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S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:

S1 If S(a, p̄, c) is defined, then S(a, p̄, c) is an immediate successor of a and all nodes in
p̄ have levels at most ℓ(a)− 1.

S2 Injectivity: If S(a, p̄, c) = S(b, q̄,d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.
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such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0,1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (),0), (),1), (),0), (),1), (),1).



Level-decomposition

Definition (S-term)

Given an S-tree (T ,⪯,Σ,S), we call a term α an S-term if and only if α ∈ T , or
α = (β, (γ0, γ1, . . . , γn−1), c) where n ∈ ω, all of β, γ0, γ1 . . . γn−1 are S-terms and c ∈ Σ.

Definition (Level decomposition)

Let (T ,⪯,Σ,S) be an S-tree. Given a ∈ T and n < ω, the level n decomposition of a,
denoted by Dn(a), is an S-term defined recursively:

1 If ℓ(a) ≤ n, then Dn(a) = a.
2 For a = S(b, (p0, . . . ,pn−1), c) such that ℓ(a) > n, we let

Dn(a) = (Dn(b), (Dn(p0),Dn(p1), . . . ,Dn(pn−1)), c).

r

n
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a = S(S(S(b, p̄, c), ...) ...) ...)

Dn(a) = (((b, p̄, c), ...) ...) ...)

Example

D1(001) = ((0, (),0), (),1).
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Manipulating nodes
We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.
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Example (R1(101) = 11)

D2(101) = (10, (),1),
r1(10) = 10|1 = 1,

r1(D2(101)) = r1((10, (),1)) = (r1(10), (),1) = (1, (),1) = D1(11).
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Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

f

a

S(a, p̄, 0)S(a, p̄, 1)

b c
f (a)

f (b) f (c)

S(f (a), f (p̄), 0) S(f (a), f (p̄), 0)

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T ,n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω,g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).
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Ramsey theorem for shape-preserving functions
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Proof outline (5 pages)

1 Pigeonhole:

1 One-dimensional pigeonhole: either by application of the Hales-Jewett theorem or using
ultrafilters

2 Infinite-dimensional pigeonhole: combinatorial forcing inspired by proof by Karagianlis

2 Coloring subtrees of a given finite size:
Analogous fussion argument as in the proof of Milliken’s tree theorem
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Application to free amalgamation classes

We want to give non-forcing proof of:

Theorem (Zucker 2020+)

Let L be a finite binary language and F a finite family of irreducible L-structures. Then
every countable universal F-free structure has finite big Ramsey degrees.

We fix family F . Examples are for F = {K4}.
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Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.
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Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.

3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property

6 Define structure on nodes of the S-tree and verify that shape-preserving functions
preserve the structure

7 Verify that envelopes are bounded for nice copies inside nice enumerations (same
was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure

7 Verify that envelopes are bounded for nice copies inside nice enumerations (same
was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)



More general result

Theorem

Let L be a finite language consisting of unary and binary symbols, and let K be a
hereditary class of finite structures and k ≥ 2. Assume that every countable structure A
has a completion to K provided that every induced cycle in A (seen as a substructure) has
a completion in K and every irreducible substructure of A of k embeds into K. Then K has
a Fraïssé limit with finite big Ramsey degrees.

This result can be used to analyze all Cherlin’s catalogues of binary homogeneous
structures except for those described by infinitely many forbidden cliques (Henson graphs).

Open problem: Dpes class of all finite structures omitting the following substructure have
finite big Ramsey degrees?
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