A Banach space C(K) reading the dimension of K

Damian Głodkowski

Institute of Mathematics Polish Academy of Sciences

TOPOSYM 2022

25 July 2022

https://arxiv.org/abs/2207.00149

(日) (四) (日) (日) (日)

- K, L compact Hausdorff spaces,
- C(K) a Banach space of real-valued continuous functions on K with the norm given by

$$||f|| = \sup\{|f(x)| : x \in K\},\$$

- X ~ Y means that X and Y are isomorphic (not necessarily isometric) Banach spaces,
- $\operatorname{supp}(f) = f^{-1}(\mathbb{R} \setminus \{0\})$ for $f : K \to \mathbb{R}$,
- dim K the covering dimension of K.

Theorem (Miljutin)

If K, L are uncountable compact metric spaces, then the Banach spaces C(K) and C(L) are isomorphic.

< ∃ ►

Theorem (Miljutin)

If K, L are uncountable compact metric spaces, then the Banach spaces C(K) and C(L) are isomorphic.

Theorem (Pełczyński, Semadeni)

If K is a scattered compact space and $C(K) \sim C(L)$, then dim L = 0.

• < = • < = •

Theorem (Miljutin)

If K, L are uncountable compact metric spaces, then the Banach spaces C(K) and C(L) are isomorphic.

Theorem (Pełczyński, Semadeni)

If K is a scattered compact space and $C(K) \sim C(L)$, then dim L = 0.

Theorem (Koszmider)

There exists a compact space K such that if $C(K) \sim C(L)$, then L is not zero-dimensional.

通 ト イ ヨ ト イ ヨ ト

Question

Let $n \in \mathbb{N} \setminus \{0\}$. Is there a compact space K such that dim L = n whenever $C(K) \sim C(L)$?

• • = • • = •

Question

Let $n \in \mathbb{N} \setminus \{0\}$. Is there a compact space K such that dim L = n whenever $C(K) \sim C(L)$?

Theorem

Assume \diamond . For every $n \in \mathbb{N}$ there is a compact space K_n such that if $C(L) \sim C(K_n)$, then dim L = n.

.

Definition

We say that a Banach space C(K) has **few operators** if every bounded linear operator $T : C(K) \rightarrow C(K)$ is a **weak multiplication** i.e. it satisfies

$$T(f) = fg + S(f)$$

for some continuous function $g \in C(K)$ and weakly compact operator $S : C(K) \rightarrow C(K)$.

Theorem (Koszmider, Plebanek)

There exists a connected compact space K such that C(K) has few operators. In such a case C(K) is not isomorphic to any C(L) for L zero-dimensional.

Theorem (Schlackow)

Suppose that K, L are perfect compact spaces, $C(K) \sim C(L)$ and C(K) has few operators. Then K and L are homeomorphic.

.

Theorem (Schlackow)

Suppose that K, L are perfect compact spaces, $C(K) \sim C(L)$ and C(K) has few operators. Then K and L are homeomorphic.

Theorem

Let K be a separable connected compact space such that C(K) has few operators. If $C(K) \sim C(L)$, then K and L are homeomorphic modulo finite set i.e. there are finite subsets $A \subseteq K, B \subseteq L$ such that $K \setminus A$ and $L \setminus B$ are homeomorphic. In particular dim $K = \dim L$.

通 ト イ ヨ ト イ ヨ ト

Theorem (Schlackow)

Suppose that K, L are perfect compact spaces, $C(K) \sim C(L)$ and C(K) has few operators. Then K and L are homeomorphic.

Theorem

Let K be a separable connected compact space such that C(K) has few operators. If $C(K) \sim C(L)$, then K and L are homeomorphic modulo finite set i.e. there are finite subsets $A \subseteq K, B \subseteq L$ such that $K \setminus A$ and $L \setminus B$ are homeomorphic. In particular dim $K = \dim L$.

Theorem

Assume \Diamond . For every $n \in \mathbb{N} \setminus \{0\}$ there is a separable connected compact space K_n such that dim $K_n = n$ and $C(K_n)$ has few operators.

- ロ ト - 4 同 ト - 4 回 ト - -

Definition

A point $x \in K$ is called a **butterfly point**, if there are disjoint open sets $U, V \subseteq K$ such that $\overline{U} \cap \overline{V} = \{x\}$.

Definition

A bounded linear operator $T : C(K) \to C(K)$ is called a **weak multiplier** if $T^*(\mu) = g\mu + S(\mu)$ for some bounded Borel function $g : K \to \mathbb{R}$ and a weakly compact operator $S : C(K)^* \to C(K)^*$.

Definition

A point $x \in K$ is called a **butterfly point**, if there are disjoint open sets $U, V \subseteq K$ such that $\overline{U} \cap \overline{V} = \{x\}$.

Definition

A bounded linear operator $T : C(K) \to C(K)$ is called a **weak multiplier** if $T^*(\mu) = g\mu + S(\mu)$ for some bounded Borel function $g : K \to \mathbb{R}$ and a weakly compact operator $S : C(K)^* \to C(K)^*$.

Theorem (Koszmider)

Suppose that K is a compact space without butterfly points such that every bounded linear operator $T : C(K) \to C(K)$ is a weak multiplier. Then C(K) has few operators.

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma (Koszmider)

If a bounded linear operator $T : C(K) \to C(K)$ is not a weak multiplier, then there is $\varepsilon > 0$, a sequence $(f_k)_{k \in \mathbb{N}}$ of continuous functions $(f_k : K \to [0, 1])$ and a relatively discrete set $\{x_k : k \in \mathbb{N}\} \subseteq K$ such that • $f_k \cdot f_m = 0$ for $k \neq m$, • $f_k(x_m) = 0$ for all $k, m \in \mathbb{N}$, • $|\int f_k d\mu_k| > \varepsilon$ for all $k \in \mathbb{N}$, where $\mu_k = T^*(\delta_{x_k})$.

Definition

Let K be a compact space and $(f_k)_{k\in\mathbb{N}}$ be a sequence continuous functions $f_k : K \to [0,1]$ such that $f_k \cdot f_m = 0$ for $k \neq m$. We define the domain of $(f_k)_{k\in\mathbb{N}}$ as

 $D((f_k)_{k\in\mathbb{N}}) = \bigcup \{U : U \text{ is open and } \{k : \operatorname{supp}(f_k) \cap U \neq \emptyset\} \text{ is finite} \}.$

We say that $L \subseteq K \times [0, 1]$ is the **extension** of K by $(f_k)_{k \in \mathbb{N}}$ if and only if L is the closure of the graph of $(\sum_{k \in \mathbb{N}} f_k) | D((f_k)_{k \in \mathbb{N}})$. We say that this is a **strong extension**, if the graph of $\sum_{k \in \mathbb{N}} f_k$ is a subset of L.

A (1) < A (1) < A (1) </p>

Theorem (Koszmider)

Strong extension of a connected compact space is connected.

Theorem (Koszmider)

Strong extension of a connected compact space is connected.

Remark (Barbeiro, Fajardo)

There exists a connected compact space K and its (not strong) extension L, which is not connected.

- ${\sf K}_lpha\subseteq [0,1]^lpha$,
- $K_{\alpha+1}$ is a strong extension of K_{α} by some sequence $(f_k^{\alpha})_{k\in\mathbb{N}}$,
- if γ is a limit ordinal, then K_{γ} is the inverse limit of $(K_{\alpha})_{\alpha < \gamma}$.

- ${\sf K}_lpha\subseteq [0,1]^lpha$,
- $K_{\alpha+1}$ is a strong extension of K_{α} by some sequence $(f_k^{\alpha})_{k\in\mathbb{N}}$,
- if γ is a limit ordinal, then K_{γ} is the inverse limit of $(K_{\alpha})_{\alpha < \gamma}$.

Moreover, for every $\alpha < \mathfrak{c}$ we are given a sequence of Radon measures $(\mu_k^{\alpha})_{k\in\mathbb{N}}$ on $[0,1]^{\alpha}$ and we require that

• $|\int f_k^{lpha} d\mu_k^{lpha}| > \varepsilon$ for $k \in \mathbb{N}$ and some $\varepsilon > 0$,

- $\mathcal{K}_lpha \subseteq [0,1]^lpha$,
- $K_{\alpha+1}$ is a strong extension of K_{α} by some sequence $(f_k^{\alpha})_{k\in\mathbb{N}}$,
- if γ is a limit ordinal, then K_{γ} is the inverse limit of $(K_{\alpha})_{\alpha < \gamma}$.

Moreover, for every $\alpha < \mathfrak{c}$ we are given a sequence of Radon measures $(\mu_k^{\alpha})_{k\in\mathbb{N}}$ on $[0,1]^{\alpha}$ and we require that

- $|\int f_k^{\alpha} d\mu_k^{\alpha}| > \varepsilon$ for $k \in \mathbb{N}$ and some $\varepsilon > 0$,
- some other technical stuff.

Theorem

Let K be a compact metric space with dim K = n. Let L be a strong extension of K by $(f_k)_{k \in \mathbb{N}}$. Suppose that

 $\dim(K \setminus D((f_k)_{k \in \mathbb{N}})) < n.$

Then

dim L = n.

Theorem

Let K be an inverse limit of a sequence $(K_{\alpha})_{\alpha < \mathfrak{c}}$ such that

- dim $K_0 = n$,
- $K_{\alpha+1}$ is a strong extension of K_{α} ,
- dim $K_{\alpha+1} = \dim K_{\alpha}$,

• if γ is a limit ordinal, then K_{γ} is the inverse limit of $(K_{\alpha})_{\alpha < \gamma}$. Then

dim K = n.

Suppose that we are at step α in the construction and that K_{α} satisfies the following condition:

For every non-zero Radon measure μ on K_{α} there is a G_{δ} compact zero-dimensional subset $Z \subseteq K_{\alpha}$ such that $\mu(Z) \neq 0$. (*)

Then there exists a sequence $(f_k^{\alpha})_{k \in \mathbb{N}}$ satisfying all the required conditions.

Suppose that we are at step α in the construction and that K_{α} satisfies the following condition:

For every non-zero Radon measure μ on K_{α} there is a G_{δ} compact zero-dimensional subset $Z \subseteq K_{\alpha}$ such that $\mu(Z) \neq 0$. (*)

Then there exists a sequence $(f_k^{\alpha})_{k \in \mathbb{N}}$ satisfying all the required conditions.

Fact If K_{α} is a metric compact space of finite dimension, then K_{α} satisfies (*).

Suppose that we are at step α in the construction and that K_{α} satisfies the following condition:

For every non-zero Radon measure μ on K_{α} there is a G_{δ} compact zero-dimensional subset $Z \subseteq K_{\alpha}$ such that $\mu(Z) \neq 0$. (*)

Then there exists a sequence $(f_k^{\alpha})_{k \in \mathbb{N}}$ satisfying all the required conditions.

Problem

Describe the class of finite-dimensional compact spaces K, such that for every non-zero Radon measure μ on K there is a G_{δ} compact zero-dimensional subset $Z \subset K_{\alpha}$ such that $\mu(Z) \neq 0$.

Problem

Describe the class of finite-dimensional compact spaces K, such that for every non-zero Radon measure μ on K there is a G_{δ} compact zero-dimensional subset $Z \subset K_{\alpha}$ such that $\mu(Z) \neq 0$.

Question

Is there a finite-dimensional compact space K and a Radon measure μ on K such that $\mu(Z) = 0$ for all zero-dimensional compact $Z \subseteq K$?

- $\mathcal{K}_lpha \subseteq [0,1]^lpha$,
- $K_{\alpha+1}$ is a strong extension of K_{α} by some sequence $(f_k^{\alpha})_{k\in\mathbb{N}}$,
- if γ is a limit ordinal, then K_{γ} is the inverse limit of $(K_{\alpha})_{\alpha < \gamma}$.

Moreover, for every $\alpha < \mathfrak{c}$ we are given a sequence of Radon measures $(\mu_k^{\alpha})_{k\in\mathbb{N}}$ on $[0,1]^{\alpha}$ and we require that

- $|\int f_k^{lpha} d\mu_k^{lpha}| > \varepsilon$ for $k \in \mathbb{N}$ and some $\varepsilon > 0$,
- some other technical stuff.

Assume \Diamond . Then there is a sequence $(\mu_{\alpha})_{\alpha < \omega_1}$ such that

- μ_{lpha} is a Radon measure on $[0,1]^{lpha}$ for every $lpha<\omega_1$,
- for every Radon measure μ on $[0,1]^{\omega_1}$ there is a stationary set $S\subseteq\omega_1$ such that

$$\mu|\mathcal{C}([0,1]^{\alpha}) = \mu_{\alpha}$$

for $\alpha \in S$.

THANK YOU!

æ

イロト イヨト イヨト イヨト