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Introduction

Definition

A space X is

Menger, briefly M, if for each sequence (Un : n ∈ ω) of open covers of
X there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is a finite
subset of Un and X =

⋃
n∈ω

⋃
Vn;

Hurewicz, briefly H, if for each sequence (Un : n ∈ ω) of open covers
of X there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is a
finite subset of Un and for every x ∈ X , x ∈

⋃
Vn for all but finitely

many n ∈ ω.

2 / 23



Introduction

Definition

A space X is

Menger, briefly M, if for each sequence (Un : n ∈ ω) of open covers of
X there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is a finite
subset of Un and X =

⋃
n∈ω

⋃
Vn;

Hurewicz, briefly H, if for each sequence (Un : n ∈ ω) of open covers
of X there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is a
finite subset of Un and for every x ∈ X , x ∈

⋃
Vn for all but finitely

many n ∈ ω.

2 / 23



Introduction

Let U be a cover of a space X and A be a subset of X ; the star of A with
respect to U is the set st(A,U) =

⋃
{U : U ∈ U and U ∩ A 6= ∅}.

Definition (Kočinac, 1999; Bonanzinga, Cammaroto, Kočinac, 2004)

A space X is

star Menger, briefly SM (strongly star Menger, briefly SSM) if for each
sequence (Un : n ∈ ω) of open covers of X there exists a sequence
(Vn : n ∈ ω) such that Vn, n ∈ ω, is a finite subset of Un (resp., (Fn : n ∈ ω)
such that Fn, n ∈ ω, is a finite subset of X ) and X =

⋃
n∈ω st(

⋃
Vn,Un) (

resp., X =
⋃

n∈ω st(Fn,Un));

star Hurewicz, briefly SH (strongly star Hurewicz, briefly SSH) if for each
sequence (Un : n ∈ ω) of open covers of X there exists a sequence
(Vn : n ∈ ω) such that Vn, n ∈ ω, is a finite subset of Un (resp., (Fn : n ∈ ω)
such that Fn, n ∈ ω, is a finite subset of X ) and ∀x ∈ X , x ∈ st(

⋃
Vn,Un)

(resp., x ∈ st(Fn,Un)) for all but finitely many n ∈ ω.
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Introduction

Definition (Kočinac, Konka, Singh; 2022)

set star Menger, shortly set SM (resp., set strongly star Menger, shortly set
SSM) if for each nonempty subset A of X and for each sequence
(Un : n ∈ ω) of collection of open sets of X such that A ⊂

⋃
Un for every

n ∈ ω, there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is a finite
subset of Un (resp., (Fn : n ∈ ω) such that Fn, n ∈ ω, is a finite subset of A)
and A ⊂

⋃
n∈ω st(

⋃
Vn,Un) (resp., A ⊂

⋃
n∈ω st(Fn,Un)).

set star Hurewicz, shortly set SH (resp., set strongly star Hurewicz, shortly
set SSH) if for each nonempty subset A of X and for each sequence
(Un : n ∈ ω) of collection of open sets of X such that A ⊂

⋃
Un for every

n ∈ ω, there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is a finite
subset of Un (resp., (Fn : n ∈ ω) such that Fn, n ∈ ω, is a finite subset of A)
and for every x ∈ A, x ∈ st(

⋃
Vn,Un) for all but finitely many n ∈ ω (resp.,

for every x ∈ A, x ∈ st(Fn,Un) for all but finitely many n ∈ ω).
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Diagram
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Introduction

Definition

A space X is

star compact, briefly SC (strongly star compact, briefly SSC) if for every
open cover U of the space X , there exists a finite subfamily V of U (resp., a
finite subset F of X ) such that st(

⋃
V,U) = X (resp., st(F ,U) = X )

[Ikenaga, Tani, 1980; van Douwen, Reed, Roscoe, Tree, 1991];

set star compact, briefly set SC (resp., set strongly star compact, briefly set
SSC), if for every nonempty subset A of X and for every family U of open
sets in X such that A ⊆

⋃
U , there exists a finite subfamily V of U (resp.,

finite subset F of A) such that st(
⋃
V,U) ⊃ A (resp.,

st(F ,U) ⊃ A)[Kočinac, Konka, Singh, 2022].

”finite”→ ”countable”

SL and SSL [Ikenaga,1983; I. 1990];

set SL and set SSL [Kočinac, Singh; 2020].
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Preliminar results

CC stands for ”countably compact”

Proposition (Bonanzinga, Maesano; 2020)

In the class of Hausdorff spaces, X CC ⇐⇒ X set SSC ⇐⇒ X SSC.

Proposition (Bonanzinga, Giacopello, Maesano; 2022)

In the class of regular spaces, X CC ⇐⇒ X set SC

Proposition (B.Mae.; 2020)

In the class of T1 spaces, X set SSL ⇐⇒ e(X ) ≤ ω
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Diagram

ccc = ”countable chain condition”.
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Between CC and countable extent

CC⇒ set SSH⇒ set SSM⇒ countable extent.

Example (B.G.M.; 2022)

A Tychonoff space of cardinality d having countable extent which is not
set SSM.

Let X be a cofinal subset of the Baire space ωω of cardinality d.

X has countable extent.

X is not set SSM: indeed, X is not M and in the class of
paracompact Hausdorff spaces we have that M ⇔ SM.

Where d = min{|X | : X is a cofinal subset of ωω}
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Between CC and countable extent

Proposition (Sakai; 2014)

If |X | < d, then X SL (SSL) =⇒ X SM (SSM).

Proposition (B.G.M.; 2022)

If |X | < d, then X set SL (set SSL) =⇒ X set SM (set SSM).

Corollary (B.G.M.; 2022)

If X is T1 and |X | < d, then X set SSM ⇐⇒ e(X ) ≤ ω.
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Between CC and countable extent

Example (B.G.M.; 2022)

(b < d) There is a Tychonoff set SSM space which is not set SSH.

Let X be an unbounded subset of the Baire space ωω of cardinality b.

X is set SSM, by the previous corollary.

X is not set SSH.Indeed X is not H and in the class of paracompact
Hausdorff spaces we have that H ⇔ SH.

Where b = min{|X | : X is an unbounded subset of ωω}

Example (B.G.M.; 2022)

A set SSH, not CC space.

The discrete space ω.
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The extent of set SM

Theorem (Sakai; 2014)

If X is a regular SM space such that w(X ) = c, then every closed and
discrete subspace of X has cardinality less than c. Hence, we have
e(X ) ≤ c.

Theorem (B.G.M.; 2022)

If X is a regular set SM space, then every closed and discrete subspace
of X has cardinality less than c. Hence, we have e(X ) ≤ c.

12 / 23



The extent of set SM

Theorem (Sakai; 2014)

If X is a regular SM space such that w(X ) = c, then every closed and
discrete subspace of X has cardinality less than c. Hence, we have
e(X ) ≤ c.

Theorem (B.G.M.; 2022)

If X is a regular set SM space, then every closed and discrete subspace
of X has cardinality less than c. Hence, we have e(X ) ≤ c.

12 / 23



Set SM vs SM and set SH vs SH

Example (B.G.M.; 2022)

A Tychonoff SC (hence SH and SM) space which is not set SM (hence
not set SH and neither set SC).

Let X (c) = (2c × c+) ∪ (Z × {c+}) ⊂ 2c × (c+ + 1), where Z denotes
the set of the points in 2c with the only the αth coordinate equal to 1.

X (c) is SC [Sakai, 2014], hence SM.

X (c) it is not set SM. Indeed, Z × {c+} is a closed discrete subspace
of X (c) of cardinality c and the previous theorem holds.
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Set SSM vs set SM

Question (Kočinac, Konca, Singh; 2022)

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

(ω1 < d) A Tychonoff set SM space which is not set SSM.

Assume ω1 < d and consider Ψ(A) = ω ∪ A with |A| = ω1.

Ψ(A) is set SM. Indeed, Ψ(A) is separable, hence set SL and we
proved that for spaces of cardinality less than d, set SL and set SM
are equivalent properties.

Ψ(A) is not set SSM since e(Ψ(A)) > ω.
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Question (Kočinac, Konca, Singh; 2022)

Does there exist a Tychonoff set SM space which is not set SSM?

Example (B.G.M.; 2022)

(ω1 < d) A Tychonoff set SM space which is not set SSM.

Assume ω1 < d and consider Ψ(A) = ω ∪ A with |A| = ω1.

Ψ(A) is set SM. Indeed, Ψ(A) is separable, hence set SL and we
proved that for spaces of cardinality less than d, set SL and set SM
are equivalent properties.

Ψ(A) is not set SSM since e(Ψ(A)) > ω.

14 / 23



Set SSH vs set SH

Proposition (B.G.M.; 2022)

If |X | < b, then X set SL (set SSL) =⇒ X set SH (set SSH).

Question (B.G.M.; 2022)

Does there exist a Tychonoff set SH space which is not set SSH?

Example (B.G.M.; 2022)

(ω1 < b) A Tychonoff set SH space which is not set SSH.

Assume ω1 < b and consider Ψ(A) = ω ∪ A with |A| = ω1.

Ψ(A) is set SH. Indeed, Ψ(A) is separable, hence set SL and by the
above proposition.

Ψ(A) is not set SSH since e(Ψ(A)) > ω.
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The product with a compact space

(SC × Compact) is SC [van Douwen, Reed, Roscoe, Tree; 1991].

(SSC × Compact) is SSC [Fleischman, 1970].

(SL × Compact) is SL [van Douwen, Reed, Roscoe, Tree, 1991].

(SSL × Compact) need not be SSL [van Douwen, Reed, Roscoe,
Tree, 1991].

(SM × Compact) is SM [Kočinac, 1999].
(con)(SSM × Compact) need not be SSM, in fact

- (ω1 < d)
- X = Ψ(A) with |A| = ω1, is SSM [Bonanzinga, Matveev, 2009].
- Let Y be a compact space with c(Y ) > ω.
- X × Y is not SSL, hence not SSM [Bonanzinga, Matveev; 2001].
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The product with a compact space

Question (Kočinac, Konca, Singh; 2022)

Is the product of a set SM (set SSM) space with a compact space a set
SM (set SSM) space?

Partial answer, for set SSM

NO, for set SM spaces.
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On the product of a set SSM space with a compact space

A map is perfect if it is continuous, closed, surjective and each fiber is
compact.

Lemma (B.G.M.; 2022)

Uncountable closed discrete subspaces are preserved by perfect maps.

Proposition (B.G.M.; 2022)

The product of a space having countable extent with a compact space
has countable extent.
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On the product of a set SSM space with a compact space

Proposition (B.G.M.; 2022)

The product of a T1 set SSL space with a T1 compact space is set SSL.

Proposition (B.G.M.; 2022)

The product of a set SSM space with a compact space has countable
extent.

Proposition (B.G.M.; 2022)

The T1 product of cardinality less than d of a set SSM space with a
compact space is set SSM.
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On the product of a set SM space with a compact space

Proposition (B.G.M.; 2022)

If e(X ) > ω and c(Y ) > ω, where Y is T1, then X × Y is not set SL.

Example (B.G.M.; 2022)

A set SC (hence set SH, set SM and set SL) space X and a compact
space Y such that X × Y is not set SL (hence neither set SM nor set
SH nor set SC).

Let X = ω1 ∪ A be, where A = {aα : α ∈ ω1} is a set of cardinality
ω1; ω1 has the usual order topology and is an open subspace of X ; a
basic neighborhood of a point aα ∈ A takes the form
Oβ(aα) = {aα} ∪ (β, ω1), where β < ω1.

Y is any compact space with c(Y ) > ω.

X is set SC [Bonanzinga, Maesano, 2020], hence set SM .

X × Y is not set SL.
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On the product of set SSH spaces with a compact space

Proposition (B.G.M.; 2022)

The product of a set SSH space with a compact space has countable
extent.

Proposition (B.G.M.; 2022)

The T1 product of cardinality less than b of a set SSH space with a
compact space is set SSH.

Question (B.G.M.; 2022)

Is the product of a set SSH space with a compact space a set SSH
space?
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