

Canonical Ramsey Theory and Dynamics

Sohail Farhangi (sohailfarhangi.com)

the Ohio State University

Background

van der Waerden's theorem([1]): For any $\ell \in \mathbb{N}$ and any finite partition $\mathbb{N} = \bigcup_{i=1}^{r} C_i$, there exists $a, d \in \mathbb{N}$ and $1 \leq i_0 \leq r$ for which $\{a+jd\}_{i=0}^{\ell} \subseteq C_{i_0}$.

Topological van der Waerden theorem ([2],[3]): If (X,T) is a minimal topological dynamical system, $\emptyset \neq U \subseteq X$ is an open set, and $\ell \in \mathbb{N}$, then there exists $d \in \mathbb{N}$ such that

$$U \cap T^{-d}U \cap \dots \cap T^{-\ell d}U \neq \emptyset$$
(1)

Szemerédi's theorem ([4]): If $A \subseteq \mathbb{N}$ has positive upper density ($\limsup_{N \to \infty} \frac{1}{N} |A \cap [1, N]| > 0$), then A contains arbitrarily long arithmetic progressions.

Furstenberg multiple recurrence theorem ([5],[3]): Let (X, \mathscr{B}, μ) be a probability space and $T: X \to X$ a measure preserving transformation. If $\ell \in \mathbb{N}$ and $A \in \mathscr{B}$ is such that $\mu(A) > 0$, then there exists $n \in \mathbb{N}$ for which

(2)

(3)

(4)

(6)

$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-\ell n}A) > 0.$

Canonical van der Waerden theorem([6],[7]): For any $\ell \in \mathbb{N}$ and any (not necessarily finite) partition $\mathbb{N} = \bigcup_{i=1}^{\infty} C_i$, $\exists a, d \in \mathbb{N}$ such that either (i) $\{a+jd\}_{j=0}^{\ell} \subseteq C_{i_0}$ for some $i_0 \in \mathbb{N}$, or (ii) for $0 \leq j_1 < j_2 \leq \ell$, $a + j_1 d$ and $a + j_2 d$ are not contained in the same cell (set of the form C_k).

Conjectures

Conjecture 1: Let X be a compact Hausdorff space and $T: X \to X$ a continuous map. For any open $U \subseteq X$ and any $\ell \in \mathbb{N}$, there exists $n \in \mathbb{N}$ with

 $U \cap T^{-n}U \cap T^{-2n}U \cap \cdots \cap T^{-\ell n}U \neq \emptyset$, or

 $T^{-in}U \cap T^{-jn}U = \emptyset \ \forall \ 0 \le i \le j \le \ell.$

Conjecture 2: Conjecture 1 holds if X is assumed to be a compact metric space.

Conjecture 3: For any $\ell \in \mathbb{N}$ and any (not necessarily finite) partition $\mathbb{N} = \bigcup_{i=1}^{\infty} C_i$, there exists $d \in \mathbb{N}$ such that either (i) for some $i_0 \in \mathbb{N}$ we have $C_{i_0} \cap (C_{i_0} - d) \cap (C_{i_0} - 2d) \cap \cdots \cap (C_{i_0} - \ell d) \neq \emptyset$, or (ii) for every $i \in \mathbb{N}$ we have $(C_i - jd) \cap (C_i - kd) = \emptyset$ for all $0 \leq j < k \leq \ell$.

Conjecture 4: Let (X, \mathscr{B}, μ) be a σ -finite measure space and $T: X \to X$ a measure preserving transformation. If $A \in \mathscr{B}$, then there exists $n \in \mathbb{N}$ with

 $\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-\ell n}A) > 0, \text{ or }$ (5)

$\mu(T^{-in}A \cap T^{-jn}A) = 0 \ \forall \ 0 \le i < j \le \ell.$

Conjecture 5(Canonical Szemerédi): For any $A \subseteq \mathbb{N}$ and $\ell \in \mathbb{N}$ there exists $d \in \mathbb{N}$ with (i) $A \cap (A - d) \cap (A - 2d) \cap \cdots \cap (A - \ell d) \neq \emptyset$, or (ii) $(A - id) \cap (A - jd) = \emptyset$ for all $0 \le i < j \le \ell$.

Implications

-Conjecture 1 implies Conjectures 2, 3, 5, and Szemerédi's theorem. While van der Waerden's theorem is equivalent to its topological analogue, it is not clear whether or not Conjecture 3 implies Conjecture 1.

-Conjecture 2 implies the canonical van der Waerden theorem, but it is not obvious whether or not Conjecture 2 implies Conjecture 1, or whether the canonical van der Waerden theorem implies Conjecture 2.

-Conjecture 4 implies Conjecture 3, which implies Conjecture 5, which implies Szemerédi's theorem. While the Fursternberg multiple recurrence theorem is equivalent to Szemerédi's theorem, it is not clear whether or not Conjecture 4 implies Conjectures 2, or whether Conjecture 2 implies Conjecture 5. -While the Furstenberg multiple recurrence theorem implies the topological van der Waerden Theorem, we do not know if Conjecture 1 implies Conjecture 4, or even if Conjecture 4 implies Conjecture 2.

Theorem: The following are equivalent to Conjecture 4:

(i) Conjecture 4 when $X = \mathbb{R}$, \mathscr{B} is the Lebesgue σ -algebra, and μ is the Lebesgue measure.

(ii) Let (X, \mathscr{B}, μ) be a probability space and $T: X \to X$ a non-singular measurable transformation. If $A \in \mathscr{B}$, then there exists $n \in \mathbb{N}$ with

 $\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \dots \cap T^{-\ell n}A) > 0$, or

(8)

$\mu(T^{-in}A \cap T^{-jn}A) = 0 \ \forall \ 0 \le i < j \le \ell.$

(iii) Item (ii) when X = [0, 1], \mathscr{B} is the Lebesgue σ -algebra, and μ is the Lebesgue measure.

References

- B. van der Waerden, "Beweis einer baudetschen vermutung," Nieuw Arch. Wiskd, vol. 15, pp. 212–216, 1927. [1]
- H. Furstenberg and B. Weiss, "Topological dynamics and combinatorial number theory," J. Analyse Math., vol. 34, 61–85 (1979), 1978. [2]
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton, N.J., 1981, pp. xi+203, M. B. Porter Lectures, ISBN: 0-691-08269-3. [3]
- E. Szemerédi, "On sets of integers containing no k elements in arithmetic progression," Acta Arith., vol. 27, pp. 199–245, 1975, ISSN: 0065-1036. $\left[4\right]$
- H. Furstenberg, "Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions," J. Analyse Math., vol. 31, pp. 204–256, 1977, ISSN: 0021-7670. [5]
- P. Erdős and R. L. Graham, "Old and new problems and results in combinatorial number theory: Van der Waerden's theorem and related topics," Enseign. Math. (2), vol. 25, no. 3-4, [6] 325-344 (1980), 1979.
- W. Deuber, R. L. Graham, H. J. Prömel, and B. Voigt, "A canonical partition theorem for equivalence relations on \mathbf{Z}^t ," J. Combin. Theory Ser. A, vol. 34, no. 3, pp. 331–339, 1983. [7]