Background

van der Waerden's theorem([1]): For any $\ell \in \mathbb{N}$ and any finite partition $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$, there exists $a, d \in \mathbb{N}$ and $1 \leq i_{0} \leq r$ for which $\{a+j d\}_{j=0}^{\ell} \subseteq C_{i_{0}}$.
Topological van der Waerden theorem([2],[3]): If (X, T) is a minimal topological dynamical system, $\emptyset \neq U \subseteq X$ is an open set, and $\ell \in \mathbb{N}$, then there exists $d \in \mathbb{N}$ such that

$$
\begin{equation*}
U \cap T^{-d} U \cap \cdots \cap T^{-\ell d} U \neq \emptyset \tag{1}
\end{equation*}
$$

Szemerédi's theorem([4]): If $A \subseteq \mathbb{N}$ has positive upper density (lim $\sup _{N \rightarrow \infty} \frac{1}{N}|A \cap[1, N]|>0$), then A contains arbitrarily long arithmetic progressions.
Furstenberg multiple recurrence theorem([5],[3]): Let (X, \mathscr{B}, μ) be a probability space and $T: X \rightarrow X$ a measure preserving transformation. If $\ell \in \mathbb{N}$ and $A \in \mathscr{B}$ is such that $\mu(A)>0$, then there exists $n \in \mathbb{N}$ for which

$$
\begin{equation*}
\mu\left(A \cap T^{-n} A \cap T^{-2 n} A \cap \cdots \cap T^{-\ell n} A\right)>0 \tag{2}
\end{equation*}
$$

Canonical van der Waerden theorem([6],[7]): For any $\ell \in \mathbb{N}$ and any (not necessarily finite) partition $\mathbb{N}=\bigcup_{i=1}^{\infty} C_{i}, \exists a, d \in \mathbb{N}$ such that either
(i) $\{a+j d\}_{j=0}^{\ell} \subseteq C_{i_{0}}$ for some $i_{0} \in \mathbb{N}$, or
(ii) for $0 \leq j_{1}<j_{2} \leq \ell, a+j_{1} d$ and $a+j_{2} d$ are not contained in the same cell (set of the form C_{k}).

Conjectures

Conjecture 1: Let X be a compact Hausdorff space and $T: X \rightarrow X$ a continuous map. For any open $U \subseteq X$ and any $\ell \in \mathbb{N}$, there exists $n \in \mathbb{N}$ with

$$
\begin{gather*}
U \cap T^{-n} U \cap T^{-2 n} U \cap \cdots \cap T^{-\ell n} U \neq \emptyset, \text { or } \tag{3}\\
T^{-i n} U \cap T^{-j n} U=\emptyset \forall 0 \leq i<j \leq \ell . \tag{4}
\end{gather*}
$$

Conjecture 2: Conjecture 1 holds if X is assumed to be a compact metric space.
Conjecture 3: For any $\ell \in \mathbb{N}$ and any (not necessarily finite) partition $\mathbb{N}=\bigcup_{i=1}^{\infty} C_{i}$, there exists $d \in \mathbb{N}$ such that either
(i) for some $i_{0} \in \mathbb{N}$ we have $C_{i_{0}} \cap\left(C_{i_{0}}-d\right) \cap\left(C_{i_{0}}-2 d\right) \cap \cdots \cap\left(C_{i_{0}}-\ell d\right) \neq \emptyset$, or
(ii) for every $i \in \mathbb{N}$ we have $\left(C_{i}-j d\right) \cap\left(C_{i}-k d\right)=\emptyset$ for all $0 \leq j<k \leq \ell$.

Conjecture 4: Let (X, \mathscr{B}, μ) be a σ-finite measure space and $T: X \rightarrow X$ a measure preserving transformation. If $A \in \mathscr{B}$, then there exists $n \in \mathbb{N}$ with

$$
\begin{gather*}
\mu\left(A \cap T^{-n} A \cap T^{-2 n} A \cap \cdots \cap T^{-\ell n} A\right)>0, \text { or } \tag{5}\\
\mu\left(T^{-i n} A \cap T^{-j n} A\right)=0 \forall 0 \leq i<j \leq \ell \tag{6}
\end{gather*}
$$

Conjecture 5 (Canonical Szemerédi): For any $A \subseteq \mathbb{N}$ and $\ell \in \mathbb{N}$ there exists $d \in \mathbb{N}$ with
(i) $A \cap(A-d) \cap(A-2 d) \cap \cdots \cap(A-\ell d) \neq \emptyset$, or
(ii) $(A-i d) \cap(A-j d)=\emptyset$ for all $0 \leq i<j \leq \ell$.

Implications

-Conjecture 1 implies Conjectures 2, 3,5, and Szemerédi's theorem. While van der Waerden's theorem is equivalent to its topological analogue, it is not clear whether or not Conjecture 3 implies Conjecture 1.
-Conjecture 2 implies the canonical van der Waerden theorem, but it is not obvious whether or not Conjecture 2 implies Conjecture 1 , or whether the canonical van der Waerden theorem implies Conjecture 2.
-Conjecture 4 implies Conjecture 3, which implies Conjecture 5, which implies Szemerédi's theorem. While the Fursternberg multiple recurrence theorem
is equivalent to Szemerédi's theorem, it is not clear whether or not Conjecture 4 implies Conjectures 2, or whether Conjecture 2 implies Conjecture 5 .
-While the Furstenberg multiple recurrence theorem implies the topological van der Waerden Theorem, we do not know if Conjecture 1 implies Conjecture 4 , or even if Conjecture 4 implies Conjecture 2.
Theorem: The following are equivalent to Conjecture 4:
(i) Conjecture 4 when $X=\mathbb{R}, \mathscr{B}$ is the Lebesgue σ-algebra, and μ is the Lebesgue measure.
(ii) Let (X, \mathscr{B}, μ) be a probability space and $T: X \rightarrow X$ a non-singular measurable transformation. If $A \in \mathscr{B}$, then there exists $n \in \mathbb{N}$ with

$$
\begin{gather*}
\mu\left(A \cap T^{-n} A \cap T^{-2 n} A \cap \cdots \cap T^{-\ell n} A\right)>0, \text { or } \tag{7}\\
\mu\left(T^{-i n} A \cap T^{-j n} A\right)=0 \forall 0 \leq i<j \leq \ell \tag{8}
\end{gather*}
$$

(iii) Item (ii) when $X=[0,1], \mathscr{B}$ is the Lebesgue σ-algebra, and μ is the Lebesgue measure.

References

[1] B. van der Waerden, "Beweis einer baudetschen vermutung," Nieuw Arch. Wiskd, vol. 15, pp. 212-216, 1927.
[2] H. Furstenberg and B. Weiss, "Topological dynamics and combinatorial number theory," J. Analyse Math., vol. 34, 61-85 (1979), 1978.

[4] E. Szemerédi, "On sets of integers containing no k elements in arithmetic progression," Acta Arith., vol. 27, pp. 199-245, 1975, issN: 0065-1036.
[5] H. Furstenberg, "Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions," J. Analyse Math., vol. 31, pp. 204-256, 1977, ISSN: 0021-7670.
 325-344 (1980), 1979.

