On some results about cardinal inequalities for topological spaces

Ivan S. Gotchev

Central Connecticut State University

TOPOSYM Prague, July 28, 2022

(4月) (4日) (4日)

Hajnal–Juhász' and Arhangel'skii's inequalities Pospišil's inequality

Hajnal–Juhász' and Arhangel'skiĭ's inequalities

Two of the most celebrated cardinal inequalities in the theory of cardinal functions are the Hajnal–Juhász' inequality and Arhangel'skiĭ's inequality:

(4 同) (4 回) (4 回)

Hajnal–Juhász' and Arhangel'skiï's inequalities Pospišil's inequality

Hajnal–Juhász' and Arhangel'skii's inequalities

Two of the most celebrated cardinal inequalities in the theory of cardinal functions are the Hajnal–Juhász' inequality and Arhangel'skiï's inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space, then

 $|X| \leq 2^{\chi(X)c(X)},$

where $\chi(X)$ is the character and c(X) is the cellularity of X.

Hajnal–Juhász' and Arhangel'skīi's inequalities Pospišil's inequality

Hajnal–Juhász' and Arhangel'skii's inequalities

Two of the most celebrated cardinal inequalities in the theory of cardinal functions are the Hajnal–Juhász' inequality and Arhangel'skiĭ's inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space, then

 $|X| \leq 2^{\chi(X)c(X)},$

where $\chi(X)$ is the character and c(X) is the cellularity of X.

Theorem: [Arhangel'skiĭ's, 1969] If X is a Hausdorff space, then

 $|X| \leq 2^{\chi(X)L(X)},$

where L(X) is the Lindelöf degree of X.

Hajnal–Juhász' and Arhangel'skiĩ's inequalities Pospišil's inequality

Pospišil's inequality

The two inequalities are important, in particular, because they show that the two pairs of cardinal functions L(X) and $\chi(X)$, and c(X) and $\chi(X)$, respectively, are sufficient to give an upper bound for the cardinality of a Hausdorff topological space.

(4回) (日) (日)

Hajnal–Juhász' and Arhangel'skiĩ's inequalities Pospišil's inequality

Pospišil's inequality

The two inequalities are important, in particular, because they show that the two pairs of cardinal functions L(X) and $\chi(X)$, and c(X) and $\chi(X)$, respectively, are sufficient to give an upper bound for the cardinality of a Hausdorff topological space.

But even Pospišil's inequality from 1937 gives a lower upper bound for the cardinality of a Hausdorff space X than Hajnal–Juhász' and Arhangel'skiĭ's inequalities.

Hajnal–Juhász' and Arhangel'skiï's inequalities Pospišil's inequality

Pospišil's inequality

The two inequalities are important, in particular, because they show that the two pairs of cardinal functions L(X) and $\chi(X)$, and c(X) and $\chi(X)$, respectively, are sufficient to give an upper bound for the cardinality of a Hausdorff topological space.

But even Pospišil's inequality from 1937 gives a lower upper bound for the cardinality of a Hausdorff space X than Hajnal–Juhász' and Arhangel'skiĭ's inequalities.

Theorem: [Pospišil, 1937] If X is a Hausdorff space, then

 $|X| \leq d(X)^{\chi(X)},$

where d(X) is the density and $\chi(X)$ is the character of X.

Hajnal–Juhász' and Arhangel'skiĩ's inequalities Pospišil's inequality

Pospišil's inequality

Here is how one can see that Pospišil's inequality gives a lower upper bound for the cardinality of a space X than Hajnal–Juhász' and Arhangel'skiĭ's inequalities.

Hajnal–Juhász' and Arhangel'skiĩ's inequalities Pospišil's inequality

Pospišil's inequality

Here is how one can see that Pospišil's inequality gives a lower upper bound for the cardinality of a space X than Hajnal–Juhász' and Arhangel'skiĩ's inequalities.

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (2^{\chi(X)c(X)})^{\chi(X)} = 2^{\chi(X)c(X)},$$

Hajnal–Juhász' and Arhangel'skiĩ's inequalities Pospišil's inequality

Pospišil's inequality

Here is how one can see that Pospišil's inequality gives a lower upper bound for the cardinality of a space X than Hajnal–Juhász' and Arhangel'skiĩ's inequalities.

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (2^{\chi(X)c(X)})^{\chi(X)} = 2^{\chi(X)c(X)},$$

 $d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (2^{\chi(X)L(X)})^{\chi(X)} = 2^{\chi(X)L(X)}.$

イロト イポト イラト イラト 一日

Hajnal–Juhász' and Arhangel⁷skīī's inequalities Pospišil's inequality

Pospišil's inequality

Here is how one can see that Pospišil's inequality gives a lower upper bound for the cardinality of a space X than Hajnal–Juhász' and Arhangel'skiï's inequalities.

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (2^{\chi(X)c(X)})^{\chi(X)} = 2^{\chi(X)c(X)},$$

$$d(X)^{\chi(X)} \le |X|^{\chi(X)} \le (2^{\chi(X)L(X)})^{\chi(X)} = 2^{\chi(X)L(X)}$$

Example: If $X = \mathbb{R}$, where \mathbb{R} has the discrete topology, then Hajnal–Juhász' and Arhangel'skiĭ's inequalities give the following estimate: $|X| \leq 2^{c \cdot \omega} = 2^{c}$,

while Pospišil's inequality gives $|X| \leq \mathfrak{c}^{\omega} = \mathfrak{c}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Bella and Cammaroto's inequality

Therefore, every improvement of Pospišil's inequality is an improvement of Hajnal–Juhász' and Arhangel'skiï's inequalities.

- 4 同 6 4 日 6 4 日 6

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Bella and Cammaroto's inequality

Therefore, every improvement of Pospišil's inequality is an improvement of Hajnal–Juhász' and Arhangel'skiĩ's inequalities. There are many such improvements in the literature. Here I will mention only a few of them.

- 4 同 6 4 日 6 4 日 6

Bella and Cammaroto's inequality Gotchev-Tkachuk's inequality Willard and Dissanayake's inequality

Bella and Cammaroto's inequality

Therefore, every improvement of Pospišil's inequality is an improvement of Hajnal–Juhász' and Arhangel'skiĩ's inequalities. There are many such improvements in the literature. Here I will mention only a few of them.

Theorem: [Bella and Cammaroto, 1988] If X is a Hausdorff space, then

 $|X| \leq d_{\theta}(X)^{\chi(X)},$

where $d_{\theta}(X)$ is the θ -density of X.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Bella and Cammaroto's inequality

Therefore, every improvement of Pospišil's inequality is an improvement of Hajnal–Juhász' and Arhangel'skiĩ's inequalities. There are many such improvements in the literature. Here I will mention only a few of them.

Theorem: [Bella and Cammaroto, 1988] If X is a Hausdorff space, then

 $|X| \leq d_{\theta}(X)^{\chi(X)},$

where $d_{\theta}(X)$ is the θ -density of X.

Since $d_{\theta}(X) \leq d(X)$ for every space X, Bella and Cammaroto's inequality is a formal generalization of Pospišil's inequality.

・ロン ・回と ・ヨン ・ヨン

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

A new generalization of Pospišil's inequality

Theorem: [G–Tkachuk, 2022] If X is a Urysohn space, then $|X| \le d_{\theta}(X)^{\pi_{\chi}(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

A new generalization of Pospišil's inequality

Theorem: [G–Tkachuk, 2022] If X is a Urysohn space, then $|X| \le d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

A new generalization of Pospišil's inequality

Theorem: [G–Tkachuk, 2022] If X is a Urysohn space, then $|X| \le d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Corollary: If X is a Urysohn space, then

$$d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}.$$

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

A new generalization of Pospišil's inequality

Theorem: [G–Tkachuk, 2022] If X is a Urysohn space, then $|X| \le d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Corollary: If X is a Urysohn space, then

$$d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}.$$

Proof:

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (d_ heta(X)^{\pi\chi(X)\psi_{ heta^2}(X)})^{\chi(X)} \leq d_ heta(X)^{\chi(X)}.$$

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

A new generalization of Pospišil's inequality

Theorem: [G–Tkachuk, 2022] If X is a Urysohn space, then $|X| \le d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)},$

where $\pi \chi(X)$ is the π -character of X.

Since $\pi\chi(X)\psi_{\theta^2}(X) \leq \chi(X)$ for every Urysohn space X, the above inequality is a generalization of Pospišil's inequality.

Corollary: If X is a Urysohn space, then

$$d(X)^{\chi(X)}=d_{ heta}(X)^{\chi(X)}.$$

Proof:

$$d(X)^{\chi(X)} \leq |X|^{\chi(X)} \leq (d_ heta(X)^{\pi\chi(X)\psi_{ heta^2}(X)})^{\chi(X)} \leq d_ heta(X)^{\chi(X)}.$$

Therefore Bella and Cammaroto's inequality is equivalent to Pospišil's inequality for Urysohn spaces.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

 $|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}.$

くロト 不思い 不良い 不良い

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

$$|X| \le d(X)^{\pi\chi(X)\psi_c(X)}$$

Proposition: If X is a Urysohn space, then $d(X)^{\pi\chi(X)\psi_c(X)} \leq d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)}.$

くロト 不思い 不良い 不良い

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

$$|X| \le d(X)^{\pi\chi(X)\psi_c(X)}$$

Proposition: If X is a Urysohn space, then $d(X)^{\pi\chi(X)\psi_c(X)} < d_{\theta}(X)^{\pi\chi(X)\psi_{\theta^2}(X)}.$

Proof:

$$egin{aligned} d(X)^{\pi\chi(X)\psi_c(X)} &\leq |X|^{\pi\chi(X)\psi_c(X)} \leq (d_ heta(X)^{\pi\chi(X)\psi_{ heta^2}(X)})^{\pi\chi(X)\psi_c(X)} \ &\leq d_ heta(X)^{\pi\chi(X)\psi_{ heta^2}(X)}. \end{aligned}$$

くロト 不思い 不良い 不良い

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake, 1984] If X is a Hausdorff space, then

$$|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}$$

Proposition: If X is a Urysohn space, then

$$d(X)^{\pi\chi(X)\psi_c(X)} \leq d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^2}(X)}$$

Proof:

$$egin{aligned} d(X)^{\pi\chi(X)\psi_{c}(X)} &\leq |X|^{\pi\chi(X)\psi_{c}(X)} \leq (d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^{2}}(X)})^{\pi\chi(X)\psi_{c}(X)} \ &\leq d_{ heta}(X)^{\pi\chi(X)\psi_{ heta^{2}}(X)}. \end{aligned}$$

Therefore G–T inequality mentioned before is not better than Willard and Dissanayake's inequality but it was useful to show that $d(X)^{\chi(X)} = d_{\theta}(X)^{\chi(X)}$ for every Urysohn space X.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\chi(X)} = sh(X)^{\chi(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), \psi_c(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a Hausdorff space X, then $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Therefore, under GCH, the inequality $|X| \leq sh(X)^{\pi\chi(X)\cdot\psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $d(X)^{\chi(X)} = sh(X)^{\chi(X)}$.

Therefore, under GCH, the inequality $|X| \le sh(X)^{\chi(X)}$ is an equivalent form of Pospišil's inequality.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

イロト イポト イヨト イヨト

3

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: The inequality $|X| \le \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: The inequality $|X| \le \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary: The inequality $|X| \le \pi w(X)^{\chi(X)}$ is an equivalent form of Pospišil's inequality.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: The inequality $|X| \le \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary: The inequality $|X| \le \pi w(X)^{\chi(X)}$ is an equivalent form of Pospišil's inequality.

Corollary: Under GCH, if X is an infinite Hausdorff space, then we have the equality $sh(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}.$

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Inequalities with the π -weight

Observation: If X is an infinite Hausdorff space, then $d(X)^{\pi\chi(X)\cdot\psi_c(X)} = \pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Corollary: The inequality $|X| \le \pi w(X)^{\pi \chi(X) \cdot \psi_c(X)}$ is an equivalent form of the result of Willard and Dissanayake.

Corollary: The inequality $|X| \le \pi w(X)^{\chi(X)}$ is an equivalent form of Pospišil's inequality.

Corollary: Under GCH, if X is an infinite Hausdorff space, then we have the equality

$$sh(X)^{\pi\chi(X)\cdot\psi_c(X)}=\pi w(X)^{\pi\chi(X)\cdot\psi_c(X)}$$

Corollary: Under GCH, if X is a Hausdorff space, then we have the equality $sh(X)^{\chi(X)} = \pi w(X)^{\chi(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

More inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

More inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Corollary: Under GCH, if X is a regular Hausdorff space, then we have the inequality $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.
Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

More inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Corollary: Under GCH, if X is a regular Hausdorff space, then we have the inequality $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Theorem: [Angelo Bella, 2022] If either $\pi \chi(X) \ge sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \le sh(X)^{\pi\chi(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

More inequalities with Shanin's number

Theorem: [G–Tkachuk, 2022] If either max{ $\pi\chi(X), t(X)$ } $\geq sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Corollary: Under GCH, if X is a regular Hausdorff space, then we have the inequality $d(X) \leq sh(X)^{\pi\chi(X) \cdot t(X)}$.

Theorem: [Angelo Bella, 2022] If either $\pi\chi(X) \ge sh(X)$ or $2^{sh(X)} = sh(X)^+$ for a regular Hausdorff space X, then $d(X) \le sh(X)^{\pi\chi(X)}$.

Corollary: Under GCH, if X is a regular Hausdorff space, then we have the inequality $d(X) \leq sh(X)^{\pi\chi(X)}$.

3

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Is $d(X) \leq c(X)^{\pi\chi(X)}$?

In 1978, Fleissner showed that there is a model of ZFC in which GCH holds and there exists a completely regular space X such that $|X| = \omega_2$, $c(X) = \omega_1$ and $\chi(X) = \omega$, and in that way refuting the conjecture that $|X| \leq c(X)^{\chi(X)}$ for every Hausdorff topological space X.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Is $d(X) \leq c(X)^{\pi\chi(X)}$?

In 1978, Fleissner showed that there is a model of ZFC in which GCH holds and there exists a completely regular space X such that $|X| = \omega_2$, $c(X) = \omega_1$ and $\chi(X) = \omega$, and in that way refuting the conjecture that $|X| \leq c(X)^{\chi(X)}$ for every Hausdorff topological space X.

For the same space we have also $sh(X) = d(X) = \omega_2$, hence $d(X) > c(X)^{\chi(X)}$.

Bella and Cammaroto's inequality Gotchev–Tkachuk's inequality Willard and Dissanayake's inequality

Is $d(X) \leq c(X)^{\pi\chi(X)}$?

In 1978, Fleissner showed that there is a model of ZFC in which GCH holds and there exists a completely regular space X such that $|X| = \omega_2$, $c(X) = \omega_1$ and $\chi(X) = \omega$, and in that way refuting the conjecture that $|X| \leq c(X)^{\chi(X)}$ for every Hausdorff topological space X.

For the same space we have also $sh(X) = d(X) = \omega_2$, hence $d(X) > c(X)^{\chi(X)}$.

Therefore, the answer of the above question is negative.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Šapirovskii's inequality

In 1974, Šapirovskiĭ improved Hajnal and Juhász inequality for the class of regular T_1 -spaces by replacing $\chi(X)$ with the pseudocharacter $\psi(X)$ and including in the inequality another cardinal function $\pi\chi(X)$ – the π -character of X.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Šapirovskiĭ's inequality

In 1974, Šapirovskiĭ improved Hajnal and Juhász inequality for the class of regular T_1 -spaces by replacing $\chi(X)$ with the pseudocharacter $\psi(X)$ and including in the inequality another cardinal function $\pi\chi(X)$ – the π -character of X.

Theorem: [Šapirovskiĭ, 1974] If X is a regular T_1 -space, then $|X| \le \pi \chi(X)^{c(X)\psi(X)}$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Šapirovskiĭ's inequality

In 1974, Šapirovskiĭ improved Hajnal and Juhász inequality for the class of regular T_1 -spaces by replacing $\chi(X)$ with the pseudocharacter $\psi(X)$ and including in the inequality another cardinal function $\pi\chi(X)$ – the π -character of X.

Theorem: [Šapirovskiĭ, 1974] If X is a regular T_1 -space, then $|X| \le \pi \chi(X)^{c(X)\psi(X)}$.

Notice that Šapirovskii's inequality also overestimates the cardinality of the discrete space \mathbb{R} .

・ロト ・回ト ・ヨト ・ヨト

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

In 1988, Sun generalized Šapirovskii's and Hajnal and Juhász inequality for the class of all Hausdorff spaces by replacing the pseudocharacter $\psi(X)$ in Šapirovskii's inequality with the closed pseudocharacter $\psi_c(X)$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

In 1988, Sun generalized Šapirovskii's and Hajnal and Juhász inequality for the class of all Hausdorff spaces by replacing the pseudocharacter $\psi(X)$ in Šapirovskii's inequality with the closed pseudocharacter $\psi_c(X)$.

Theorem: [Sun, 1988] If X is a Hausdorff space, then $|X| \leq \pi \chi(X)^{c(X)\psi_c(X)}$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

Since for regular spaces $\psi_c(X) = \psi(X)$, Sun's inequality implies Šapirovskii's inequality.

イロト イポト イヨト イヨト

3

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

Since for regular spaces $\psi_c(X) = \psi(X)$, Sun's inequality implies Šapirovskii's inequality.

Also, notice that $\pi\chi(X) \le \chi(X) < 2^{c(X)\chi(X)}$, and $\psi_c(X) \le \chi(X)$ and therefore

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

Since for regular spaces $\psi_c(X) = \psi(X)$, Sun's inequality implies Šapirovskii's inequality.

Also, notice that $\pi\chi(X) \leq \chi(X) < 2^{c(X)\chi(X)}$, and $\psi_c(X) \leq \chi(X)$ and therefore $\pi\chi(X)^{c(X)\psi_c(X)} \leq (2^{c(X)\chi(X)})^{c(X)\psi_c(X)} = 2^{c(X)\chi(X)}$,

イロト イポト イヨト イヨト

3

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

Since for regular spaces $\psi_c(X) = \psi(X)$, Sun's inequality implies Šapirovskii's inequality.

Also, notice that $\pi\chi(X) \leq \chi(X) < 2^{c(X)\chi(X)}$, and $\psi_c(X) \leq \chi(X)$ and therefore $\pi\chi(X)^{c(X)\psi_c(X)} \leq (2^{c(X)\chi(X)})^{c(X)\psi_c(X)} = 2^{c(X)\chi(X)}$, and therefore Šapirovskiĭ's and Sun's inequalities improve Hajnal and Juhász' inequality.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

Since for regular spaces $\psi_c(X) = \psi(X)$, Sun's inequality implies Šapirovskii's inequality.

Also, notice that $\pi\chi(X) \leq \chi(X) < 2^{c(X)\chi(X)}$, and $\psi_c(X) \leq \chi(X)$ and therefore $\pi\chi(X)^{c(X)\psi_c(X)} \leq (2^{c(X)\chi(X)})^{c(X)\psi_c(X)} = 2^{c(X)\chi(X)}$, and therefore Šapirovskiĭ's and Sun's inequalities improve Hajnal and Juhász' inequality.

Example: If $X = \mathbb{N} \cup \{x\}$, where $x \in \beta \mathbb{N} \setminus \mathbb{N}$, then $|X| = \pi \chi(X) = c(X) = \psi_c(X) = \omega$, $\chi(X) = \mathfrak{c}$ and therefore $\pi \chi(X)^{c(X)\psi_c(X)} = \omega^{\omega \cdot \omega} = 2^{\omega} = \mathfrak{c}$ while $2^{c(X)\chi(X)} = 2^{\omega \cdot \mathfrak{c}} = 2^{\mathfrak{c}}$.

(ロ) (同) (E) (E) (E)

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

Sun's inequality

Since for regular spaces $\psi_c(X) = \psi(X)$, Sun's inequality implies Šapirovskiĭ's inequality.

Also, notice that $\pi\chi(X) \leq \chi(X) < 2^{c(X)\chi(X)}$, and $\psi_c(X) \leq \chi(X)$ and therefore $\pi\chi(X)^{c(X)\psi_c(X)} \leq (2^{c(X)\chi(X)})^{c(X)\psi_c(X)} = 2^{c(X)\chi(X)}$, and therefore Šapirovskiĭ's and Sun's inequalities improve Hajnal and Juhász' inequality.

Example: If $X = \mathbb{N} \cup \{x\}$, where $x \in \beta \mathbb{N} \setminus \mathbb{N}$, then $|X| = \pi \chi(X) = c(X) = \psi_c(X) = \omega$, $\chi(X) = \mathfrak{c}$ and therefore $\pi \chi(X)^{c(X)\psi_c(X)} = \omega^{\omega \cdot \omega} = 2^{\omega} = \mathfrak{c}$ while $2^{c(X)\chi(X)} = 2^{\omega \cdot \mathfrak{c}} = 2^{\mathfrak{c}}$.

Finally, notice that Sun's inequality again overestimates the cardinality of the discrete space \mathbb{R} .

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko - 1983]

・ロン ・回と ・ヨン・

æ

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ ,

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ , or ot(X) $\leq \kappa$,

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ , or $ot(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ , or $ot(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X and for every point $x \in X$ with $x \in \bigcup \mathcal{U}$

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ , or $ot(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X and for every point $x \in X$ with $x \in \bigcup \mathcal{U}$ there exists a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \bigcup \mathcal{V}$.

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ , or $ot(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X and for every point $x \in X$ with $x \in \bigcup \mathcal{U}$ there exists a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \bigcup \mathcal{V}$.

We note that $ot(X) \le c(X)$ and $ot(X) \le t(X)$ for any space X, where t(X) is the tightness of X.

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The *o*-tightness of a space X does not exceed κ , or $ot(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X and for every point $x \in X$ with $x \in \bigcup \mathcal{U}$ there exists a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \bigcup \mathcal{V}$.

We note that $ot(X) \le c(X)$ and $ot(X) \le t(X)$ for any space X, where t(X) is the tightness of X.

There are example of spaces where ot(X) < c(X) (e.g. discrete space with cardinality \mathfrak{c}) and ot(X) < t(X) (e.g. the Tychonoff cube $[0, 1]^{\mathfrak{c}}$).

・ロト ・回ト ・ヨト ・ヨト

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun's inequality by replacing c(X) with ot(X) and $\pi\chi(X)$ with $\pi w(X)$ – the π -weight of X.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun's inequality by replacing c(X) with ot(X) and $\pi\chi(X)$ with $\pi w(X)$ – the π -weight of X.

Theorem: [G., Tkachenko, Tkachuk – 2016]

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun's inequality by replacing c(X) with ot(X) and $\pi\chi(X)$ with $\pi w(X)$ – the π -weight of X.

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a Hausdorff space, then $|X| \le \pi w(X)^{\operatorname{ot}(X)\psi_c(X)}$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun's inequality by replacing c(X) with ot(X) and $\pi\chi(X)$ with $\pi w(X)$ – the π -weight of X.

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a Hausdorff space, then $|X| \le \pi w(X)^{\operatorname{ot}(X)\psi_c(X)}$.

Since for every space X we have $\pi w(X) = \pi \chi(X) \cdot d(X)$, the above inequality could be restated as follows:

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun's inequality by replacing c(X) with ot(X) and $\pi\chi(X)$ with $\pi w(X)$ – the π -weight of X.

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a Hausdorff space, then $|X| \le \pi w(X)^{\operatorname{ot}(X)\psi_c(X)}$.

Since for every space X we have $\pi w(X) = \pi \chi(X) \cdot d(X)$, the above inequality could be restated as follows:

Theorem: [G., Tkachenko, Tkachuk – 2016]

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun's inequality by replacing c(X) with ot(X) and $\pi\chi(X)$ with $\pi w(X)$ – the π -weight of X.

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a Hausdorff space, then $|X| \le \pi w(X)^{\operatorname{ot}(X)\psi_c(X)}$.

Since for every space X we have $\pi w(X) = \pi \chi(X) \cdot d(X)$, the above inequality could be restated as follows:

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a Hausdorff space, then $|X| \leq (\pi \chi(X) \cdot d(X))^{\operatorname{ot}(X)\psi_c(X)}$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

The following chain of inequalities confirms that GTT's inequality is at least as good as Sun's inequality.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

The following chain of inequalities confirms that GTT's inequality is at least as good as Sun's inequality.

$$\pi w(X)^{\operatorname{ot}(X)\psi_c(X)} = (\pi \chi(X) \cdot d(X))^{\operatorname{ot}(X)\psi_c(X)} \leq$$

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

The following chain of inequalities confirms that GTT's inequality is at least as good as Sun's inequality.

$$egin{aligned} &\pi m{w}(m{X})^{\operatorname{ot}(m{X})\psi_c(m{X})} &= (\pi\chi(m{X})\cdotm{d}(m{X}))^{\operatorname{ot}(m{X})\psi_c(m{X})} \leq \ &\leq (\pi\chi(m{X})\cdot|m{X}|)^{c(m{X})\psi_c(m{X})} \leq \end{aligned}$$

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

The following chain of inequalities confirms that GTT's inequality is at least as good as Sun's inequality.

$$egin{aligned} &\pi m{w}(X)^{\operatorname{ot}(X)\psi_c(X)} &= (\pi\chi(X)\cdot d(X))^{\operatorname{ot}(X)\psi_c(X)} \leq \ &\leq (\pi\chi(X)\cdot |X|)^{c(X)\psi_c(X)} \leq \ &\leq (\pi\chi(X)\cdot\pi\chi(X)^{c(X)\psi_c(X)})^{c(X)\psi_c(X)} = \pi\chi(X)^{c(X)\psi_c(X)}. \end{aligned}$$

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

The following chain of inequalities confirms that GTT's inequality is at least as good as Sun's inequality.

$$egin{aligned} &\pi m{w}(m{X})^{\operatorname{ot}(m{X})\psi_c(m{X})} &= (\pi\chi(m{X})\cdotm{d}(m{X}))^{\operatorname{ot}(m{X})\psi_c(m{X})} &\leq \ &\leq (\pi\chi(m{X})\cdot|m{X}|)^{c(m{X})\psi_c(m{X})} &\leq \ &\leq (\pi\chi(m{X})\cdot\pi\chi(m{X})^{c(m{X})\psi_c(m{X})})^{c(m{X})\psi_c(m{X})} &= \pi\chi(m{X})^{c(m{X})\psi_c(m{X})}. \end{aligned}$$

Example: If $X = \mathbb{R}$, where \mathbb{R} has the discrete topology, then GTT's inequality gives the following estimate: $|X| \le \mathfrak{c}^{\omega \cdot \omega} = \mathfrak{c}$, while Sun's inequality, as we have already observed, gives $|X| \le 2^{\mathfrak{c}}$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

The following chain of inequalities confirms that GTT's inequality is at least as good as Sun's inequality.

$$egin{aligned} &\pi m{w}(m{X})^{\operatorname{ot}(m{X})\psi_c(m{X})} &= (\pi\chi(m{X})\cdotm{d}(m{X}))^{\operatorname{ot}(m{X})\psi_c(m{X})} &\leq \ &\leq (\pi\chi(m{X})\cdot|m{X}|)^{c(m{X})\psi_c(m{X})} &\leq \ &\leq (\pi\chi(m{X})\cdot\pi\chi(m{X})^{c(m{X})\psi_c(m{X})})^{c(m{X})\psi_c(m{X})} &= \pi\chi(m{X})^{c(m{X})\psi_c(m{X})}. \end{aligned}$$

Example: If $X = \mathbb{R}$, where \mathbb{R} has the discrete topology, then GTT's inequality gives the following estimate: $|X| \le \mathfrak{c}^{\omega \cdot \omega} = \mathfrak{c}$, while Sun's inequality, as we have already observed, gives $|X| \le 2^{\mathfrak{c}}$.

Therefore, GTT's inequality is strictly stronger than Sun's inequality.
Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

We note also that GTT's inequality improves and Pospišil's inequality as it is shown by the following:

Šapirovskiī's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

We note also that GTT's inequality improves and Pospišil's inequality as it is shown by the following:

$$\pi w(X)^{\operatorname{ot}(X)\psi_c(X)} \leq \pi w(X)^{\chi(X)} = d(X)^{\chi(X)}$$

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

We note also that GTT's inequality improves and Pospišil's inequality as it is shown by the following:

$$\pi w(X)^{\operatorname{ot}(X)\psi_c(X)} \leq \pi w(X)^{\chi(X)} = d(X)^{\chi(X)}$$

Example: If $X = \mathbb{N} \cup \{x\}$, where $x \in \beta \mathbb{N} \setminus \mathbb{N}$, then $|X| = \pi \chi(X) = \operatorname{ot}(X) = d(X) = \psi_c(X) = \omega$, $\chi(X) = \mathfrak{c}$ and therefore $\pi w(X)^{\operatorname{ot}(X)\psi_c(X)} = (\omega \cdot \omega)^{\omega \cdot \omega} = 2^{\omega} = \mathfrak{c}$, while $d(X)^{\chi(X)} = \omega^{\mathfrak{c}} = 2^{\mathfrak{c}}$.

Šapirovskii's inequality Sun's inequality o-tightness GTT's inequality

G., Tkachenko and Tkachuk's inequalitiy

We note also that GTT's inequality improves and Pospišil's inequality as it is shown by the following:

$$\pi w(X)^{\operatorname{ot}(X)\psi_c(X)} \leq \pi w(X)^{\chi(X)} = d(X)^{\chi(X)}$$

Example: If $X = \mathbb{N} \cup \{x\}$, where $x \in \beta \mathbb{N} \setminus \mathbb{N}$, then $|X| = \pi \chi(X) = \operatorname{ot}(X) = d(X) = \psi_c(X) = \omega$, $\chi(X) = \mathfrak{c}$ and therefore $\pi w(X)^{\operatorname{ot}(X)\psi_c(X)} = (\omega \cdot \omega)^{\omega \cdot \omega} = 2^{\omega} = \mathfrak{c}$, while $d(X)^{\chi(X)} = \omega^{\mathfrak{c}} = 2^{\mathfrak{c}}$.

Therefore, GTT's inequality is strictly stronger than Pospišil's inequality, and therefore, it is stronger also than Arhangel'skiĭ's and Hajnal–Juhász' inequalities.

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016]

イロト イポト イヨト イヨト

æ

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ ,

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ , or $dot(X) \leq \kappa$,

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ , or dot $(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X whose union is dense in X

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ , or dot $(X) \leq \kappa$, if for every family \mathcal{U} of open subsets of X whose union is dense in X and for every point $x \in X$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ , or dot(X) $\leq \kappa$, if for every family \mathcal{U} of open subsets of X whose union is dense in X and for every point $x \in X$ there exists a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \bigcup \mathcal{V}$.

- 4 同 6 4 日 6 4 日 6

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ , or dot(X) $\leq \kappa$, if for every family \mathcal{U} of open subsets of X whose union is dense in X and for every point $x \in X$ there exists a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \bigcup \mathcal{V}$.

We note that $dot(X) \le \pi \chi(X)$, $dot(X) \le ot(X)$ and therefore $dot(X) \le c(X)$ for any space X.

Dense o-tightness A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that the *dense o-tightness* of a space X does not exceed κ , or dot(X) $\leq \kappa$, if for every family \mathcal{U} of open subsets of X whose union is dense in X and for every point $x \in X$ there exists a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \bigcup \mathcal{V}$.

We note that $dot(X) \le \pi \chi(X)$, $dot(X) \le ot(X)$ and therefore $dot(X) \le c(X)$ for any space X.

Example: [GTT – 2016] For every infinite cardinal κ , there exists a compact Hausdorff space X such that $dot(X) = \kappa < min\{ot(X), \pi\chi(X)\}$. This difference could be arbitrarily large for non-compact spaces.

Dense o-tightness A new cardinal inequality

A new cardinal inequality

Theorem: [G. - 2022]

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Dense o-tightness A new cardinal inequality

A new cardinal inequality

Theorem: [G. -2022] If X is a Hausdorff space, then

 $|X| \leq \pi w(X)^{\operatorname{dot}(X) \cdot \psi_c(X)}.$

3

Dense o-tightness A new cardinal inequality

A new cardinal inequality

Theorem: [G. -2022] If X is a Hausdorff space, then

$$|X| \leq \pi w(X)^{\operatorname{dot}(X) \cdot \psi_c(X)}.$$

Since for every space X we have $dot(X) \leq ot(X)$, $\pi w(X)^{dot(X) \cdot \psi_c(X)} \leq \pi w(X)^{ot(X) \cdot \psi_c(X)}$.

Dense o-tightness A new cardinal inequality

A new cardinal inequality

 $d(X)^{\pi\chi(X)\cdot\psi_c(X)}$.

Theorem: [G. -2022] If X is a Hausdorff space, then

$$|X| \leq \pi w(X)^{\operatorname{dot}(X) \cdot \psi_{c}(X)}.$$

Since for every space X we have $dot(X) \leq ot(X)$, $\pi w(X)^{dot(X) \cdot \psi_c(X)} \leq \pi w(X)^{ot(X) \cdot \psi_c(X)}$. Also, since for every space X we have $dot(X) \leq \pi \chi(X)$, $\pi w(X)^{dot(X) \cdot \psi_c(X)} < (d(X) \cdot \pi \chi(X))^{\pi \chi(X) \cdot \psi_c(X)} =$

Dense o-tightness A new cardinal inequality

A new cardinal inequality

Theorem: [G. -2022] If X is a Hausdorff space, then

$$|X| \leq \pi w(X)^{\operatorname{dot}(X) \cdot \psi_c(X)}.$$

Since for every space X we have $dot(X) \le ot(X)$, $\pi w(X)^{dot(X) \cdot \psi_c(X)} \le \pi w(X)^{ot(X) \cdot \psi_c(X)}$.

Also, since for every space X we have $dot(X) \leq \pi \chi(X)$, $\pi w(X)^{dot(X) \cdot \psi_c(X)} \leq (d(X) \cdot \pi \chi(X))^{\pi \chi(X) \cdot \psi_c(X)} = d(X)^{\pi \chi(X) \cdot \psi_c(X)}$.

Thus, our new inequality improves GTT's and Willard and Dissanayake's inequalities, and therefore it gives either the same or a better upper bound for the cardinality of a Hausdorff space than Sun's, Šapirovskiĭ's, Pospišil's, Hajnal–Juhász' and Arhangel'skiĩ's inequalities mentioned before.

Dense o-tightness A new cardinal inequality

THANK YOU!

Ivan S. Gotchev Cardinal Inequalities for topological spaces

イロン イヨン イヨン イヨン

Э