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A closure space or a Čech closure space is a pair (X , c)
where X is a set and c : 2X → 2X is a closure operator

such that:
(i) c(∅) = ∅; (ii) A ⊆ c(A); (iii) c(A ∪ B) = c(A) ∪ c(B).

In other words, a Čech closure is a topological (or
Kuratowski) closure where the idempotency of the closure

is not imposed.
In this talk we will discuss how to transpose to closure

spaces some countable notions usual in topological spaces
such as: separability, Lindelöfness, first and second

countability, . . . and study how they compare to each other
using the axiom of choice, some weak forms of choice or in

a choice-free context.



Theorem.[ZF+CC]

For a (pseudo)metric space, T.F.A.E:

I Lindelöf (L);

I Separable (S);

I Second Countable (SC);

I Topologically Totally Bounded (TTB) – it is equivalent to a
totally bounded space;

I preLindelöf (PL) – for every ε > 0, exists a countable family
A of open ball of radius ε such that X =

⋃
A;

I Topologically preLindelöf (TPL);

I Quasi Totally Bounded (TQTB) – for every ε > 0, exists a

countable set A ⊆ X such that X =
⋃
a∈A

Bε(a);

I Topologically Quasi Totally Bounded(TQTB).
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I Separable (S);

I Second Countable (SC);

I Topologically Totally Bounded (TTB) – it is equivalent to a
totally bounded space;
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Metric spaces

A metric on X is a function d : X × X → R such that:

(i) d(x , y) ≥ 0,

(ii) d(x , x) = 0,

(iii) d(x , y) = 0 ⇒ x = y , [separation]

(iv) d(x , y) = d(y , x), [symmetry]

(v) d(x , z) ≤ d(x , y) + d(y , z). [triangle inequality]
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Closure spaces(=Pretopological spaces)

c : 2X −→ 2X

(X , c) is a closure space if c if grounded, extensive and
additive, i.e. :

1. c(∅) = ∅;

2. if A ⊆ c(A);

3. c(A ∪ B) = c(A) ∪ c(B).

Pretopological spaces can equivalently be described with
neighborhoods.

Nx := {V | x 6∈ c(X \ V )}
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Neighborhood spaces(=Pretopological spaces)

N : X −→ FX , with FX the set of filters on X .
x 7→ Nx

(
X , (Nx)x∈X

)
is a neighborhood space if for every V ∈ Nx ,

x ∈ V .

c(A) = {x ∈ X | (∀V ∈ Nx) V ∩ A 6= ∅}
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Topological reflection

r : PrTop −→ Top
(X , c) 7→ (X , T )

A ∈ T if c(X \ A) = X \ A or, equivalently

if A is a neighborhood of all its points.
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Semi-Metrizable Spaces

I Every premetric d induces a closure space (X , c) with

c(A) := {x ∈ X | d(x ,A) = 0}.

I If the triangle inequality holds, then the closure is topological,
i.e. c(c(A)) = c(A).

I A closure space is semi-metrizable if it is induced by a
semi-metric.

I A topological space is semi-metrizable if it is the reflection of
a semi-metrizable closure space.

I A topological space is symmetrizable if it is a semi-metrizable
as closure space.
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Weak base

A weak base of a topological space (X , T ) is a family
(Wx)x∈X such that:

1. (∀W ∈ Wx) x ∈ W ;

2. every Wx is a filter base;

3. A ⊆ X is open if and only if
for every x ∈ A there is W ∈ Wx such that x ∈ W ⊆ A.
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g -first countable spaces

A topological space X is:

I first countable if each point of X has a countable local (or
neighborhood) base.

I g -first countable if X has a weak base which is countable
at each point.

I second countable if there is (Bx)x∈X such that for each x ,

Bx is a local base and
⋃
x∈X

Bx is countable.

I g -second countable if X has a weak base (Wx)x∈X such

that
⋃
x∈X

Wx is countable.
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First countable Closure spaces

A closure space X is:

I first countable if at each point x , the neighborhood filter
Nx has a countable base.

I second countable if there is (Bx)x∈X such that for each x ,

Bx is a base for Nx and
⋃
x∈X

Bx is countable.
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g -first countable spaces (again)

A topological space X is g -first countable if X has a weak
base which is countable at each point.

A topological space is g -first countable if it is the reflection of
a pretopological first countable space.

I (X , c) has a countable local base at x if the neighborhood
filter Nx has a countable base.

I (X , T ) has a countable weak base at x if it is the
reflection of a pretopological space which has a countable
base at x .

Notice that having a countable weak base at each
point does not imply being g -first countable.
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Compactness in Closure spaces

A closure space (X , c) is cover-compact if for every family

{Ai | i ∈ I} such that {c(Ai ) | i ∈ I} has the f .i .p., then
⋂
i∈I

c(Ai ).

A closure space (X , c) is (filter)-compact if for every family
{Ai | i ∈ I} such that {c(Ai ) | i ∈ I} has the f .i .p., then⋂
i∈I

c(Ai ) 6= ∅.

m
The Kuratowski-Mrówka Theorem is valid, i.e.,

(∀Y ) pY : x × Y → Y is closed.

c(pY (A) ⊆ pY (c(A))
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Lindelöfness in Closure spaces

A closure space (X , c) is cover-Lindelöf if for every family
{Ai | i ∈ I} such that {c(Ai ) | i ∈ I} has the countable intersection

property (c.i.p), then
⋂
i∈I

c(Ai ).

A closure space (X , c) is Lindelöf if for every family {Ai | i ∈ I}
such that {c(Ai ) | i ∈ I} has the c .i .p., then

⋂
i∈I

c(Ai ) 6= ∅.

Every cover-Lindelöf space is Lindelöf.
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Results in ZF

I Every g -second countable space is Lindelöf iff CC(R)
(the axiom os countable choice for subsets of R).
[For topological spaces]

I Every second countable space is cover-Lindelöf iff CC(R).
[For closure spaces]

I Every second countable space is separable iff CC.

I Every second countable semi-metric space is separable iff
CC(R).

I Every g -first countable space is a sequential space iff CC.
[For topological spaces]

I Every first countable space is a sequential space(= Fréchet
space) iff CC.
[For closure spaces]

I Every semi-metric space is a sequential space(= Fréchet
space) iff CC(R).
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