r^{(1)}, r^{(2)}, \cdots, r^{(n)})$.

• Since
$$\mathbb{Z}^n \subset \beta(\widehat{\Sigma})$$
, we have $r = \beta^{-1}(0, \dots, p, \dots, 0) \in \widehat{\Sigma}$ and thus $|r^{(j)}|_p = |p|_p = \frac{1}{p} \neq 0$ concluding that $m_p^{(j)} \neq 0$.

• Let
$$n_p^{(j)} = \begin{cases} \frac{1}{m_p^{(j)}} & \text{if } m_p^{(j)} < \infty \\ 0 & \text{if } m_p^{(j)} = \infty \end{cases}$$
 and
 $D = \{p \in P_f^{\mathbb{Q}} : m_p^{(j)} = \infty \text{ for every } 1 \le j \le n\}.$
• Now, define a subgroup U_p of $\prod_{v|_p} \mathbb{K}_v$ for every $p \in P^{\mathbb{Q}}$ as
 $U_p = \begin{cases} (0) & \text{for } p \in D \cup \{\infty\} \\ \{x \in \prod_{v|_p} \mathbb{K}_v : |x^{(j)}|_p \le n_p^{(j)} \text{ for every } j\} & \text{for } p \notin D \cup \{\infty\} \end{cases}$
where $x^{(1)}, x^{(2)}, \cdots, x^{(n)}$ are \mathbb{Q}_p -coordinates of x .
• Finally, define $V = i(\mathbb{K}) + \prod_{p \in P^{\mathbb{Q}}} U_p$.

Theorem

Σ is isomorphic to $\mathbb{K}_{\mathbb{A}}/V$.

- We now describe the periodic points of some automorphisms of Σ. Fix an element (d) = (d⁽¹⁾, d⁽²⁾, · · · , d⁽ⁿ⁾) ∈ Qⁿ such that for every j, |d^(j)| ≠ 0 and |d^(j)|_p = 1 for p ∉ D ∪ {∞}.
- Define a map $M_d : \mathbb{K}_{\mathbb{A}} \to \mathbb{K}_{\mathbb{A}}$ as $\alpha^{-1} \circ m_d \circ \alpha$, where $m_d : (\mathbb{Q}_{\mathbb{A}})^n \to (\mathbb{Q}_{\mathbb{A}})^n$ is given by $m_d(a^{(1)}, a^{(2)}, \cdots, a^{(n)}) = ((d^{(1)}a_p^{(1)})_p, (d^{(2)}a_p^{(2)})_p, \cdots, (d^{(n)}a_p^{(n)})_p).$
- Note that $(d^{(j)}a^{(j)}p)_p = (d^{(j)}a^{(j)}_{\infty}, d^{(j)}a^{(j)}_2, d^{(j)}a^{(j)}_3, \cdots).$
- m_d is an isomorphism and thus $M_d = \alpha^{-1} \circ m_d \circ \alpha$ is an automorphism of $\mathbb{K}_{\mathbb{A}}$.

Proposition

 $M_d(V) = V = i(\mathbb{K}) + \prod U_{\rho}.$

 M_d is an automorphism on $\mathbb{K}_{\mathbb{A}}$ and V is an M_d -invariant subgroup of $\mathbb{K}_{\mathbb{A}}$, M_d induces an automorphism of Σ , say $\overline{M_d}$.

Theorem (Description of Periodic Points)

The set of periodic points of
$$\overline{M_d}$$
, where $d^{(j)} \neq \pm 1$ for every
 $1 \leq j \leq n$, is given by $P(\overline{M_d}) = \frac{i(\mathbb{K}) + \prod' \mathbb{K}_v}{V}$, where $\prod' \mathbb{K}_v = \begin{cases} x \in \mathbb{K}_{\mathbb{A}} : \text{for every } 1 \leq j \leq n, x_p^{(j)} = 0 \text{ whenever } p \in D \cup \{\infty\} \end{cases}$
and $|x_p^{(j)}|_p \leq n_p^{(j)}$ for all but finitely many $p \notin D \cup \{\infty\}$.

SHUKRIYA!

(THANK YOU)

Faiz Imam Periodicity of solenoidal automorphisms