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Retracts and absolute retracts

▶ A subspace Y of a topological space Z is said to be a retract
of Z if there is a continuous mapping f : Z → Y such that
f (y) = y for every y ∈ Y .

▶ A metrizable compact space X is said to be an absolute
retract (AR) provided that for every homeomorphic
embedding f of X into a metrizable compact space Z , the
image of f is a retract of Z .

▶ A metrizable compact space X is an AR if and only if it is
homeomorphic to a retract of the Hilbert cube Q = [0, 1]N.

▶ Every AR is a locally connected continuum.

▶ Borsuk: A locally connected continuum X ⊆ R2 is an AR if
and only if R2 \ X is connected.
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Planar continua and their boundaries

▶ By the domain invariance theorem, for any n ∈ N and any two
closed sets A,B ⊆ Rn, if A is homeomorphic to B, then ∂A is
homeomorphic to ∂B.

▶ The converse is not true: the closed unit ball in Rn is not
homeomorphic to the unit sphere in Rn, even though their
boundaries are homeomorphic.

▶ Trivially, if A,B ⊆ R1 are continua such that ∂A is
homeomorphic to ∂B, then A is homeomorphic to B.

▶ In R2, this is not true anymore (consider the closed unit disc
and the unit circle).

▶ Dudák, Vejnar: If X1,X2 ⊆ R2 are ARs such that ∂X1 is
homeomorphic to ∂X2, then X1 is homeomorphic to X2.
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Sketch of the proof

▶ Let h : ∂X1 → ∂X2 be a homeomorphism.

▶ For every simple closed curve C ⊆ R2, denote by ins(C ) the
bounded component of R2 \ C .

▶ For each i ∈ {1, 2}, let Si be the family of all simple closed
curves contained in ∂Xi .

▶ For every C ∈ S1, denote Ĉ = h[C ]. Then the mapping
C 7→ Ĉ is a bijection between S1 and S2.

▶ It can be shown that for each i ∈ {1, 2}, the family
{ins(C );C ∈ Si} ∪ {∂Xi} is a partition of Xi .

▶ For every C ∈ S1, there is a homeomorphism
gC : C ∪ ins(C ) → Ĉ ∪ ins(Ĉ ) extending h ↾C .

▶ Define a mapping f : X1 → X2 by f (x) = h(x) for x ∈ ∂X1

and by f (x) = gC (x) for x ∈ ins(C ), C ∈ S1.

▶ It can be shown that f is a homeomorphism.
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Polish and standard Borel spaces

▶ A Polish space is a separable completely metrizable
topological space.

▶ If X is a topological space, we denote by Borel(X ) the
smallest σ-algebra on X containing every open subset of X .
Elements of Borel(X ) are referred to as Borel subsets of X .

▶ A standard Borel space is a measurable space which is
isomorphic to (X ,Borel(X )) for some Polish space X .

▶ Fact: If X is a Polish space and B is a Borel subset of X , then
B equipped with the σ-algebra {A ⊆ B ; A ∈ Borel(X )} is a
standard Borel space.
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Borel reductions

▶ Let X , Y be standard Borel spaces and let E , F be
equivalence relations on X , Y respectively.

▶ A mapping φ : X → Y is said to be a Borel reduction from E
to F provided that φ is measurable and

∀ x1, x2 ∈ X : (x1, x2) ∈ E ⇐⇒
(
φ(x1), φ(x2)

)
∈ F .

▶ We say that E is Borel reducible to F if there is a Borel
reduction from E to F . If this is the case, we write E≤BF .

▶ If both E≤BF and F≤BE hold true, we say that E is Borel
bireducible with F .

▶ Many important equivalence relations (ERs) in mathematics
can be naturally represented by ERs on suitable standard Borel
spaces. The notion of Borel reducibility can then be applied.
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Examples of known results

▶ Gromov: The isometry ER of compact metric spaces is Borel
bireducible with the identity relation on R.

▶ Gao: The isomorphism ER of countable graphs (or countable
linear orders) is Borel bireducible with the homeomorphism ER
of compact sets in R.

▶ The works of Melleray and Zielinski imply that the
homeomorphism ER of metrizable compact spaces is Borel
bireducible with the isometry ER of separable Banach spaces.

▶ Ferenczi, Louveau, Rosendal: The isomorphism ER of
separable Banach spaces is Borel bireducible with the
universal analytic ER.
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Countable structures

▶ An equivalence relation E on a standard Borel space is said to
be classifiable by countable structures if there is a countable
relation language L such that E is Borel reducible to the
isomorphism ER of L-structures whose underlying set is N.

▶ Becker, Kechris: Let S∞ be the symmetric group on N. An
equivalence relation E on a standard Borel space X is
classifiable by countable structures if and only if there is a
standard Borel space Y and a Borel measurable action φ of
S∞ on Y such that E is Borel reducible to the orbit ER
induced by φ.

▶ Chang, Gao: Let n ∈ N. Then the homeomorphism ER of
compact sets in Rn is classifiable by countable structures if
and only if n = 1.



Countable structures

▶ An equivalence relation E on a standard Borel space is said to
be classifiable by countable structures if there is a countable
relation language L such that E is Borel reducible to the
isomorphism ER of L-structures whose underlying set is N.

▶ Becker, Kechris: Let S∞ be the symmetric group on N. An
equivalence relation E on a standard Borel space X is
classifiable by countable structures if and only if there is a
standard Borel space Y and a Borel measurable action φ of
S∞ on Y such that E is Borel reducible to the orbit ER
induced by φ.

▶ Chang, Gao: Let n ∈ N. Then the homeomorphism ER of
compact sets in Rn is classifiable by countable structures if
and only if n = 1.



Countable structures

▶ An equivalence relation E on a standard Borel space is said to
be classifiable by countable structures if there is a countable
relation language L such that E is Borel reducible to the
isomorphism ER of L-structures whose underlying set is N.

▶ Becker, Kechris: Let S∞ be the symmetric group on N. An
equivalence relation E on a standard Borel space X is
classifiable by countable structures if and only if there is a
standard Borel space Y and a Borel measurable action φ of
S∞ on Y such that E is Borel reducible to the orbit ER
induced by φ.

▶ Chang, Gao: Let n ∈ N. Then the homeomorphism ER of
compact sets in Rn is classifiable by countable structures if
and only if n = 1.



The homeomorphism ER of absolute retracts

▶ Krupski, Vejnar: The homeomorphism ER of ARs is Borel
bireducible with the homeomorphism ER of metrizable
compact spaces. In particular, it is not classifiable by
countable structures.

▶ Krupski, Vejnar: The homeomorphism ER of metrizable
rim-finite continua is classifiable by countable structures.

▶ Back to ARs in R2: Kuratowski has shown that if X ⊆ R2 is
an AR, then ∂X is a rim-finite continuum.

▶ Thus, knowing that planar ARs are homeomorphic if and only
if their boundaries are homeomorphic, we obtain the following:

▶ Dudák, Vejnar: The homeomorphism ER of ARs in R2 is
classifiable by countable structures.
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Thank you for your attention.


