

UNIVERSITY OF MESSINA

On some relative versions of Menger and Hurewicz properties

Davide Giacopello

Toposym2022 Prague 26 July 2022

Joint work with M. Bonanzinga and F. Maesano

Definition

- A space X is
 - Menger, briefly M, if for each sequence (U_n : n ∈ ω) of open covers of X there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n and X = ⋃_{n∈ω} ⋃ V_n;

Definition

- A space X is
 - Menger, briefly M, if for each sequence (U_n : n ∈ ω) of open covers of X there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n and X = ⋃_{n∈ω} ⋃ V_n;
 - Hurewicz, briefly H, if for each sequence (U_n : n ∈ ω) of open covers of X there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n and for every x ∈ X, x ∈ UV_n for all but finitely many n ∈ ω.

Let \mathcal{U} be a cover of a space X and A be a subset of X; the star of A with respect to \mathcal{U} is the set $st(A, \mathcal{U}) = \bigcup \{ U : U \in \mathcal{U} \text{ and } U \cap A \neq \emptyset \}.$

Let \mathcal{U} be a cover of a space X and A be a subset of X; the star of A with respect to \mathcal{U} is the set $st(A, \mathcal{U}) = \bigcup \{ U : U \in \mathcal{U} \text{ and } U \cap A \neq \emptyset \}.$

Definition (Kočinac, 1999; Bonanzinga, Cammaroto, Kočinac, 2004)

A space X is

star Menger, briefly SM (strongly star Menger, briefly SSM) if for each sequence (U_n : n ∈ ω) of open covers of X there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n (resp., (F_n : n ∈ ω) such that F_n, n ∈ ω, is a finite subset of X) and X = ⋃_{n∈ω} st(⋃ V_n, U_n) (resp., X = ⋃_{n∈ω} st(F_n, U_n));

Let \mathcal{U} be a cover of a space X and A be a subset of X; the star of A with respect to \mathcal{U} is the set $st(A, \mathcal{U}) = \bigcup \{ U : U \in \mathcal{U} \text{ and } U \cap A \neq \emptyset \}.$

Definition (Kočinac, 1999; Bonanzinga, Cammaroto, Kočinac, 2004)

A space X is

- star Menger, briefly SM (strongly star Menger, briefly SSM) if for each sequence (U_n : n ∈ ω) of open covers of X there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n (resp., (F_n : n ∈ ω) such that F_n, n ∈ ω, is a finite subset of X) and X = ⋃_{n∈ω} st(⋃ V_n, U_n) (resp., X = ⋃_{n∈ω} st(F_n, U_n));
- star Hurewicz, briefly SH (strongly star Hurewicz, briefly SSH) if for each sequence (U_n : n ∈ ω) of open covers of X there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n (resp., (F_n : n ∈ ω) such that F_n, n ∈ ω, is a finite subset of X) and ∀x ∈ X, x ∈ st(∪V_n, U_n) (resp., x ∈ st(F_n, U_n)) for all but finitely many n ∈ ω.

Definition (Kočinac, Konka, Singh; 2022)

set star Menger, shortly set SM (resp., set strongly star Menger, shortly set SSM) if for each nonempty subset A of X and for each sequence (U_n : n ∈ ω) of collection of open sets of X such that A ⊂ UU_n for every n ∈ ω, there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n (resp., (F_n : n ∈ ω) such that F_n, n ∈ ω, is a finite subset of Z = st(UV_n, U_n) (resp., A ⊂ U_{n∈ω} st(F_n, U_n)).

Definition (Kočinac, Konka, Singh; 2022)

- set star Menger, shortly set SM (resp., set strongly star Menger, shortly set SSM) if for each nonempty subset A of X and for each sequence (U_n : n ∈ ω) of collection of open sets of X such that A ⊂ UU_n for every n ∈ ω, there exists a sequence (V_n : n ∈ ω) such that V_n, n ∈ ω, is a finite subset of U_n (resp., (F_n : n ∈ ω) such that F_n, n ∈ ω, is a finite subset of U_n (resp., U_n, U_n) (resp., A ⊂ U_{n∈ω} st(F_n, U_n)).
- set star Hurewicz, shortly set SH (resp., set strongly star Hurewicz, shortly set SSH) if for each nonempty subset A of X and for each sequence $(\mathcal{U}_n : n \in \omega)$ of collection of open sets of X such that $\overline{A} \subset \bigcup \mathcal{U}_n$ for every $n \in \omega$, there exists a sequence $(\mathcal{V}_n : n \in \omega)$ such that \mathcal{V}_n , $n \in \omega$, is a finite subset of \mathcal{U}_n (resp., $(F_n : n \in \omega)$ such that F_n , $n \in \omega$, is a finite subset of \overline{A}) and for every $x \in A$, $x \in st(\bigcup \mathcal{V}_n, \mathcal{U}_n)$ for all but finitely many $n \in \omega$).

Diagram

Definition

A space X is

star compact, briefly SC (strongly star compact, briefly SSC) if for every open cover U of the space X, there exists a finite subfamily V of U (resp., a finite subset F of X) such that st(∪V,U) = X (resp., st(F,U) = X) [Ikenaga, Tani, 1980; van Douwen, Reed, Roscoe, Tree, 1991];

Definition

A space X is

- star compact, briefly SC (strongly star compact, briefly SSC) if for every open cover U of the space X, there exists a finite subfamily V of U (resp., a finite subset F of X) such that st(∪V,U) = X (resp., st(F,U) = X) [Ikenaga, Tani, 1980; van Douwen, Reed, Roscoe, Tree, 1991];
- set star compact, briefly set SC (resp., set strongly star compact, briefly set SSC), if for every nonempty subset A of X and for every family \mathcal{U} of open sets in X such that $\overline{A} \subseteq \bigcup \mathcal{U}$, there exists a finite subfamily \mathcal{V} of \mathcal{U} (resp., finite subset F of \overline{A}) such that $st(\bigcup \mathcal{V}, \mathcal{U}) \supset A$ (resp., $st(F, \mathcal{U}) \supset A$)[Kočinac, Konka, Singh, 2022].

Definition

A space X is

- star compact, briefly SC (strongly star compact, briefly SSC) if for every open cover U of the space X, there exists a finite subfamily V of U (resp., a finite subset F of X) such that st(∪V,U) = X (resp., st(F,U) = X) [Ikenaga, Tani, 1980; van Douwen, Reed, Roscoe, Tree, 1991];
- set star compact, briefly set SC (resp., set strongly star compact, briefly set SSC), if for every nonempty subset A of X and for every family \mathcal{U} of open sets in X such that $\overline{A} \subseteq \bigcup \mathcal{U}$, there exists a finite subfamily \mathcal{V} of \mathcal{U} (resp., finite subset F of \overline{A}) such that $st(\bigcup \mathcal{V}, \mathcal{U}) \supset A$ (resp., $st(F, \mathcal{U}) \supset A$)[Kočinac, Konka, Singh, 2022].

"finite" \rightarrow "countable"

```
• SL and SSL [lkenaga,1983; l. 1990];
```

Definition

A space X is

- star compact, briefly SC (strongly star compact, briefly SSC) if for every open cover U of the space X, there exists a finite subfamily V of U (resp., a finite subset F of X) such that st(∪V,U) = X (resp., st(F,U) = X) [Ikenaga, Tani, 1980; van Douwen, Reed, Roscoe, Tree, 1991];
- set star compact, briefly set SC (resp., set strongly star compact, briefly set SSC), if for every nonempty subset A of X and for every family \mathcal{U} of open sets in X such that $\overline{A} \subseteq \bigcup \mathcal{U}$, there exists a finite subfamily \mathcal{V} of \mathcal{U} (resp., finite subset F of \overline{A}) such that $st(\bigcup \mathcal{V}, \mathcal{U}) \supset A$ (resp., $st(F, \mathcal{U}) \supset A$)[Kočinac, Konka, Singh, 2022].

"finite" \rightarrow "countable"

- SL and SSL [Ikenaga,1983; I. 1990];
- set SL and set SSL [Kočinac, Singh; 2020].

CC stands for "countably compact"

Proposition (Bonanzinga, Maesano; 2020)

In the class of Hausdorff spaces, $X \ \mathrm{CC} \iff X \ \mathrm{set} \ \mathrm{SSC} \iff X \ \mathrm{SSC}$.

CC stands for "countably compact"

Proposition (Bonanzinga, Maesano; 2020)

In the class of Hausdorff spaces, $X \ \mathrm{CC} \iff X \ \mathrm{set} \ \mathrm{SSC} \iff X \ \mathrm{SSC}.$

Proposition (Bonanzinga, Giacopello, Maesano; 2022)

In the class of regular spaces, $X \ \mathrm{CC} \iff X \ \mathrm{set} \ \mathrm{SC}$

CC stands for "countably compact"

Proposition (Bonanzinga, Maesano; 2020)

In the class of Hausdorff spaces, $X \ \mathrm{CC} \iff X \ \mathrm{set} \ \mathrm{SSC} \iff X \ \mathrm{SSC}$.

Proposition (Bonanzinga, Giacopello, Maesano; 2022)

In the class of regular spaces, $X \ \mathrm{CC} \iff X \ \mathrm{set} \ \mathrm{SC}$

Proposition (B.Mae.; 2020)

In the class of T_1 spaces, X set SSL $\iff e(X) \leq \omega$

ccc = "countable chain condition".

Example (B.G.M.; 2022)

A Tychonoff space of cardinality ${\mathfrak d}$ having countable extent which is not set SSM.

Example (B.G.M.; 2022)

A Tychonoff space of cardinality \mathfrak{d} having countable extent which is not set SSM.

• Let X be a cofinal subset of the Baire space ω^{ω} of cardinality \mathfrak{d} .

Example (B.G.M.; 2022)

A Tychonoff space of cardinality \mathfrak{d} having countable extent which is not set SSM.

- Let X be a cofinal subset of the Baire space ω^{ω} of cardinality \mathfrak{d} .
- X has countable extent.

Example (B.G.M.; 2022)

A Tychonoff space of cardinality \mathfrak{d} having countable extent which is not set SSM.

- Let X be a cofinal subset of the Baire space ω^{ω} of cardinality \mathfrak{d} .
- X has countable extent.
- X is not set SSM:

Example (B.G.M.; 2022)

A Tychonoff space of cardinality \mathfrak{d} having countable extent which is not set SSM.

- Let X be a cofinal subset of the Baire space ω^{ω} of cardinality \mathfrak{d} .
- X has countable extent.
- X is not set SSM: indeed, X is not M and in the class of paracompact Hausdorff spaces we have that M ⇔ SM.

Where $\vartheta = \min\{|X| : X \text{ is a cofinal subset of } \omega^{\omega}\}$

Proposition (Sakai; 2014)

$\text{If } |X| < \mathfrak{d}, \, \text{then} \, X \, \text{SL} \, (\text{SSL}) \implies X \, \text{SM} \, (\text{SSM}).$

Proposition (Sakai; 2014)

 $\text{If } |X| < \mathfrak{d}, \, \text{then} \, X \, \operatorname{SL} \, (\text{SSL}) \implies X \, \operatorname{SM} \, (\text{SSM}).$

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{d}$, then X set SL (set SSL) $\implies X$ set SM (set SSM).

Proposition (Sakai; 2014)

 $\text{If } |X| < \mathfrak{d}, \, \text{then} \, X \, \operatorname{SL} \, (\text{SSL}) \implies X \, \operatorname{SM} \, (\text{SSM}).$

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{d}$, then X set SL (set SSL) $\implies X$ set SM (set SSM).

Corollary (B.G.M.; 2022)

If X is T_1 and $|X| < \mathfrak{d}$, then X set SSM $\iff e(X) \leq \omega$.

Between CC and countable extent

Example (B.G.M.; 2022)

 $(\mathfrak{b}<\mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

 $(\mathfrak{b} < \mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

• Let X be an unbounded subset of the Baire space ω^{ω} of cardinality \mathfrak{b} .

 $(\mathfrak{b}<\mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

- Let X be an unbounded subset of the Baire space ω^{ω} of cardinality \mathfrak{b} .
- X is set SSM, by the previous corollary.

 $(\mathfrak{b}<\mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

- Let X be an unbounded subset of the Baire space ω^{ω} of cardinality \mathfrak{b} .
- X is set SSM, by the previous corollary.
- X is not set SSH.

 $(\mathfrak{b}<\mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

- Let X be an unbounded subset of the Baire space ω^{ω} of cardinality \mathfrak{b} .
- X is set SSM, by the previous corollary.
- X is not set SSH.Indeed X is not H and in the class of paracompact Hausdorff spaces we have that H ⇔ SH.

Where $\mathfrak{b} = \min\{|X| : X \text{ is an unbounded subset of } \omega^{\omega}\}$

 $(\mathfrak{b}<\mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

- Let X be an unbounded subset of the Baire space ω^{ω} of cardinality \mathfrak{b} .
- X is set SSM, by the previous corollary.
- X is not set SSH.Indeed X is not H and in the class of paracompact Hausdorff spaces we have that H ⇔ SH.

Where $\mathfrak{b} = \min\{|X| : X \text{ is an unbounded subset of } \omega^{\omega}\}$

Example (B.G.M.; 2022)

A set SSH, not CC space.

 $(\mathfrak{b}<\mathfrak{d})$ There is a Tychonoff set SSM space which is not set SSH.

- Let X be an unbounded subset of the Baire space ω^{ω} of cardinality \mathfrak{b} .
- X is set SSM, by the previous corollary.
- X is not set SSH.Indeed X is not H and in the class of paracompact Hausdorff spaces we have that H ⇔ SH.

Where $\mathfrak{b} = \min\{|X| : X \text{ is an unbounded subset of } \omega^{\omega}\}$

Example (B.G.M.; 2022)

A set SSH, not CC space.

• The discrete space ω .

Theorem (Sakai; 2014)

If X is a regular SM space such that $w(X) = \mathfrak{c}$, then every closed and discrete subspace of X has cardinality less than \mathfrak{c} . Hence, we have $e(X) \leq \mathfrak{c}$.

Theorem (Sakai; 2014)

If X is a regular SM space such that $w(X) = \mathfrak{c}$, then every closed and discrete subspace of X has cardinality less than \mathfrak{c} . Hence, we have $e(X) \leq \mathfrak{c}$.

Theorem (B.G.M.; 2022)

If X is a regular set SM space, then every closed and discrete subspace of X has cardinality less than \mathfrak{c} . Hence, we have $e(X) \leq \mathfrak{c}$.

A Tychonoff SC (hence SH and SM) space which is not set SM (hence not set SH and neither set SC).
A Tychonoff SC (hence SH and SM) space which is not set SM (hence not set SH and neither set SC).

Let X(c) = (2^c × c⁺) ∪ (Z × {c⁺}) ⊂ 2^c × (c⁺ + 1), where Z denotes the set of the points in 2^c with the only the αth coordinate equal to 1.

A Tychonoff SC (hence SH and SM) space which is not set SM (hence not set SH and neither set SC).

- Let X(c) = (2^c × c⁺) ∪ (Z × {c⁺}) ⊂ 2^c × (c⁺ + 1), where Z denotes the set of the points in 2^c with the only the αth coordinate equal to 1.
- X(c) is SC [Sakai, 2014], hence SM.

A Tychonoff SC (hence SH and SM) space which is not set SM (hence not set SH and neither set SC).

- Let X(c) = (2^c × c⁺) ∪ (Z × {c⁺}) ⊂ 2^c × (c⁺ + 1), where Z denotes the set of the points in 2^c with the only the αth coordinate equal to 1.
- X(c) is SC [Sakai, 2014], hence SM.
- X(c) it is not set SM.

A Tychonoff SC (hence SH and SM) space which is not set SM (hence not set SH and neither set SC).

- Let X(c) = (2^c × c⁺) ∪ (Z × {c⁺}) ⊂ 2^c × (c⁺ + 1), where Z denotes the set of the points in 2^c with the only the αth coordinate equal to 1.
- X(c) is SC [Sakai, 2014], hence SM.
- X(c) it is not set SM. Indeed, Z × {c⁺} is a closed discrete subspace of X(c) of cardinality c and the previous theorem holds.

Does there exist a Tychonoff set SM space which is not set SSM?

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

 $(\omega_1 < \mathfrak{d})$ A Tychonoff set SM space which is not set SSM.

• Assume $\omega_1 < \mathfrak{d}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{d}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SM.

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{d}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SM. Indeed, $\Psi(\mathcal{A})$ is separable, hence set SL and we proved that for spaces of cardinality less than ϑ , set SL and set SM are equivalent properties.

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{d}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SM. Indeed, $\Psi(\mathcal{A})$ is separable, hence set SL and we proved that for spaces of cardinality less than ϑ , set SL and set SM are equivalent properties.
- $\Psi(\mathcal{A})$ is not set SSM

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{d}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SM. Indeed, $\Psi(\mathcal{A})$ is separable, hence set SL and we proved that for spaces of cardinality less than ϑ , set SL and set SM are equivalent properties.
- $\Psi(\mathcal{A})$ is not set SSM since $e(\Psi(\mathcal{A})) > \omega$.

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

 $(\omega_1 < \mathfrak{b})$ A Tychonoff set SH space which is not set SSH.

• Assume $\omega_1 < \mathfrak{b}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

 $(\omega_1 < \mathfrak{b})$ A Tychonoff set SH space which is not set SSH.

Assume ω₁ < b and consider Ψ(A) = ω ∪ A with |A| = ω₁.
Ψ(A) is set SH.

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{b}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SH. Indeed, $\Psi(\mathcal{A})$ is separable, hence set SL and by the above proposition.

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{b}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SH. Indeed, $\Psi(\mathcal{A})$ is separable, hence set SL and by the above proposition.
- $\Psi(\mathcal{A})$ is not set SSH

Proposition (B.G.M.; 2022)

If $|X| < \mathfrak{b}$, then X set SL (set SSL) \implies X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

- Assume $\omega_1 < \mathfrak{b}$ and consider $\Psi(\mathcal{A}) = \omega \cup \mathcal{A}$ with $|\mathcal{A}| = \omega_1$.
- $\Psi(\mathcal{A})$ is set SH. Indeed, $\Psi(\mathcal{A})$ is separable, hence set SL and by the above proposition.
- $\Psi(\mathcal{A})$ is not set SSH since $e(\Psi(\mathcal{A})) > \omega$.

• (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SM × Compact) is SM [Kočinac, 1999].

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SM × Compact) is SM [Kočinac, 1999].
- $(con)(SSM \times Compact)$ need not be SSM, in fact

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SM \times Compact) is SM [Kočinac, 1999].
- (con)(SSM \times Compact) need not be SSM, in fact

-
$$(\omega_1 < \mathfrak{d})$$

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SM \times Compact) is SM [Kočinac, 1999].
- $^{(con)}(SSM \times Compact)$ need not be SSM, in fact
 - $(\omega_1 < \mathfrak{d})$
 - $X = \Psi(\mathcal{A})$ with $|\mathcal{A}| = \omega_1$, is SSM [Bonanzinga, Matveev, 2009].

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SM × Compact) is SM [Kočinac, 1999].
- $^{(con)}(SSM \times Compact)$ need not be SSM, in fact
 - $(\omega_1 < \mathfrak{d})$
 - $X = \Psi(\mathcal{A})$ with $|\mathcal{A}| = \omega_1$, is SSM [Bonanzinga, Matveev, 2009].
 - Let Y be a compact space with $c(Y) > \omega$.

- (SC \times Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].
- (SSC \times Compact) is SSC [Fleischman, 1970].
- (SL \times Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SSL \times Compact) need not be SSL [van Douwen, Reed, Roscoe, Tree, 1991].
- (SM × Compact) is SM [Kočinac, 1999].
- $(con)(SSM \times Compact)$ need not be SSM, in fact
 - $(\omega_1 < \mathfrak{d})$
 - $X = \Psi(\mathcal{A})$ with $|\mathcal{A}| = \omega_1$, is SSM [Bonanzinga, Matveev, 2009].
 - Let Y be a compact space with $c(Y) > \omega$.
 - $X \times Y$ is not SSL, hence not SSM [Bonanzinga, Matveev; 2001].

Is the product of a set SM (set SSM) space with a compact space a set SM (set SSM) space?

Is the product of a set SM (set SSM) space with a compact space a set SM (set SSM) space?

Partial answer, for set SSM

Is the product of a set SM (set SSM) space with a compact space a set SM (set SSM) space?

- Partial answer, for set SSM
- NO, for set SM spaces.

A map is perfect if it is continuous, closed, surjective and each fiber is compact.

Lemma (B.G.M.; 2022)

Uncountable closed discrete subspaces are preserved by perfect maps.

Proposition (B.G.M.; 2022)

The product of a space having countable extent with a compact space has countable extent.

On the product of a set SSM space with a compact space

Proposition (B.G.M.; 2022)

The product of a T_1 set SSL space with a T_1 compact space is set SSL.

On the product of a set SSM space with a compact space

Proposition (B.G.M.; 2022)

The product of a T_1 set SSL space with a T_1 compact space is set SSL.

Proposition (B.G.M.; 2022)

The product of a set SSM space with a compact space has countable extent.

On the product of a set SSM space with a compact space

Proposition (B.G.M.; 2022)

The product of a T_1 set SSL space with a T_1 compact space is set SSL.

Proposition (B.G.M.; 2022)

The product of a set SSM space with a compact space has countable extent.

Proposition (B.G.M.; 2022)

The T_1 product of cardinality less than \mathfrak{d} of a set SSM space with a compact space is set SSM.
Proposition (B.G.M.; 2022)

If $e(X) > \omega$ and $c(Y) > \omega$, where Y is T_1 , then $X \times Y$ is not set SL.

Proposition (B.G.M.; 2022)

If $e(X) > \omega$ and $c(Y) > \omega$, where Y is T_1 , then $X \times Y$ is not set SL.

Example (B.G.M.; 2022)

Proposition (B.G.M.; 2022)

If $e(X) > \omega$ and $c(Y) > \omega$, where Y is T_1 , then $X \times Y$ is not set SL.

Example (B.G.M.; 2022)

A set SC (hence set SH, set SM and set SL) space X and a compact space Y such that $X \times Y$ is not set SL (hence neither set SM nor set SH nor set SC).

Let X = ω₁ ∪ A be, where A = {a_α : α ∈ ω₁} is a set of cardinality ω₁; ω₁ has the usual order topology and is an open subspace of X; a basic neighborhood of a point a_α ∈ A takes the form O_β(a_α) = {a_α} ∪ (β, ω₁), where β < ω₁.

Proposition (B.G.M.; 2022)

If $e(X) > \omega$ and $c(Y) > \omega$, where Y is T_1 , then $X \times Y$ is not set SL.

Example (B.G.M.; 2022)

- Let X = ω₁ ∪ A be, where A = {a_α : α ∈ ω₁} is a set of cardinality ω₁; ω₁ has the usual order topology and is an open subspace of X; a basic neighborhood of a point a_α ∈ A takes the form O_β(a_α) = {a_α} ∪ (β, ω₁), where β < ω₁.
- Y is any compact space with $c(Y) > \omega$.

Proposition (B.G.M.; 2022)

If $e(X) > \omega$ and $c(Y) > \omega$, where Y is T_1 , then $X \times Y$ is not set SL.

Example (B.G.M.; 2022)

- Let X = ω₁ ∪ A be, where A = {a_α : α ∈ ω₁} is a set of cardinality ω₁; ω₁ has the usual order topology and is an open subspace of X; a basic neighborhood of a point a_α ∈ A takes the form O_β(a_α) = {a_α} ∪ (β, ω₁), where β < ω₁.
- Y is any compact space with c(Y) > ω.
- X is set SC [Bonanzinga, Maesano, 2020], hence set SM .

Proposition (B.G.M.; 2022)

If $e(X) > \omega$ and $c(Y) > \omega$, where Y is T_1 , then $X \times Y$ is not set SL.

Example (B.G.M.; 2022)

- Let X = ω₁ ∪ A be, where A = {a_α : α ∈ ω₁} is a set of cardinality ω₁; ω₁ has the usual order topology and is an open subspace of X; a basic neighborhood of a point a_α ∈ A takes the form O_β(a_α) = {a_α} ∪ (β, ω₁), where β < ω₁.
- Y is any compact space with c(Y) > ω.
- X is set SC [Bonanzinga, Maesano, 2020], hence set SM .
- $X \times Y$ is not set SL.

Proposition (B.G.M.; 2022)

The product of a set SSH space with a compact space has countable extent.

Proposition (B.G.M.; 2022)

The product of a set SSH space with a compact space has countable extent.

Proposition (B.G.M.; 2022)

The \mathcal{T}_1 product of cardinality less than $\mathfrak b$ of a set SSH space with a compact space is set SSH.

Proposition (B.G.M.; 2022)

The product of a set SSH space with a compact space has countable extent.

Proposition (B.G.M.; 2022)

The \mathcal{T}_1 product of cardinality less than \mathfrak{b} of a set SSH space with a compact space is set SSH.

Question (B.G.M.; 2022)

Is the product of a set SSH space with a compact space a set SSH space?

References

- M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, Star-Hurewicz and related properties, Applied General Topology, 5(1) (2004) 79-89.
- M. Bonanzinga, F. Maesano, Some properties defined by relative versions of star-covering properties, Topol. Appl., 306,1 (2020) 107923.
- [3] M. Bonanzinga, M.V. Matveev, Products of star-Lindelöf and related spaces, Houston Journal of Mathematics, 27(1) (2001) 45-57.
- [4] M. Bonanzinga, M.V. Matveev, Some covering properties for Ψ -spaces, Mat. Vesnik, **61** (2009) 3-11.
- [5] W.M. Fleischman, A new extension of countable compactness, Fund. Math. (1970) 67 pp. 1-9.
- [6] S. Ikenaga, T. Tani, On a Topological Concept between Countable Compactness and Pseudocompactness, National Institute of Technology Numazu College research annual 15 (1980), 139-142.
- [7] S. Ikenaga, Topological Concepts between "Lindelof" and "Pseudo-Lindelof", Research Reports of Nara National College of Technology 26 (1990), 103-108.
- [8] S. Ikenaga, A Class Which Contains Lindelof Spaces, Separable Spaces and Countably Compact Spaces, Memories of Numazu College Technology, 02862794, Numazu College of Technology 18 (1983), 105-108.
- [9] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55 (1999), no. 3-4, 421-431.
- [10] Lj.D.R. Kočinac, S. Singh, On the set version of selectively star-ccc spaces, Hindawi Journal of Mathematics (2020) Article ID 9274503, 7 pages, http://doi.org/10.1155/2020/9274503.
- [11] Lj.D.R. Kočinac, S. Konca, S. Singh, Set star-Menger and set strongly star-Menger spaces, Math. Slovaka 72(1) (2022), 185-196, http://doi.org/10.1515/ms-2022-0013.
- [12] M.V. Matveev, How weak is weak extent, Topol. Appl. 119 (2002) 229-232.
- [13] M. Sakai Star versions of the Menger property, Topology and its Applications, 170 (2014) 22-34.
- [14] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topol. Appl., 39, (1991), 71-103.

Thanks for the attention!