Separable reductions, rich families, and projectional skeletons in non-separable Banach spaces

Marián Fabian

Mathematical Institute, Czech Academy of Sciences, Prague

Separable reductions, rich families, and projectional skeletons in non-separable Banach spaces

Marián Fabian

Mathematical Institute, Czech Academy of Sciences, Prague

Praha, July 2022

Kindergarten separable reduction (SR):

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in \mathcal{S}(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in S(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Advanced SR:

There exists a cofinal, even rich, family $\mathcal{R} \subset \mathcal{S}(X)$ such that,

given any $Y \in \mathcal{R}$ and any $x \in Y$,

f is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

→ Ξ → → Ξ →

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in S(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Advanced SR:

There exists a cofinal, even rich, family $\mathcal{R} \subset \mathcal{S}(X)$ such that,

given any $Y \in \mathcal{R}$ and any $x \in Y$,

f is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

→ Ξ → → Ξ →

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in \mathcal{S}(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Advanced SR: There exists a cofinal, even rich, family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$, *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Definition [J. Borwein W. Moors 2001] A family $\mathcal{R} \subset \mathcal{S}(X)$ is called rich if it is cofinal (i.e., $\forall Z \in \mathcal{S}(X) \exists Y \in \mathcal{R}$ with $Y \supset Z$)

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in \mathcal{S}(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Advanced SR: There exists a cofinal, even rich, family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$, *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Definition [J. Borwein W. Moors 2001] A family $\mathcal{R} \subset \mathcal{S}(X)$ is called rich if it is cofinal (i.e., $\forall Z \in \mathcal{S}(X) \exists Y \in \mathcal{R} \text{ with } Y \supset Z$) and σ -closed (if $Y_1 \subset Y_2 \subset \cdots$ are in \mathcal{R} , then $\overline{Y_1 \cup Y_2 \cup \cdots} \in \mathcal{R}$).

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in \mathcal{S}(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Advanced SR: There exists a cofinal, even rich, family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$, *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Definition [J. Borwein W. Moors 2001] A family $\mathcal{R} \subset \mathcal{S}(X)$ is called rich if it is cofinal (i.e., $\forall Z \in \mathcal{S}(X) \exists Y \in \mathcal{R} \text{ with } Y \supset Z$) and σ -closed (if $Y_1 \subset Y_2 \subset \cdots$ are in \mathcal{R} , then $\overline{Y_1 \cup Y_2 \cup \cdots} \in \mathcal{R}$).

Proof: Put $\mathcal{R} := \{Y \in \mathcal{S}(X) : \text{diam } f(B(x, r) \cap Y) = \text{diam } f(B(x, r)) \text{ for every } x \in Y \text{ and every } r > 0\}.$

イロト イポト イラト イラト

Kindergarten separable reduction (SR):

Given any $x \in X$, there is $x \in Y \in \mathcal{S}(X)$ such that *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Advanced SR: There exists a cofinal, even rich, family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$, *f* is continuous at *x* if (and only if) restriction $f_{|Y}$ is continuous at *x*.

Definition [J. Borwein W. Moors 2001] A family $\mathcal{R} \subset \mathcal{S}(X)$ is called rich if it is cofinal (i.e., $\forall Z \in \mathcal{S}(X) \exists Y \in \mathcal{R}$ with $Y \supset Z$) and σ -closed (if $Y_1 \subset Y_2 \subset \cdots$ are in \mathcal{R} , then $\overline{Y_1 \cup Y_2 \cup \cdots} \in \mathcal{R}$).

Proof: Put $\mathcal{R} := \{Y \in \mathcal{S}(X) : \text{diam } f(B(x, r) \cap Y) = \text{diam } f(B(x, r)) \text{ for every } x \in Y \text{ and every } r > 0\}.$

Homework. Prove that if $\mathcal{R}_1, \mathcal{R}_2, \ldots$ are rich then $\mathcal{R}_1 \cap \mathcal{R}_2 \cap \ldots$ is rich.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト … ヨ

[D. Preiss 1987, M. Cúth, M. Fabian 2017] Let be a Banach space and $f : X \to \mathbb{R}$ a function. Then there exists a rich family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$,

[D. Preiss 1987, M. Cúth, M. Fabian 2017] Let be a Banach space and $f : X \to \mathbb{R}$ a function. Then there exists a rich family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$,

f is Fréchet (sub)differentiable at x if (and only if) the restriction $f_{|Y}$ is Fréchet (sub)differentiable at x.

[D. Preiss 1987, M. Cúth, M. Fabian 2017] Let be a Banach space and $f : X \to \mathbb{R}$ a function. Then there exists a rich family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$,

f is Fréchet (sub)differentiable at x if (and only if) the restriction $f_{|Y}$ is Fréchet (sub)differentiable at x.

Fréchet subdifferentiabily := the "lower half" of Fréchet differentiability

[D. Preiss 1987, M. Cúth, M. Fabian 2017] Let be a Banach space and $f : X \to \mathbb{R}$ a function. Then there exists a rich family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$,

f is Fréchet (sub)differentiable at x if (and only if) the restriction $f_{|Y}$ is Fréchet (sub)differentiable at x.

Fréchet subdifferentiabily := the "lower half" of Fréchet differentiability

For convex functions the proof goes back to D. Gregory in 1970.

[D. Preiss 1987, M. Cúth, M. Fabian 2017] Let be a Banach space and $f : X \to \mathbb{R}$ a function. Then there exists a rich family $\mathcal{R} \subset \mathcal{S}(X)$ such that, given any $Y \in \mathcal{R}$ and any $x \in Y$,

f is Fréchet (sub)differentiable at x if (and only if) the restriction $f_{|Y}$ is Fréchet (sub)differentiable at x.

Fréchet subdifferentiabily := the "lower half" of Fréchet differentiability

For convex functions the proof goes back to D. Gregory in 1970.

Warning. The separable reduction does not work for Gateaux differentiability —take a nowhere Gateaux differentiable norm on $\ell_{\infty}(\Gamma)$.

伺 とく ヨ とく ヨ と

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund,

A 10

.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection

- 4 B b 4 B b

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

Proof.

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

Proof. (i) \Rightarrow (ii) profits from a long bow of ideas across half a century:

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Heinrich-Mankiewicz87, Sims-Yost87, Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].

ヘロト ヘ戸ト ヘヨト ・

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Heinrich-Mankiewicz87, Sims-Yost87, Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].

 $(ii) \Rightarrow (iii)$ is very easy;

イロト イ押ト イヨト イヨト

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Heinrich-Mankiewicz87, Sims-Yost87, Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].

(ii) \Rightarrow (iii) is very easy; just take $(\Gamma, \leq) := (\mathcal{A}, ``\subset'')$.

イロト イ押ト イヨト イヨト

For a Banach space $(X, \|\cdot\|)$ the following assertions are mutually equivalent:

(i) X is Asplund, that is, for every $Z \in S(X)$ the dual Z^* is separable.

(ii) There exists a rich family $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{A}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjection and an isometry as well.

(iii) X^* admits a projectional skeleton ($P_s : s \in \Gamma$) such that $\bigcup \{P_s^* X^{**} : s \in \Gamma\} \supset X$.

The concept of projectional skeleton will be explained soon.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century: [Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972, John-Zizler74, Gul'ko79, Jayne-Rogers85, Heinrich-Mankiewicz87, Sims-Yost87, Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].

(ii) \Rightarrow (iii) is very easy; just take $(\Gamma, \leq) := (\mathcal{A}. ``\subset'')$.

 $(iii) \Rightarrow (i)$ is quite easy.

くロ とく得 とくほ とくほ とう

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta+1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.;

• • = • • = •

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \le \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \ne \omega \implies \bigcup_{\beta < \alpha} P_{\beta+1}X = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.; in particular for WCG spaces.

N 4 B N 4 B N

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta+1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.; in particular for WCG spaces.

Definition. A projectional skeleton (PS) [W. Kubiś 2009] in $(X, \|\cdot\|)$ is a family of linear bounded projections $(P_s : s \in \Gamma)$ on X, indexed by a partially ordered, up-directed, and σ -complete set (Γ, \leq) , such that

伺下 イヨト イヨト

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \leq \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \neq \omega \implies \bigcup_{\beta < \alpha} P_{\beta+1}X = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.; in particular for WCG spaces.

Definition. A projectional skeleton (PS) [W. Kubiś 2009] in $(X, \|\cdot\|)$ is a family of linear bounded projections $(P_s : s \in \Gamma)$ on X, indexed by a partially ordered, up-directed, and σ -complete set (Γ, \leq) , such that

(i) $P_s X$ is separable for every $s \in \Gamma$,

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \le \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \ne \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta+1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.; in particular for WCG spaces.

Definition. A projectional skeleton (PS) [W. Kubiś 2009] in $(X, \|\cdot\|)$ is a family of linear bounded projections $(P_s : s \in \Gamma)$ on X, indexed by a partially ordered, up-directed, and σ -complete set (Γ, \leq) , such that

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,

(ii)
$$X = \bigcup_{s \in \Gamma} P_s X$$
,

伺下 イヨト イヨト

Definition.

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \le \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \ne \omega \implies \overline{\bigcup_{\beta < \alpha} P_{\beta+1}X} = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.; in particular for WCG spaces.

Definition. A projectional skeleton (PS) [W. Kubiś 2009] in $(X, \|\cdot\|)$ is a family of linear bounded projections $(P_s : s \in \Gamma)$ on X, indexed by a partially ordered, up-directed, and σ -complete set (Γ, \leq) , such that

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,

(ii)
$$X = \bigcup_{s \in \Gamma} P_s X$$
,

(iii) $P_t \circ P_s = P_s \circ P_t$ whenever $s, t \in \Gamma$ and $s \leq t$, and

ヘロト ヘ帰ト ヘヨト ヘヨト

Definition.

A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965] on a Banach space $(X, \|\cdot\|)$ is a family $(P_{\alpha} : \omega \le \alpha \le \text{dens } X)$ of linear bounded projections on X such that $P_{\omega} = 0$, $P_{\text{dens } X}$ is the identity mapping, and for all $\omega \le \alpha \le \text{dens } X$ the following hold:

(i)
$$||P_{\alpha}|| = 1$$
 and dens $P_{\alpha}X \le \alpha$,
(ii) $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha} = P_{\alpha}$ whenever $\beta \in [\omega, \alpha]$, and
(iii) $\alpha \ne \omega \implies \bigcup_{\beta < \alpha} P_{\beta+1}X = P_{\alpha}X$.

PRI proved to be a very efficient tool, in particular for constructing an injection of X into $c_0(\text{dens }X)$, Markuševič bases, LUR renormings, etc.; in particular for WCG spaces.

Definition. A projectional skeleton (PS) [W. Kubiś 2009] in $(X, \|\cdot\|)$ is a family of linear bounded projections $(P_s : s \in \Gamma)$ on X, indexed by a partially ordered, up-directed, and σ -complete set (Γ, \leq) , such that

(i)
$$P_s X$$
 is separable for every $s \in \Gamma$,

(ii)
$$X = \bigcup_{s \in \Gamma} P_s X$$
,
(iii) $P_t \circ P_s = P_s = P_s \circ P_t$ whenever $s, t \in \Gamma$ and $s \le t$, and
(iv) If $s_1 < s_2 < \cdots$ in Γ , then $P_{\sup_{n \in \mathbb{N}} s_n} X = \bigcup_{n \in \mathbb{N}} P_{s_n} X$.
Return back to Theorem 2

If X admits a 1-projectional skeleton, then:

(i) X admits a PRI,

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and
- (iv) X admits admits an equivalent LUR norm (modulo S. Troyanski's and V. Zizler's theorems).

If X admits a 1-projectional skeleton, then:

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and
- (iv) X admits admits an equivalent LUR norm (modulo S. Troyanski's and V. Zizler's theorems).

Remark. No analogous statements for PRI exist!

If X admits a 1-projectional skeleton, then:

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and
- (iv) X admits admits an equivalent LUR norm (modulo S. Troyanski's and V. Zizler's theorems).

Remark. No analogous statements for PRI exist!

Fact. If dens $X = \omega_1$, every PRI is automatically a 1-projectional skeleton,

If X admits a 1-projectional skeleton, then:

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and
- (iv) X admits admits an equivalent LUR norm (modulo S. Troyanski's and V. Zizler's theorems).

Remark. No analogous statements for PRI exist!

Fact. If dens $X = \omega_1$, every PRI is automatically a 1-projectional skeleton,

and whenever $(P_s : s \in \Gamma)$ is a 1-projectional skeleton on X, there is a $\Gamma' \subset \Gamma$ homomorphic to $[\omega, \omega_1)$ such that $\{P_s : s \in \Gamma'\} \cup \{\operatorname{Id}_X\}$ is a PRI on X.

A (10) A (10) A (10) A

If X admits a 1-projectional skeleton, then:

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and
- (iv) X admits admits an equivalent LUR norm (modulo S. Troyanski's and V. Zizler's theorems).

Remark. No analogous statements for PRI exist!

Fact. If dens $X = \omega_1$, every PRI is automatically a 1-projectional skeleton, and whenever ($P_s : s \in \Gamma$) is a 1-projectional skeleton on X, there is a $\Gamma' \subset \Gamma$ homomorphic to $[\omega, \omega_1)$ such that $\{P_s : s \in \Gamma'\} \cup \{Id_X\}$ is a PRI on X.

What does Γ usually look like?

・ 戸 ト ・ ヨ ト ・ ヨ ト

If X admits a 1-projectional skeleton, then:

- (i) X admits a PRI,
- (ii) There exists a linear bounded injection from X into $c_0(\text{dens } X)$,
- (iii) X admits a Markuševič basis, and
- (iv) X admits admits an equivalent LUR norm (modulo S. Troyanski's and V. Zizler's theorems).

Remark. No analogous statements for PRI exist!

Fact. If dens $X = \omega_1$, every PRI is automatically a 1-projectional skeleton, and whenever $(P_s : s \in \Gamma)$ is a 1-projectional skeleton on X, there is a $\Gamma' \subset \Gamma$ homomorphic to $[\omega, \omega_1)$ such that $\{P_s : s \in \Gamma'\} \cup \{Id_X\}$ is a PRI on X.

What does Γ usually look like? Frequently they are rich families (see Theorem 2)

ヘロト 人間 とくほ とくほ とう

イロト イボト イヨト イヨト

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp $_M x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp_M $x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

e.g. C(K), where K is a Corson compact with "property M"

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp $_M x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

e.g. C(K), where K is a Corson compact with "property M"

Pličko if there is a linearly dense set $M \subset X$ such that the set *D* of all $x^* \in X^*$, with supp_M x^* countable, is "norming".

「ア・キョン・キョン」

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact and linearly dense subset;

e.g. separable, reflexive, C(K), with K Eberlein compact, $L_1(\mu)$, with $\mu \sigma$ -finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set $M \subset X$ such that every $x^* \in X^*$ has the *M*-support supp $_M x^* := \{m \in M : x^*(m) \neq 0\}$ at most countable;

e.g. C(K), where K is a Corson compact with "property M"

Pličko if there is a linearly dense set $M \subset X$ such that the set *D* of all $x^* \in X^*$, with supp_M x^* countable, is "norming".

e.g. $L_1(\mu)$, with any σ -additive measure μ , duals to C^* algebras, order continuous lattices, C(G), with G a compact abelian group, and preduals of semifinite von Neumann algebras; see [O. Kalenda 2008].

ヘロト ヘ戸ト ヘヨト ・

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Proof. (i) \Rightarrow (ii) X Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... (see Theorem 2)

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Proof. (i) \Rightarrow (ii) X Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... (see Theorem 2)

X WCG, using projectional generators, yields another rich family, say $\mathcal{W} \subset S_{\Box}(X \times X^*)$, such that ...

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Proof. (i) \Rightarrow (ii) X Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... (see Theorem 2)

X WCG, using projectional generators, yields another rich family, say $\mathcal{W} \subset S_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{AW} := \mathcal{A} \cap \mathcal{W}$.

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... (see Theorem 2) *X* WCG, using projectional generators, yields another rich family, say $\mathcal{W} \subset \mathcal{S}_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$. (ii) \Rightarrow (iii) Put $\Gamma := \mathcal{A}\mathcal{W}$,

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... (see Theorem 2) *X* WCG, using projectional generators, yields another rich family, say $\mathcal{W} \subset \mathcal{S}_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{A}\mathcal{W} := \mathcal{A} \cap \mathcal{W}$. (ii) \Rightarrow (iii) Put $\Gamma := \mathcal{A}\mathcal{W}$, and endow it by the order " \subset ".

Let $(X, \|\cdot\|)$ be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set $M \subset X$ that countably supports all $x^* \in X^*$ and a rich family $\mathcal{AW} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that for every $V \times Y \in \mathcal{AW}$ the assignment $Y \ni x^* \longmapsto x^*|_V \in V^*$ is a surjective isometry, that $V^{\perp} \cap \overline{Y}^{w^*} = \{0\}$, and that $M \setminus V \subset Y_{\perp}$.

(iii) There exists a (commutative) projectional skeleton ($Q_s : s \in \Gamma$) on X such that ($Q_s^* : s \in \Gamma$) is a projectional skeleton on X^{*}.

Proof. (i) \Rightarrow (ii) *X* Asplund yields an $\mathcal{A} \subset \mathcal{S}_{\Box}(X \times X^*)$ such that ... (see Theorem 2)

X WCG, using projectional generators, yields another rich family, say $\mathcal{W} \subset S_{\Box}(X \times X^*)$, such that ... Put then $\mathcal{AW} := \mathcal{A} \cap \mathcal{W}$.

(ii) \Rightarrow (iii) Put $\Gamma := AW$, and endow it by the order " \subset ".

(iii) \Rightarrow (i) Needs a longer but not deep work (via transfinite induction).

イロト イ押ト イヨト イヨト

Theorem 5 (W. Kubiś 2009)

Let $r \ge 0$ be given. A real or complex Banach space is r-Pličko if and only if

Theorem 5 (W. Kubiś 2009)

Let $r \ge 0$ be given. A real or complex Banach space is r-Pličko if and only if it admits an r-skeleton ($P_{\gamma} : \gamma \in \Gamma$) which is moreover commutative, i.e., $P_{\gamma} \circ P_{\delta} = P_{\delta} \circ P_{\gamma}$ whenever $\gamma, \delta \in \Gamma$.

Theorem 5 (W. Kubiś 2009)

Let $r \geq 0$ be given. A real or complex Banach space is r-Pličko if and only if it admits an r-skeleton ($P_{\gamma} : \gamma \in \Gamma$) which is moreover commutative, i.e., $P_{\gamma} \circ P_{\delta} = P_{\delta} \circ P_{\gamma}$ whenever $\gamma, \delta \in \Gamma$.

For the proof of necessity we (M. Cúth and I) have an elementary argument (i.e., without using instruments from logic).

.

Theorem 5 (W. Kubiś 2009)

Let $r \geq 0$ be given. A real or complex Banach space is r-Pličko if and only if it admits an r-skeleton ($P_{\gamma} : \gamma \in \Gamma$) which is moreover commutative, i.e., $P_{\gamma} \circ P_{\delta} = P_{\delta} \circ P_{\gamma}$ whenever $\gamma, \delta \in \Gamma$.

For the proof of necessity we (M. Cúth and I) have an elementary argument (i.e., without using instruments from logic).

(The proof of sufficiency did not need any "logic" argument.)

直 マイド・・ ママ

Theorem 6 (M. Fabian-V. Montesionos 2018) For a Banach space $(X, \|\cdot\|)$ TFAE:

Theorem 6 (M. Fabian-V. Montesionos 2018) For a Banach space $(X, \|\cdot\|)$ TFAE:

(i) X is WCG.

.

Theorem 6 (M. Fabian-V. Montesionos 2018)

For a Banach space $(X, \|\cdot\|)$ TFAE:

- (i) X is WCG.
- (ii) There exist a bounded closed symmetric convex and linearly dense set A ⊂ X, and a (commutative 1-) projectional skeleton (P_γ : γ ∈ Γ) on (X, || · ||) (with ⋃_{γ∈Γ} P^{*}_γX* = X*), which is moreover A-shrinking and satisfies P_γ(A) ⊂ A for every γ ∈ Γ.

Theorem 6 (M. Fabian-V. Montesionos 2018)

For a Banach space $(X, \|\cdot\|)$ TFAE:

- (i) X is WCG.
- (ii) There exist a bounded closed symmetric convex and linearly dense set A ⊂ X, and a (commutative 1-) projectional skeleton (P_γ : γ ∈ Γ) on (X, || · ||) (with ⋃_{γ∈Γ} P^{*}_γX^{*} = X^{*}), which is moreover A-shrinking and satisfies P_γ(A) ⊂ A for every γ ∈ Γ.

Similarly, we can characterize the classes of weakly \mathcal{K} -analytic spaces and of Vašák (i.e. WCD) spaces, see [C. Correa, M. Cúth, J. Somaglia 2022].

Theorem 6 (M. Fabian-V. Montesionos 2018)

For a Banach space $(X, \|\cdot\|)$ TFAE:

- (i) X is WCG.
- (ii) There exist a bounded closed symmetric convex and linearly dense set A ⊂ X, and a (commutative 1-) projectional skeleton (P_γ : γ ∈ Γ) on (X, || · ||) (with ⋃_{γ∈Γ} P^{*}_γX^{*} = X^{*}), which is moreover A-shrinking and satisfies P_γ(A) ⊂ A for every γ ∈ Γ.

Similarly, we can characterize the classes of weakly \mathcal{K} -analytic spaces and of Vašák (i.e. WCD) spaces, see [C. Correa, M. Cúth, J. Somaglia 2022].

Question (W. Kubiś). To characterize Banach spaces which are simultaneously Asplund and 1-Pličko via suitable projectional skeletons.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Let X be a Banach space admitting a countable family $\mathfrak{s}_1, \mathfrak{s}_2, \cdots$ of projectional skeletons.

- 4 B b 4 B b

Let X be a Banach space admitting a countable family $\mathfrak{s}_1, \mathfrak{s}_2, \cdots$ of projectional skeletons.

Then there exists a simple projectional skeleton $(P_{\gamma})_{\gamma \in \Gamma}$ (i.e., Γ is a rich family in X and $P_{\gamma}X = \gamma$ for every $\gamma \in \Gamma$) which is isomorphic to a subskeleton of \mathfrak{s}_i for every $i \in \mathbb{N}$.

Let X be a Banach space admitting a countable family $\mathfrak{s}_1, \mathfrak{s}_2, \cdots$ of projectional skeletons.

Then there exists a simple projectional skeleton $(P_{\gamma})_{\gamma \in \Gamma}$ (i.e., Γ is a rich family in X and $P_{\gamma}X = \gamma$ for every $\gamma \in \Gamma$) which is isomorphic to a subskeleton of \mathfrak{s}_i for every $i \in \mathbb{N}$.

The proof is done using elementary submodels from logic.

Let X be a Banach space admitting a countable family $\mathfrak{s}_1, \mathfrak{s}_2, \cdots$ of projectional skeletons.

Then there exists a simple projectional skeleton $(P_{\gamma})_{\gamma \in \Gamma}$ (i.e., Γ is a rich family in X and $P_{\gamma}X = \gamma$ for every $\gamma \in \Gamma$) which is isomorphic to a subskeleton of \mathfrak{s}_i for every $i \in \mathbb{N}$.

The proof is done using elementary submodels from logic. I would like to see an elementary proof of the above.

References

M. Cúth, M. Fabian, *Projections in duals to Asplund spaces made without Simons' lemma, Proc. Amer. Math. Soc.* **143(1)**(2015), 301–308.

M. Cúth, M. Fabian, Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability, J. Fuctional Analysis **270**, Issue 4, (2016), 1361–1378.

M. Cúth, M. Fabian, *Rich families and projectional skeletons in Asplund WCG spaces*, J. Math. Anal. Appl. **448**, (2017), 1618–1632.

References

M. Cúth, M. Fabian, *Projections in duals to Asplund spaces made without Simons' lemma, Proc. Amer. Math. Soc.* **143(1)**(2015), 301–308.

M. Cúth, M. Fabian, Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability, J. Fuctional Analysis **270**, Issue 4, (2016), 1361–1378.

M. Cúth, M. Fabian, *Rich families and projectional skeletons in Asplund WCG spaces*, J. Math. Anal. Appl. **448**, (2017), 1618–1632.

M. Fabian, V. Montesinos, *WCG spaces and their subspaces grasped by projectional skeletons;* Functiones et Approximatio **59** (2018), No. 2, 231–250;

O. Kalenda, *Natural examples of Valdivia compact spaces*, JMAA **340** (2008), 81–101.

W. Kubiś, *Banach spaces with projectional skeletons*, JMAA **350** (2009), 758–776.

ヘロト 人間 とくほ とくほ とう

THANK YOU FOR YOUR ATTENTION

イロト イポト イヨト イヨト

э

THANK YOU FOR YOUR ATTENTION

Slava Ukrajine Slava Ukrajine