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Let X be a non-separable metric space, let S(X ) be the family of all
separable subspaces, and let f : X → R be a function.

Kindergarten separable reduction (SR):

Given any x ∈ X , there is x ∈ Y ∈ S(X ) such that
f is continuous at x if (and only if) restriction f|Y is continuous at x .

Advanced SR:
There exists a cofinal, even rich, family R ⊂ S(X ) such that,
given any Y ∈ R and any x ∈ Y ,
f is continuous at x if (and only if) restriction f|Y is continuous at x .

Definition [J. Borwein W. Moors 2001] A family R ⊂ S(X ) is called
rich if it is cofinal (i.e., ∀Z ∈ S(X ) ∃Y ∈ R with Y ⊃ Z )
and σ-closed (if Y1 ⊂ Y2 ⊂ · · · are in R, then Y1 ∪ Y2 ∪ · · · ∈ R).

Proof: Put R := {Y ∈ S(X ) : diamf (B(x , r) ∩ Y ) = diamf (B(x , r)) for
every x ∈ Y and every r > 0}.

Homework. Prove that if R1,R2, . . . are rich then R1 ∩R2 ∩ . . . is rich.
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Mari án Fabian Separable reductions, rich families, and projectional skeletons in non-separable Banach spaces



Let X be a non-separable metric space, let S(X ) be the family of all
separable subspaces, and let f : X → R be a function.

Kindergarten separable reduction (SR):

Given any x ∈ X , there is x ∈ Y ∈ S(X ) such that
f is continuous at x if (and only if) restriction f|Y is continuous at x .

Advanced SR:
There exists a cofinal, even rich, family R ⊂ S(X ) such that,
given any Y ∈ R and any x ∈ Y ,
f is continuous at x if (and only if) restriction f|Y is continuous at x .

Definition [J. Borwein W. Moors 2001] A family R ⊂ S(X ) is called
rich if it is cofinal (i.e., ∀Z ∈ S(X ) ∃Y ∈ R with Y ⊃ Z )
and σ-closed (if Y1 ⊂ Y2 ⊂ · · · are in R, then Y1 ∪ Y2 ∪ · · · ∈ R).

Proof: Put R := {Y ∈ S(X ) : diamf (B(x , r) ∩ Y ) = diamf (B(x , r)) for
every x ∈ Y and every r > 0}.

Homework. Prove that if R1,R2, . . . are rich then R1 ∩R2 ∩ . . . is rich.
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Proposition 1
[D. Preiss 1987, M. Ćuth, M. Fabian 2017]Let be a Banach space and
f : X → R a function. Then there exists a rich family R ⊂ S(X ) such
that, given any Y ∈ R and any x ∈ Y ,

f is Fréchet (sub)differentiable at x if (and only if) the restriction f|Y is
Fréchet (sub)differentiable at x.

Fréchet subdifferentiabily := the “lower half” of Fréchet differentiability

For convex functions the proof goes back to D. Gregory in 1970.

Warning. The separable reduction does not work for Gateaux
differentiability —take a nowhere Gateaux differentiable norm on
`∞(Γ).
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[D. Preiss 1987, M. Ćuth, M. Fabian 2017]Let be a Banach space and
f : X → R a function. Then there exists a rich family R ⊂ S(X ) such
that, given any Y ∈ R and any x ∈ Y ,
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Theorem 2 (Cúth-Fabian 2017)
For a Banach space (X , ‖ · ‖) the following assertions are mutually
equivalent:

(i) X is Asplund, that is, for every Z ∈ S(X ) the dual Z ∗ is separable.

(ii) There exists a rich family A ⊂ S<=(X × X ∗) such that
for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjection and an isometry as well.

(iii) X∗ admits a projectional skeleton (Ps : s ∈ Γ) such that⋃
{Ps

∗X ∗∗ : s ∈ Γ
}
⊃ X.

The concept of projectional skeleton will be explained soon.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century:
[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972,
John-Zizler74, Gul’ko79, Jayne-Rogers85, Heinrich-Mankiewicz87,
Sims-Yost87,Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].

(ii)⇒(iii) is very easy; just take (Γ,≤) := (A.“ ⊂′′).

(iii)⇒(i) is quite easy.
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Theorem 2 (Cúth-Fabian 2017)
For a Banach space (X , ‖ · ‖) the following assertions are mutually
equivalent:

(i) X is Asplund, that is, for every Z ∈ S(X ) the dual Z ∗ is separable.

(ii) There exists a rich family A ⊂ S<=(X × X ∗) such that
for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjection and an isometry as well.

(iii) X∗ admits a projectional skeleton (Ps : s ∈ Γ) such that⋃
{Ps

∗X ∗∗ : s ∈ Γ
}
⊃ X.

The concept of projectional skeleton will be explained soon.

Proof. (i)⇒(ii) profits from a long bow of ideas across half a century:
[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972,
John-Zizler74, Gul’ko79, Jayne-Rogers85, Heinrich-Mankiewicz87,
Sims-Yost87,Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].
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for every V × Y ∈ A the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗

is a surjection and an isometry as well.

(iii) X∗ admits a projectional skeleton (Ps : s ∈ Γ) such that⋃
{Ps

∗X ∗∗ : s ∈ Γ
}
⊃ X.

The concept of projectional skeleton will be explained soon.

Proof.

(i)⇒(ii) profits from a long bow of ideas across half a century:
[Lindenstrauss65, Amir-Lindenstrauss68, Tacon70, Simons 1972,
John-Zizler74, Gul’ko79, Jayne-Rogers85, Heinrich-Mankiewicz87,
Sims-Yost87,Fabian-Godefroy88, Stegall94, Cúth-Fabian15,17].

(ii)⇒(iii) is very easy; just take (Γ,≤) := (A.“ ⊂′′).

(iii)⇒(i) is quite easy.
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Definition.
A projectional resolution of the identity (PRI) [J. Lindenstrauss 1965]
on a Banach space (X , ‖ · ‖) is a family (Pα : ω ≤ α ≤ densX ) of
linear bounded projections on X such that Pω = 0, P densX is the
identity mapping, and for all ω ≤ α ≤ densX the following hold:

(i) ‖Pα‖ = 1 and densPαX ≤ α,
(ii) Pα ◦ Pβ = Pβ ◦ Pα = Pα whenever β ∈ [ω, α], and

(iii) α 6= ω =⇒
⋃

β<α Pβ+1X = PαX .
PRI proved to be a very efficient tool, in particular for constructing an
injection of X into c0( densX ), Markuševič bases, LUR renormings,
etc.;

in particular for WCG spaces.

Definition. A projectional skeleton (PS) [W. Kubiś 2009] in (X , ‖ · ‖) is
a family of linear bounded projections

(
Ps : s ∈ Γ

)
on X , indexed by a

partially ordered, up-directed, and σ-complete set (Γ,≤), such that
(i) PsX is separable for every s ∈ Γ,
(ii) X =

⋃
s∈Γ PsX ,

(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s ≤ t , and
(iv) If s1 < s2 < · · · in Γ, then Psupn∈N sn X =

⋃
n∈N Psn X .

Return back to Theorem 2
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a family of linear bounded projections

(
Ps : s ∈ Γ

)
on X , indexed by a

partially ordered, up-directed, and σ-complete set (Γ,≤), such that

(i) PsX is separable for every s ∈ Γ,
(ii) X =

⋃
s∈Γ PsX ,

(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s ≤ t , and
(iv) If s1 < s2 < · · · in Γ, then Psupn∈N sn X =

⋃
n∈N Psn X .

Return back to Theorem 2
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a family of linear bounded projections

(
Ps : s ∈ Γ

)
on X , indexed by a

partially ordered, up-directed, and σ-complete set (Γ,≤), such that
(i) PsX is separable for every s ∈ Γ,
(ii) X =

⋃
s∈Γ PsX ,

(iii) Pt ◦ Ps = Ps = Ps ◦ Pt whenever s, t ∈ Γ and s ≤ t , and
(iv) If s1 < s2 < · · · in Γ, then Psupn∈N sn X =

⋃
n∈N Psn X .

Return back to Theorem 2
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Theorem 3 (W. Kubiś 2009)
If X admits a 1-projectional skeleton, then:

(i) X admits a PRI,

(ii) There exists a linear bounded injection from X into c0( densX ),

(iii) X admits a Markuševič basis, and

(iv) X admits admits an equivalent LUR norm (modulo S. Troyanski’s
and V. Zizler’s theorems).

Remark. No analogous statements for PRI exist!

Fact. If densX = ω1, every PRI is automatically a 1-projectional
skeleton,
and whenever (Ps : s ∈ Γ) is a 1-projectional skeleton on X , there is
a Γ′ ⊂ Γ homomorphic to [ω, ω1) such that {Ps : s ∈ Γ′} ∪ {IdX} is a
PRI on X .

What does Γ usually look like? Frequently they are rich families (see
Theorem 2)
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(iv) X admits admits an equivalent LUR norm (modulo S. Troyanski’s
and V. Zizler’s theorems).

Remark. No analogous statements for PRI exist!

Fact. If densX = ω1, every PRI is automatically a 1-projectional
skeleton,
and whenever (Ps : s ∈ Γ) is a 1-projectional skeleton on X , there is
a Γ′ ⊂ Γ homomorphic to [ω, ω1) such that {Ps : s ∈ Γ′} ∪ {IdX} is a
PRI on X .

What does Γ usually look like? Frequently they are rich families (see
Theorem 2)
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WCG SPACES AND THEIR OVERCLASSES

A Banach space X is called

weakly compactly generated (WCG) if it admits a weakly compact
and linearly dense subset;
e.g. separable, reflexive, C(K ), with K Eberlein compact, L1(µ), with
µ σ-finite,...

weakly Lindelöf determined (WLD) if there is a linearly dense set
M ⊂ X such that every x∗ ∈ X ∗ has the M-support
suppM x∗ := {m ∈ M : x∗(m) 6= 0} at most countable;

e.g. C(K ), where K is a Corson compact with “property M”

Pličko if there is a linearly dense set M ⊂ X such that the set D of all
x∗ ∈ X ∗, with suppM x∗ countable, is “norming”.

e.g. L1(µ), with any σ-additive measure µ, duals to C∗ algebras,
order continuous lattices, C(G), with G a compact abelian group, and
preduals of semifinite von Neumann algebras; see [O. Kalenda 2008].
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Theorem 4 (Cúth-Fabian 2017)
Let (X , ‖ · ‖) be a real or complex Banach space. TFAE:

(i) X is simultaneously Asplund and WCG.

(ii) There exist a linearly dense set M ⊂ X that countably supports all
x∗ ∈ X ∗ and a rich family AW ⊂ S<=(X × X ∗) such that for every
V × Y ∈ AW the assignment Y 3 x∗ 7−→ x∗|V ∈ V ∗ is a surjective

isometry, that V⊥ ∩ Y
w∗

= {0}, and that M \ V ⊂ Y⊥.

(iii) There exists a (commutative) projectional skeleton (Qs : s ∈ Γ)
on X such that (Qs

∗ : s ∈ Γ) is a projectional skeleton on X∗.

Proof. (i)⇒(ii) X Asplund yields an A ⊂ S<=(X ×X ∗) such that ... (see
Theorem 2)
X WCG, using projectional generators, yields another rich family, say
W ⊂ S<=(X × X ∗), such that ... Put then AW := A ∩W.
(ii)⇒(iii) Put Γ := AW, and endow it by the order “⊂”.
(iii)⇒(i) Needs a longer but not deep work (via transfinite induction).
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Using elementary submodels from logic, we have

Theorem 5 (W. Kubiś 2009)
Let r ≥ 0 be given. A real or complex Banach space is r -Pličko if and
only if

it admits an r-skeleton (Pγ : γ ∈ Γ) which is moreover
commutative , i.e., Pγ ◦ Pδ = Pδ ◦ Pγ whenever γ, δ ∈ Γ.

For the proof of necessity we (M. Cúth and I) have an elementary
argument (i.e., without using instruments from logic).

(The proof of sufficiency did not need any “logic” argument.)
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Theorem 6 (M. Fabian-V. Montesionos 2018)
For a Banach space (X , ‖ · ‖) TFAE:

(i) X is WCG.

(ii) There exist a bounded closed symmetric convex and linearly
dense set A ⊂ X, and a (commutative 1-) projectional skeleton
(Pγ : γ ∈ Γ) on (X , ‖ · ‖) (with

⋃
γ∈Γ P∗

γX ∗ = X ∗), which is
moreover A-shrinking and satisfies Pγ(A) ⊂ A for every γ ∈ Γ.

Similarly, we can characterize the classes of weakly K-analytic
spaces and of Vašák (i.e. WCD) spaces, see [C. Correa, M. Cúth, J.
Somaglia 2022].

Question (W. Kubiś). To characterize Banach spaces which are
simultaneously Asplund and 1-Pličko via suitable projectional
skeletons.
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Question (W. Kubiś). To characterize Banach spaces which are
simultaneously Asplund and 1-Pličko via suitable projectional
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Mari án Fabian Separable reductions, rich families, and projectional skeletons in non-separable Banach spaces



Theorem 6 (M. Fabian-V. Montesionos 2018)
For a Banach space (X , ‖ · ‖) TFAE:

(i) X is WCG.

(ii) There exist a bounded closed symmetric convex and linearly
dense set A ⊂ X, and a (commutative 1-) projectional skeleton
(Pγ : γ ∈ Γ) on (X , ‖ · ‖) (with

⋃
γ∈Γ P∗

γX ∗ = X ∗), which is
moreover A-shrinking and satisfies Pγ(A) ⊂ A for every γ ∈ Γ.

Similarly, we can characterize the classes of weakly K-analytic
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Question (W. Kubiś). To characterize Banach spaces which are
simultaneously Asplund and 1-Pličko via suitable projectional
skeletons.
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Theorem 7 (C. Correa, M. Cúth, J. Somaglia 2022)
Let X be a Banach space admitting a countable family s1, s2, · · · of
projectional skeletons.

Then there exists a simple projectional skeleton (Pγ)γ∈Γ (i.e., Γ is a
rich family in X and PγX = γ for every γ ∈ Γ) which is isomorphic to a
subskeleton of si for every i ∈ N.

The proof is done using elementary submodels from logic. I would
like to see an elementary proof of the above.
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