Hyperspaces of Erdős spaces

Rodrigo Hernández-Gutiérrez

Department of Mathematics Universidad Autónoma Metropolitana, Iztapalapa Mexico City

13th Prague Symposium on General Topology Prague, Czech Republic, July 25, 2022

3

イロト 不得 トイヨト イヨト

Introduction to Erdős spaces

Hyperspaces

Characterization of $\mathbb{Q} \times \mathfrak{E}_c$

Questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction to Erdős spaces

Hyperspaces

Characterization of $\mathbb{Q} \times \mathfrak{E}_c$

Questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Erdős spaces

Let ℓ_2 be the set of square-summable sequences of reals.

$$\mathfrak{E} = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \mathbb{Q} \}$$
$$\mathfrak{E}_c = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \{0\} \cup \{1/n \colon n \in \mathbb{N} \} \}$$

 \mathfrak{E} is Erdős space and \mathfrak{E}_c is complete Erdős space.

・ロト ・ 同ト ・ ヨト ・ ヨト

Erdős spaces

Let ℓ_2 be the set of square-summable sequences of reals.

$$\mathfrak{E} = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \mathbb{Q} \}$$
$$\mathfrak{E}_c = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \{0\} \cup \{1/n \colon n \in \mathbb{N} \} \}$$

 \mathfrak{E} is Erdős space and \mathfrak{E}_c is complete Erdős space.

Theorem (Paul Erdős, 1940) If $E \in \{\mathfrak{E}, \mathfrak{E}_c\}$ then $\dim(E) = \dim(E^2) = 1$.

・ロト ・ 理ト ・ ヨト ・ ヨト

Topology in ℓ_2

Lemma (folklore)

Let $(x(n))_{n \in \omega}$ be a sequence in ℓ_2 and $x \in \ell_2$. Then the following two conditions are equivalent:

(a)
$$x = \lim_{n \to \infty} x(n)$$
, and
(b) (i) for each $i \in \omega$, $x_i = \lim_{n \to \infty} x(n)_i$, y
(ii) $||x|| = \lim_{n \to \infty} ||x(n)||$.

э

Topology in ℓ_2

Lemma (folklore)

Let $(x(n))_{n \in \omega}$ be a sequence in ℓ_2 and $x \in \ell_2$. Then the following two conditions are equivalent:

(a)
$$x = \lim_{n \to \infty} x(n)$$
, and
(b) (i) for each $i \in \omega$, $x_i = \lim_{n \to \infty} x(n)_i$, y
(ii) $||x|| = \lim_{n \to \infty} ||x(n)||$.

The topology of ℓ_2 is the product topology **plus** declaring the norm to be continuous.

э

イロト 不得 トイヨト イヨト

Topology in ℓ_2

Lemma (folklore)

Let $(x(n))_{n \in \omega}$ be a sequence in ℓ_2 and $x \in \ell_2$. Then the following two conditions are equivalent:

(a)
$$x = \lim_{n \to \infty} x(n)$$
, and
(b) (i) for each $i \in \omega$, $x_i = \lim_{n \to \infty} x(n)_i$, y
(ii) $||x|| = \lim_{n \to \infty} ||x(n)||$.

The topology of ℓ_2 is the product topology plus declaring the norm to be continuous.

Observation

Closed ℓ_2 -balls are closed in the product topology of $\mathbb{R}^{\mathbb{N}}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Almost zero dimensional

$$\mathfrak{E} = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \mathbb{Q} \}$$

$$\mathfrak{E}_c = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \{0\} \cup \{1/n \colon n \in \mathbb{N} \} \}$$

Notice that the product topology on \mathfrak{E} and \mathfrak{E}_c is zero dimensional.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Almost zero dimensional

$$\mathfrak{E} = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \mathbb{Q} \}$$
$$\mathfrak{E}_c = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \{0\} \cup \{1/n \colon n \in \mathbb{N} \} \}$$

Notice that the product topology on \mathfrak{E} and \mathfrak{E}_c is zero dimensional.

Definition

A separable metric space $\langle X, \tau \rangle$ is almost zero dimensional $(A\overline{ZD})$ if there is a topology \mathcal{W} on X such that $\mathcal{W} \subset \tau$, $\langle X, \mathcal{W} \rangle$ is zero dimensional and there is a basis of neighborhoods of $\langle X, \tau \rangle$ that are \mathcal{W} -closed.

Almost zero dimensional

$$\mathfrak{E} = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \mathbb{Q} \}$$

$$\mathfrak{E}_c = \{ (x_n)_{n \in \omega} \in \ell_2 \colon \forall n \in \omega, \, x_n \in \{0\} \cup \{1/n \colon n \in \mathbb{N} \} \}$$

Notice that the product topology on \mathfrak{E} and \mathfrak{E}_c is zero dimensional.

Definition

A separable metric space $\langle X, \tau \rangle$ is almost zero dimensional $(A\overline{ZD})$ if there is a topology W on X such that $W \subset \tau$, $\langle X, W \rangle$ is zero dimensional and there is a basis of neighborhoods of $\langle X, \tau \rangle$ that are W-closed. We say that W is a witness topology.

イロト 不得 トイヨト イヨト

Alternative definition

Definition

A C-set in a topological space X is a set that is an intersection of clopen sets.

Lemma

A (separable metrizable) space is AZD if and only if it has a basis consisting of C-sets.

・ロト ・ 同ト ・ ヨト ・ ヨト

• Every zero-dimensional space is AZD.

э

イロト 不得 トイヨト イヨト

- Every zero-dimensional space is AZD.
- Every AZD space is totally disconnected.

・ロト ・ 理ト ・ ヨト ・ ヨト

- Every zero-dimensional space is AZD.
- Every AZD space is totally disconnected.
- Every AZD compact space is zero-dimensional.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Every zero-dimensional space is AZD.
- Every AZD space is totally disconnected.
- Every AZD compact space is zero-dimensional.
- Every subspace of an AZD space is AZD.
- The (countable) product of AZD spaces is AZD.

・ロト ・ 同ト ・ ヨト ・ ヨト

Cohesion

Definition

A space X is **cohesive** if for every point $p \in X$ there is an open set U with $p \in U$ and U does not contain clopen non-empty subsets.

・ロト ・ 理ト ・ ヨト ・ ヨト

Cohesion

Definition

A space X is **cohesive** if for every point $p \in X$ there is an open set U with $p \in U$ and U does not contain clopen non-empty subsets.

Theorem (Erdős, 1940)

 \mathfrak{E} and \mathfrak{E}_c are cohesive.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation: characterizations of zero-dimensional, separable metric spaces

- (Brouwer, 1910) 2^{ω} : compact; nowhere countable.
- (Sierpinski, 1920) \mathbb{Q} : countable; no isolated points.
- (Alexandroff and Urysohn, 1928) ω^{ω} : G_{δ} ; nowhere locally compact.
- (Alexandroff and Urysohn, 1928) $\mathbb{Q} \times 2^{\omega}$: K_{σ} ; nowhere locally compact; nowhere countable.
- (van Mill, 1981) $\mathbb{Q} \times \omega^{\omega}$: $G_{\delta\sigma}$; nowhere G_{δ} ; nowhere K_{σ} .
- (Van Engelen, 1986) ω_1 -many Borel spaces.

イロト 不得 トイヨト イヨト

"Intrinsic" characterization of \mathfrak{E}_c

Theorem (Dijkstra and van Mill, 2009)

A separable metric space E is homeomorphic to \mathfrak{E}_c if and only if E is cohesive and there is a witness topology \mathcal{W} and a basis of neighborhoods of E that are **compact** in \mathcal{W} .

"Intrinsic" characterization of \mathfrak{E}_c

Theorem (Dijkstra and van Mill, 2009)

A separable metric space E is homeomorphic to \mathfrak{E}_c if and only if E is cohesive and there is a witness topology \mathcal{W} and a basis of neighborhoods of E that are **compact** in \mathcal{W} .

Theorem (Dijkstra, van Mill and Steprāns, 2004) $\mathfrak{E}_c \not\approx \mathfrak{E}_c^{\omega}$.

"Intrinsic" characterization of \mathfrak{E}_c

Theorem (Dijkstra and van Mill, 2009)

A separable metric space E is homeomorphic to \mathfrak{E}_c if and only if E is cohesive and there is a witness topology \mathcal{W} and a basis of neighborhoods of E that are **compact** in \mathcal{W} .

Theorem (Dijkstra, van Mill and Steprāns, 2004) $\mathfrak{E}_c \not\approx \mathfrak{E}_c^{\omega}$.

 \mathfrak{E}_c^{ω} is called **stable Erdős space**.

Introduction to Erdős spaces

Hyperspaces

Characterization of $\mathbb{Q} \times \mathfrak{E}_{c}$

Questions

€ 990

ヘロト 人間 トイヨト イヨト

Ph.D. project: study Vietoris hyperspaces of Erdős spaces

Figure: My PhD student, Alfredo Zaragoza (2019 picture).

・ロト ・ 同ト ・ ヨト ・

Vietoris topology

For a space X the hyperspace of closed sets is

 $CL(X) = \{A \subset X : A \text{ is closed and non-empty}\},\$

where a basic open set is

 $\langle U_1,\ldots,U_m\rangle = \{Y \in CL(X) \colon Y \subset U_1 \cup \ldots \cup U_n \land \forall i \leq m (Y \cap U_i \neq \emptyset)\},\$

and U_1, \ldots, U_m are open.

Vietoris hyperspaces

We will consider the following subspaces of CL(X)

$$\begin{array}{lll} \mathcal{K}(X) &= \{A \in CL(X) \colon A \text{ is compact}\}, \\ \mathcal{F}(X) &= \{A \in CL(X) \colon A \text{ is finite}\}, \text{ and} \\ \mathcal{F}_n(X) &= \{A \in CL(X) \colon |A| = n\} \text{ for each } n \in \mathbb{N}. \end{array}$$

 $\mathcal{F}_n(X)$ is the **nth symmetric product** of X or **nth symmetric power** of X.

Theorem (E. Michael, 1950)

- (a) If X is separable and metrizable, then $\mathcal{K}(X)$ is separable and metrizable.
- (b) If X is Polish, then $\mathcal{K}(X)$ is Polish.
- (c) If X is zero-dimensional, then $\mathcal{K}(X)$ is zero-dimensional.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Motivation: hyperspaces of zero-dimensional spaces

```
Theorem (folklore)
\mathcal{K}(2^{\omega}) \approx 2^{\omega}.
Theorem (folklore)
```

 $\mathcal{K}(\omega^{\omega}) \approx \omega^{\omega}.$

Theorem (Shirota, 1968) $\mathcal{K}(2^{\omega_1}) \approx 2^{\omega_1}$. Theorem (Šhapiro, 1979) If $\kappa > \omega_2$, $\mathcal{K}(2^{\kappa}) \not\approx 2^{\kappa}$.

э

Problem for Alfredo

Let E be \mathfrak{E} or \mathfrak{E}_c . Are $\mathcal{K}(E)$, $\mathcal{F}(E)$, $\mathcal{F}_n(E)$ $(n \in \mathbb{N})$ homeomorphic to E?

First results in hyperspaces

Theorem ([Zaragoza, 2020])

For a separable metrizable space X the following are equivalent.

(a) X is AZD, (b) $\mathcal{K}(X)$ is AZD, (c) for all $n \in \mathbb{N}$, $\mathcal{F}_n(X)$ is AZD, and (d) there exists $n \in \mathbb{N}$ such that $\mathcal{F}_n(X)$ is AZD.

Theorem ([Zaragoza, 2020])

If X is separable, metrizable, cohesive and AZD then the hyperspaces $\mathcal{K}(X)$, $\mathcal{F}(X)$ and all symmetric powers of X are cohesive.

Theorem ([Zaragoza, 2020])

For every $n \in \mathbb{N}$, $\mathcal{F}_n(\mathfrak{E}) \approx \mathfrak{E}$ and $\mathcal{F}_n(\mathfrak{E}_c) \approx \mathfrak{E}_c$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Responses

Theorem ([Lipham, 2021]) $\mathcal{F}(\mathfrak{E}) \times \mathfrak{E} \approx \mathfrak{E}$; that is, $\mathcal{F}(\mathfrak{E})$ is an Erdős space factor.

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

Responses

Theorem ([Lipham, 2021]) $\mathcal{F}(\mathfrak{E}) \times \mathfrak{E} \approx \mathfrak{E}$; that is, $\mathcal{F}(\mathfrak{E})$ is an Erdős space factor.

Theorem ([Zaragoza, 2022]) $\mathcal{F}(\mathfrak{E}) \approx \mathfrak{E}.$

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Question ([Zaragoza, 2020]) Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

э

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Question ([Zaragoza, 2020]) Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

 $\mathfrak E$ contains a closed copy of $\mathbb Q$

э

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Question ([Zaragoza, 2020]) Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

 \mathfrak{E} contains a closed copy of \mathbb{Q} so $\mathcal{K}(\mathfrak{E})$ contains a closed copy of $\mathcal{K}(\mathbb{Q})$.

э

イロト 不得 トイヨト イヨト

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Question ([Zaragoza, 2020]) Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

 \mathfrak{E} contains a closed copy of \mathbb{Q} so $\mathcal{K}(\mathfrak{E})$ contains a closed copy of $\mathcal{K}(\mathbb{Q})$. Thus, $\mathcal{K}(\mathfrak{E})$ is not Borel.

э

イロト 不得 トイヨト イヨト
The hyperspace of compact sets

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Question ([Zaragoza, 2020]) Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

 \mathfrak{E} contains a closed copy of \mathbb{Q} so $\mathcal{K}(\mathfrak{E})$ contains a closed copy of $\mathcal{K}(\mathbb{Q})$. Thus, $\mathcal{K}(\mathfrak{E})$ is not Borel.

But it is known that $\mathcal{K}(\mathbb{Q})$ is a topological group.

э

The hyperspace of compact sets

Let $\mathcal W$ be a witness topology for $\mathfrak E_c$. Then

 $\mathcal{K}(\mathfrak{E}_c) \subsetneq \mathcal{K}(\mathfrak{E}_c, \mathcal{W}).$

Question ([Zaragoza, 2020]) Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

 \mathfrak{E} contains a closed copy of \mathbb{Q} so $\mathcal{K}(\mathfrak{E})$ contains a closed copy of $\mathcal{K}(\mathbb{Q})$. Thus, $\mathcal{K}(\mathfrak{E})$ is not Borel.

But it is known that $\mathcal{K}(\mathbb{Q})$ is a topological group.

Question ([Zaragoza, 2022]) Is $\mathcal{K}(\mathfrak{E})$ homogeneous?

イロト イボト イヨト イヨト 三日

Notice that

$$\mathcal{F}(\mathfrak{E}_c) = \bigcup \{\mathcal{F}_n(\mathfrak{E}_c) \colon n \in \mathbb{N}\}$$

so $\mathcal{F}(\mathfrak{E}_c)$ is the **increasing** union of nowhere dense copies of \mathfrak{E}_c .

æ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Notice that

$$\mathcal{F}(\mathfrak{E}_c) = \bigcup \{\mathcal{F}_n(\mathfrak{E}_c) \colon n \in \mathbb{N}\}$$

so $\mathcal{F}(\mathfrak{E}_c)$ is the **increasing** union of nowhere dense copies of \mathfrak{E}_c . Alfredo observed: \mathbb{Q} is an **increasing** union of compact countable spaces

$$\mathbb{Q}=\bigcup\{K_n\colon n\in\mathbb{N}\}$$

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Notice that

$$\mathcal{F}(\mathfrak{E}_c) = \bigcup \{\mathcal{F}_n(\mathfrak{E}_c) \colon n \in \mathbb{N}\}$$

so $\mathcal{F}(\mathfrak{E}_c)$ is the **increasing** union of nowhere dense copies of \mathfrak{E}_c .

Alfredo observed: $\mathbb Q$ is an increasing union of compact countable spaces

$$\mathbb{Q}=\bigcup\{K_n\colon n\in\mathbb{N}\}$$

SO

$$\mathbb{Q}\times\mathfrak{E}_{c}=\bigcup\{K_{n}\times\mathfrak{E}_{c}\colon n\in\mathbb{N}\},\$$

and $K_n \times \mathfrak{E}_c \approx \mathfrak{E}_c$ for each $n \in \mathbb{N}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Notice that

$$\mathcal{F}(\mathfrak{E}_c) = \bigcup \{\mathcal{F}_n(\mathfrak{E}_c) \colon n \in \mathbb{N}\}$$

so $\mathcal{F}(\mathfrak{E}_c)$ is the **increasing** union of nowhere dense copies of \mathfrak{E}_c .

Alfredo observed: $\mathbb Q$ is an increasing union of compact countable spaces

$$\mathbb{Q}=\bigcup\{K_n\colon n\in\mathbb{N}\}$$

SO

$$\mathbb{Q}\times\mathfrak{E}_c=\bigcup\{K_n\times\mathfrak{E}_c\colon n\in\mathbb{N}\},\$$

and $K_n \times \mathfrak{E}_c \approx \mathfrak{E}_c$ for each $n \in \mathbb{N}$. Conjecture

 $\mathcal{F}(\mathfrak{E}_c) \approx \mathbb{Q} \times \mathfrak{E}_c$

э

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Introduction to Erdős spaces

Hyperspaces

Characterization of $\mathbb{Q} \times \mathfrak{E}_c$

Questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A space X is **cohesive** with respect a collection of subsets $\{X_s : s \in I\}$ if every point $p \in X$ has a neighborhood U such that for all $s \in I$, $U \cap X_s$ contains no non-empty clopen subsets of X_s .

э

Class $\sigma \mathcal{E}$

Definition ([HG and Zaragoza, 2022])

 $\sigma \mathcal{E}$ is the class of all separable metrizable spaces E such that there exists a topology \mathcal{W} on E that is witness to the almost zero-dimensionality of E, a collection $\{E_n : n \in \omega\}$ of subsets of E and a basis β of neighborhoods of E such that

(a)
$$E = \bigcup \{E_n : n \in \omega\},\$$

(b) for each $n \in \omega$, E_n is a crowded nowhere dense subset of E_{n+1} ,

(c) for each
$$n \in \omega$$
, E_n is closed in W ,

(d) E is
$$\{E_n : n \in \omega\}$$
-cohesive, and

(e) for each $V \in \beta$, $V \cap E_n$ is compact in $W \upharpoonright E_n$ for each $n \in \omega$.

Class $\sigma \mathcal{E}$ contains one space up to homeomorphism

Lemma ([HG and Zaragoza, 2022]) $\mathbb{Q} \times \mathfrak{E}_{c} \in \sigma \mathcal{E}.$

Lemma ([HG and Zaragoza, 2022]) $\mathcal{F}(\mathfrak{E}_c) \in \sigma \mathcal{E}.$

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Class $\sigma \mathcal{E}$ contains one space up to homeomorphism

```
Lemma ([HG and Zaragoza, 2022])

\mathbb{Q} \times \mathfrak{E}_c \in \sigma \mathcal{E}.

Lemma ([HG and Zaragoza, 2022])

\mathcal{F}(\mathfrak{E}_c) \in \sigma \mathcal{E}.
```

Theorem ([HG and Zaragoza, 2022])

For a separable metrizable space E the following are equivalent: (a) $E \in \sigma \mathcal{E}$, and (b) $E \approx \mathbb{Q} \times \mathfrak{E}_c$.

Corollary ([HG and Zaragoza, 2022]) $\mathcal{F}(\mathfrak{E}_c) \approx \mathbb{Q} \times \mathfrak{E}_c.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Corollary ([HG and Zaragoza, 2022]) $\mathcal{F}(\mathfrak{E}_c) \approx \mathbb{Q} \times \mathfrak{E}_c.$

<u>Then</u>: $\mathcal{K}(\mathfrak{E}_c)$ contains a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$.

Corollary ([HG and Zaragoza, 2022]) $\mathcal{F}(\mathfrak{E}_c) \approx \mathbb{Q} \times \mathfrak{E}_c.$

<u>Then</u>: $\mathcal{K}(\mathfrak{E}_c)$ contains a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$.

 $\mathbb{Q} \times \mathfrak{E}_c \subset \mathfrak{E}_c \times \mathfrak{E}_c \approx \mathfrak{E}_c$

Corollary ([HG and Zaragoza, 2022]) $\mathcal{F}(\mathfrak{E}_c) \approx \mathbb{Q} \times \mathfrak{E}_c.$

<u>Then</u>: $\mathcal{K}(\mathfrak{E}_c)$ contains a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$.

 $\mathbb{Q} \times \mathfrak{E}_c \subset \mathfrak{E}_c \times \mathfrak{E}_c \approx \mathfrak{E}_c$

Question ([HG and Zaragoza, 2022]) Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?

Summary: hyperspaces

	$X = \mathfrak{E}$	$X = \mathfrak{E}_c$
$\mathcal{F}_n(X)$	homeomorphic to &	homeomorphic to \mathfrak{E}_c
$\mathcal{F}(X)$	homeomorphic to &	homeomorphic to $\mathbb{Q} imes \mathfrak{E}_c$
$\mathcal{K}(X)$	AZD, cohesive, non-Borel	AZD, cohesive, Polish
	homogeneous?	homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$\sigma\text{-}\mathsf{product}$

Fix $e \in \mathfrak{E}_c$.

$$\sigma \mathfrak{E}_c^{\omega} = \{ x \in \mathfrak{E}_c^{\omega} \colon \{ n \in \omega \colon x_n \neq e \} \text{ is finite} \}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

σ -product

Fix $e \in \mathfrak{E}_c$.

$$\sigma \mathfrak{E}_c^{\omega} = \{ x \in \mathfrak{E}_c^{\omega} \colon \{ n \in \omega \colon x_n \neq e \} \text{ is finite} \}.$$

Theorem ([Lipham, preprint]) $\sigma \mathfrak{E}_{c}^{\omega} \in \sigma \mathcal{E}$; thus, $\sigma \mathfrak{E}_{c}^{\omega} \approx \mathbb{Q} \times \mathfrak{E}_{c}$.

э

・ロト ・ 同ト ・ ヨト ・ ヨト

σ -product

Fix $e \in \mathfrak{E}_c$.

$$\sigma \mathfrak{E}_c^{\omega} = \{ x \in \mathfrak{E}_c^{\omega} \colon \{ n \in \omega \colon x_n \neq e \} \text{ is finite} \}.$$

Theorem ([Lipham, preprint]) $\sigma \mathfrak{E}_{c}^{\omega} \in \sigma \mathcal{E}$; thus, $\sigma \mathfrak{E}_{c}^{\omega} \approx \mathbb{Q} \times \mathfrak{E}_{c}$.

Question ([Lipham, preprint]) Is the "pseudo-boundary" { $x \in \mathfrak{E}_{c}^{\omega} : \exists n \in \omega (x_{n} = e)$ } homeomorphic to $\mathbb{Q} \times \mathfrak{E}_{c}$?

э

Counterexample

Theorem ([Lipham, preprint])

There exists a separable metrizable space $E = \bigcup \{E_n : n \in \omega\}$ such that for each $n \in \omega$,

- E_n is closed in E_r
- $E_n \approx \mathfrak{E}_c$ and
- E_n is nowhere dense in E_{n+1} ,

but $E \not\approx \mathbb{Q} \times \mathfrak{E}_c$.

Counterexample

Theorem ([Lipham, preprint])

There exists a separable metrizable space $E = \bigcup \{E_n : n \in \omega\}$ such that for each $n \in \omega$,

- E_n is closed in E_r
- $E_n \approx \mathfrak{E}_c$ and
- E_n is nowhere dense in E_{n+1} ,

but $E \not\approx \mathbb{Q} \times \mathfrak{E}_c$.

Question ([HG and Zaragoza, 2022])

Let $X \subset \mathfrak{E}_c$ be a countable union of nowhere dense C-sets. If X is cohesive and dense, is $X \approx \mathbb{Q} \times \mathfrak{E}_c$?

A space X is a **factor** of a space Y is there is Z such that $X \times Z \approx Y$.

Examples:

• X is a factor of 2^{\u03c6} iff X is compact, metrizable and zero-dimensional.

3

A space X is a **factor** of a space Y is there is Z such that $X \times Z \approx Y$.

Examples:

- X is a factor of 2^{\u03c6} iff X is compact, metrizable and zero-dimensional.
- [Dijkstra and van Mill, 2009] X is a factor of 𝔅_c if and only if X can be embedded as a closed set of 𝔅_c,

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

A space X is a **factor** of a space Y is there is Z such that $X \times Z \approx Y$.

Examples:

- X is a factor of 2^{\u03c6} iff X is compact, metrizable and zero-dimensional.
- [Dijkstra and van Mill, 2009] X is a factor of 𝔅_c if and only if X can be embedded as a closed set of 𝔅_c,
- [Dijkstra, 2011] X is a factor of \mathfrak{E}_c^{ω} if and only if X is an AZD Polish space,

э

A space X is a **factor** of a space Y is there is Z such that $X \times Z \approx Y$.

Examples:

- X is a factor of 2^{\u03c6} iff X is compact, metrizable and zero-dimensional.
- [Dijkstra and van Mill, 2009] X is a factor of \mathfrak{E}_c if and only if X can be embedded as a closed set of \mathfrak{E}_c ,
- [Dijkstra, 2011] X is a factor of \mathfrak{E}_c^{ω} if and only if X is an AZD Polish space,
- [Dijkstra and van Mill, 2010] X is a factor of \mathfrak{E} if and only if X can be embedded as a closed set of \mathfrak{E} .

э

Factors of $\mathbb{Q} \times \mathfrak{E}_c$

$\begin{array}{rcl} \mathsf{Factor} \ \mathsf{of} & \Rightarrow & \mathsf{Factor} \ \mathsf{of} & \Rightarrow & \mathsf{Factor} \ \mathsf{of} \\ \mathfrak{E}_c & \not \in & \mathbb{Q} \times \mathfrak{E}_c & \not \in & \mathfrak{E} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Factors of $\mathbb{Q} \times \mathfrak{E}_c$

$$\begin{array}{rcl} \mathsf{Factor of} & \Rightarrow & \mathsf{Factor of} & \Rightarrow & \mathsf{Factor of} \\ \mathfrak{E}_c & \not \in & \mathbb{Q} \times \mathfrak{E}_c & \not \in & \mathfrak{E} \end{array}$$

Theorem ([HG and Zaragoza, 2022])

A space E is a $(\mathbb{Q} \times \mathfrak{E}_c)$ -factor if and only if there are a topology \mathcal{W} on E witnessing that E is almost zero-dimensional, a collection of \mathcal{W} -closed non-empty subsets $\{E_n : n \in \omega\}$ and a basis of neighborhoods β such that

(i)
$$E = \bigcup \{E_n : n \in \omega\},\$$

(ii) for every
$$n \in \omega$$
, $E_n \subset E_{n+1}$, and

(iii) for every $U \in \beta$ and $n \in \omega$, $U \cap E_n$ is compact in \mathcal{W} .

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Factors of $\mathbb{Q} \times \mathfrak{E}_c$

$$\begin{array}{rcl} \mathsf{Factor of} & \Rightarrow & \mathsf{Factor of} & \Rightarrow & \mathsf{Factor of} \\ \mathfrak{E}_c & \not \leftarrow & \mathbb{Q} \times \mathfrak{E}_c & \not \leftarrow & \mathfrak{E} \end{array}$$

Theorem ([HG and Zaragoza, 2022])

A space E is a $(\mathbb{Q} \times \mathfrak{E}_c)$ -factor if and only if there are a topology \mathcal{W} on E witnessing that E is almost zero-dimensional, a collection of \mathcal{W} -closed non-empty subsets $\{E_n : n \in \omega\}$ and a basis of neighborhoods β such that

(i)
$$E = \bigcup \{E_n : n \in \omega\},\$$

(ii) for every
$$n \in \omega$$
, $E_n \subset E_{n+1}$, and

(iii) for every $U \in \beta$ and $n \in \omega$, $U \cap E_n$ is compact in \mathcal{W} .

Question ([HG and Zaragoza, 2022])

Is there a nicer characterization of $(\mathbb{Q} \times \mathfrak{E}_c)$ -factors?

・ロト ・ 一下 ・ ト ・ 日 ・ ・

Introduction to Erdős spaces

Hyperspaces

Characterization of $\mathbb{Q} \times \mathfrak{E}_c$

Questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Question: Knaster-Reichbach theorem analogue?

Theorem (Knaster and Reichbach, 1953)

If $A, B \subset 2^{\omega}$ are both closed and nowhere dense, then any homeomorphism $h: A \to B$ can be extended to a homeomorphism $H: 2^{\omega} \to 2^{\omega}, H \upharpoonright A = h.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Question: Knaster-Reichbach theorem analogue?

Theorem (Knaster and Reichbach, 1953)

If $A, B \subset 2^{\omega}$ are both closed and nowhere dense, then any homeomorphism $h: A \to B$ can be extended to a homeomorphism $H: 2^{\omega} \to 2^{\omega}, H \upharpoonright A = h.$

Theorem (Ščepin and Valov, 2021)

If $\tau \ge \omega$ and $A, B \subset 2^{\tau}$ are both closed and **negligible**, then any homeomorphism $h: A \to B$ can be extended to a homeomorphism $H: 2^{\tau} \to 2^{\tau}, H \upharpoonright A = h$.

・ロト ・ 理ト ・ ヨト ・ ヨト

Question: Knaster-Reichbach theorem analogue?

Theorem (Knaster and Reichbach, 1953)

If $A, B \subset 2^{\omega}$ are both closed and nowhere dense, then any homeomorphism $h: A \to B$ can be extended to a homeomorphism $H: 2^{\omega} \to 2^{\omega}, H \upharpoonright A = h.$

Theorem (Ščepin and Valov, 2021)

If $\tau \ge \omega$ and $A, B \subset 2^{\tau}$ are both closed and **negligible**, then any homeomorphism $h: A \to B$ can be extended to a homeomorphism $H: 2^{\tau} \to 2^{\tau}, H \upharpoonright A = h$.

Question

Let $A, B \subset \mathfrak{E}_c$ be closed, C-sets and nowhere dense. If $h: A \to B$ is a homeomorphism, does there exist an extension $H: \mathfrak{E}_c \to \mathfrak{E}_c$, $H \upharpoonright A = h$?

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Smooth fans

A **smooth fan** is any subcontinuum of the Cantor fan that is not a point or an arc.

The **Lelek fan** is **the**^{*} smooth fan whose set of endpoints is dense in the Lelek fan.

イロト イポト イヨト イヨト

*(Charatonik, 1989)

Smooth fans

A **smooth fan** is any subcontinuum of the Cantor fan that is not a point or an arc.

The **Lelek fan** is **the**^{*} smooth fan whose set of endpoints is dense in the Lelek fan.

イロト イポト イヨト イヨ

*(Charatonik, 1989)

Theorem (Kawamura, Oversteegen and Tymchatyn, 1996) The set of endpoints of the Lelek fan is homeomorphic to \mathfrak{E}_c .

Smooth fans and AZD spaces

Let X be a smooth fan (embedded in the Cantor fan) and E(X) its set of endpoints.

・ロト ・ 一下・ ・ ヨト ・ ヨ

Smooth fans and AZD spaces

Let X be a smooth fan (embedded in the Cantor fan) and E(X) its set of endpoints. Let p be the vertex of the Cantor fan, F the base at height 0.

・ロト ・ 一下・ ・ ヨト ・

Smooth fans and AZD spaces

Let X be a smooth fan (embedded in the Cantor fan) and E(X) its set of endpoints. Let p be the vertex of the Cantor fan, F the base at height 0.

For every $e \in F$, let $\pi(e) \in F$ be such that p, e and $\pi(e)$ are colinear.

・ロト ・ 一下・ ・ ヨト ・ ヨ

Smooth fans and AZD spaces

Let X be a smooth fan (embedded in the Cantor fan) and E(X) its set of endpoints. Let p be the vertex of the Cantor fan, F the base at height 0.

For every $e \in F$, let $\pi(e) \in F$ be such that p, e and $\pi(e)$ are colinear. Then

 $\{\pi^{\leftarrow}(U): U \text{ clopen in } F\}$

is a witness topology for E(X).

イロト イポト イヨト イヨ

Theorem (folklore?; explict in [HG and Hoehn, preprint]) The set of endpoints of any smooth fan can be embedded as a closed subset of \mathfrak{E}_c .

Question ([HG and Hoehn, preprint])

Let E be a closed subset of \mathfrak{E}_c . Is there a smooth fan X such that $E(X) \approx E$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- iv. Is the pseudo-boundary of \mathfrak{E}_c^{ω} homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- iv. Is the pseudo-boundary of \mathfrak{E}_c^{ω} homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- v. Characterize all (dense) $X \subset \mathfrak{E}_c$ such that $X \approx \mathbb{Q} \times \mathfrak{E}_c$.

э

イロト 不得 トイヨト イヨト

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- iv. Is the pseudo-boundary of \mathfrak{E}_c^{ω} homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- v. Characterize all (dense) $X \subset \mathfrak{E}_c$ such that $X \approx \mathbb{Q} \times \mathfrak{E}_c$.
- vi. Find a "nice" characterization of factors of $\mathbb{Q} \times \mathfrak{E}_c$ that does not mention witness topologies, if possible.

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- iv. Is the pseudo-boundary of \mathfrak{E}_c^{ω} homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- v. Characterize all (dense) $X \subset \mathfrak{E}_c$ such that $X \approx \mathbb{Q} \times \mathfrak{E}_c$.
- vi. Find a "nice" characterization of factors of $\mathbb{Q} \times \mathfrak{E}_c$ that does not mention witness topologies, if possible.
- vii. Is there a Knaster-Reichbach-like theorem for \mathfrak{E}_c ?

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does \mathfrak{E}_c^{ω} contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- iv. Is the pseudo-boundary of \mathfrak{E}_c^{ω} homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- v. Characterize all (dense) $X \subset \mathfrak{E}_c$ such that $X \approx \mathbb{Q} \times \mathfrak{E}_c$.
- vi. Find a "nice" characterization of factors of $\mathbb{Q} \times \mathfrak{E}_c$ that does not mention witness topologies, if possible.
- vii. Is there a Knaster-Reichbach-like theorem for \mathfrak{E}_c ?
- viii. Can any closed subset of \mathfrak{E}_c be the endpoint set of a smooth fan?

イロト イボト イヨト イヨト 三日

- i. Is $\mathcal{K}(\mathfrak{E}_c)$ homeomorphic to \mathfrak{E}_c or \mathfrak{E}_c^{ω} ?
- ii. Is $\mathcal{K}(\mathfrak{E})$ homogeneous?
- iii. Does $\mathfrak{E}_{c}^{\omega}$ contain a dense subset homeomorphic to $\mathbb{Q} \times \mathfrak{E}_{c}$?
- iv. Is the pseudo-boundary of \mathfrak{E}_c^{ω} homeomorphic to $\mathbb{Q} \times \mathfrak{E}_c$?
- v. Characterize all (dense) $X \subset \mathfrak{E}_c$ such that $X \approx \mathbb{Q} \times \mathfrak{E}_c$.
- vi. Find a "nice" characterization of factors of $\mathbb{Q} \times \mathfrak{E}_c$ that does not mention witness topologies, if possible.
- vii. Is there a Knaster-Reichbach-like theorem for \mathfrak{E}_c ?
- viii. Can any closed subset of \mathfrak{E}_c be the endpoint set of a smooth fan?

Problem

Study AZD spaces beyond the metric setting, for example, $\mathfrak{E}_c^{\omega_1}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

References

- Hernández-Gutiérrez, Rodrigo and Zaragoza, Alfredo; "A characterization of the product of the rational numbers and complete Erdős space." Canad. Math. Bull. (2022) 1-16. DOI: 10.4153/S0008439522000091
- Hernández-Gutiérrez, Rodrigo and Hoehn, Logan; "Smooth fans that are endpoint rigid." Preprint, .
- Lipham, David S.; "A characterization of Erdős space factors." Isr. J. Math. 246, No. 1 (2021), 395-402. DOI: 10.1007/s11856-021-2251-9
 - Lipham, David S.; "The *σ*-product and CAP of complete Erdős space." Preprint, arXiv:2112.10172.
 - A. Zaragoza, "Symmetric products of Erdős space and complete Erdős space." Topology Appl. 284 (2020), 107355, 10 pp. DOI: 10.1016/j.topol.2020.107355
 - A. Zaragoza, "The Vietoris hyperspace of finite sets of Erdős space." Topology Appl. 310 (2021), 107943, 6 pp. DOI: 10.1016/j.topol.2021.107943

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト