Planar absolute retracts and countable structures

Jan Dudák

Charles University in Prague

TOPOSYM 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping f: Z → Y such that f(y) = y for every y ∈ Y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping f: Z → Y such that f(y) = y for every y ∈ Y.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping f: Z → Y such that f(y) = y for every y ∈ Y.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.
- A metrizable compact space X is an AR if and only if it is homeomorphic to a retract of the Hilbert cube Q = [0, 1]^ℕ.

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping f: Z → Y such that f(y) = y for every y ∈ Y.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.
- A metrizable compact space X is an AR if and only if it is homeomorphic to a retract of the Hilbert cube Q = [0, 1]^ℕ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Every AR is a locally connected continuum.

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping f: Z → Y such that f(y) = y for every y ∈ Y.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.
- A metrizable compact space X is an AR if and only if it is homeomorphic to a retract of the Hilbert cube Q = [0, 1]^ℕ.
- Every AR is a locally connected continuum.
- Borsuk: A locally connected continuum X ⊆ ℝ² is an AR if and only if ℝ² \ X is connected.

By the domain invariance theorem, for any n ∈ N and any two closed sets A, B ⊆ ℝⁿ, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

By the domain invariance theorem, for any n ∈ N and any two closed sets A, B ⊆ ℝⁿ, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► The converse is not true: the closed unit ball in ℝⁿ is not homeomorphic to the unit sphere in ℝⁿ, even though their boundaries are homeomorphic.

By the domain invariance theorem, for any n ∈ N and any two closed sets A, B ⊆ ℝⁿ, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.

- ► The converse is not true: the closed unit ball in ℝⁿ is not homeomorphic to the unit sphere in ℝⁿ, even though their boundaries are homeomorphic.
- ▶ Trivially, if $A, B \subseteq \mathbb{R}^1$ are continua such that ∂A is homeomorphic to ∂B , then A is homeomorphic to B.

- By the domain invariance theorem, for any n ∈ N and any two closed sets A, B ⊆ ℝⁿ, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.
- ► The converse is not true: the closed unit ball in ℝⁿ is not homeomorphic to the unit sphere in ℝⁿ, even though their boundaries are homeomorphic.
- ▶ Trivially, if $A, B \subseteq \mathbb{R}^1$ are continual such that ∂A is homeomorphic to ∂B , then A is homeomorphic to B.
- In ℝ², this is not true anymore (consider the closed unit disc and the unit circle).

- By the domain invariance theorem, for any n ∈ N and any two closed sets A, B ⊆ ℝⁿ, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.
- ► The converse is not true: the closed unit ball in ℝⁿ is not homeomorphic to the unit sphere in ℝⁿ, even though their boundaries are homeomorphic.
- ▶ Trivially, if $A, B \subseteq \mathbb{R}^1$ are continual such that ∂A is homeomorphic to ∂B , then A is homeomorphic to B.
- In ℝ², this is not true anymore (consider the closed unit disc and the unit circle).
- Dudák, Vejnar: If X₁, X₂ ⊆ ℝ² are ARs such that ∂X₁ is homeomorphic to ∂X₂, then X₁ is homeomorphic to X₂.

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

For every simple closed curve C ⊆ ℝ², denote by ins(C) the bounded component of ℝ² \ C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.
- For every simple closed curve C ⊆ R², denote by ins(C) the bounded component of R² \ C.
- For each i ∈ {1,2}, let S_i be the family of all simple closed curves contained in ∂X_i.

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

- For every simple closed curve C ⊆ R², denote by ins(C) the bounded component of R² \ C.
- For each i ∈ {1,2}, let S_i be the family of all simple closed curves contained in ∂X_i.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For every $C \in S_1$, denote $\widehat{C} = h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between S_1 and S_2 .

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

- For every simple closed curve C ⊆ R², denote by ins(C) the bounded component of R² \ C.
- For each i ∈ {1,2}, let S_i be the family of all simple closed curves contained in ∂X_i.

- For every $C \in S_1$, denote $\widehat{C} = h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between S_1 and S_2 .
- ▶ It can be shown that for each $i \in \{1, 2\}$, the family $\{ins(C); C \in S_i\} \cup \{\partial X_i\}$ is a partition of X_i .

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

- For every simple closed curve C ⊆ R², denote by ins(C) the bounded component of R² \ C.
- For each i ∈ {1,2}, let S_i be the family of all simple closed curves contained in ∂X_i.

- For every C ∈ S₁, denote C
 = h[C]. Then the mapping C → C
 is a bijection between S₁ and S₂.
- ▶ It can be shown that for each $i \in \{1, 2\}$, the family $\{ins(C); C \in S_i\} \cup \{\partial X_i\}$ is a partition of X_i .
- For every $C \in S_1$, there is a homeomorphism $g_C \colon C \cup \operatorname{ins}(C) \to \widehat{C} \cup \operatorname{ins}(\widehat{C})$ extending $h \upharpoonright_C$.

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

- For every simple closed curve C ⊆ R², denote by ins(C) the bounded component of R² \ C.
- For each i ∈ {1,2}, let S_i be the family of all simple closed curves contained in ∂X_i.
- For every C ∈ S₁, denote C
 = h[C]. Then the mapping C → C
 is a bijection between S₁ and S₂.
- ▶ It can be shown that for each $i \in \{1, 2\}$, the family $\{ins(C); C \in S_i\} \cup \{\partial X_i\}$ is a partition of X_i .
- For every C ∈ S₁, there is a homeomorphism g_C: C ∪ ins(C) → C ∪ ins(C) extending h ↾_C.
- Define a mapping $f: X_1 \to X_2$ by f(x) = h(x) for $x \in \partial X_1$ and by $f(x) = g_C(x)$ for $x \in ins(C)$, $C \in S_1$.

• Let $h: \partial X_1 \to \partial X_2$ be a homeomorphism.

- For every simple closed curve C ⊆ R², denote by ins(C) the bounded component of R² \ C.
- For each i ∈ {1,2}, let S_i be the family of all simple closed curves contained in ∂X_i.
- For every C ∈ S₁, denote C
 = h[C]. Then the mapping C → C
 is a bijection between S₁ and S₂.
- ▶ It can be shown that for each $i \in \{1, 2\}$, the family $\{ins(C); C \in S_i\} \cup \{\partial X_i\}$ is a partition of X_i .
- For every C ∈ S₁, there is a homeomorphism g_C: C ∪ ins(C) → C ∪ ins(C) extending h ↾_C.
- Define a mapping $f: X_1 \to X_2$ by f(x) = h(x) for $x \in \partial X_1$ and by $f(x) = g_C(x)$ for $x \in ins(C)$, $C \in S_1$.
- It can be shown that f is a homeomorphism.

 A Polish space is a separable completely metrizable topological space.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 A Polish space is a separable completely metrizable topological space.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- A Polish space is a separable completely metrizable topological space.
- If X is a topological space, we denote by Borel(X) the smallest σ-algebra on X containing every open subset of X.
 Elements of Borel(X) are referred to as Borel subsets of X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A Polish space is a separable completely metrizable topological space.
- If X is a topological space, we denote by Borel(X) the smallest σ-algebra on X containing every open subset of X.
 Elements of Borel(X) are referred to as Borel subsets of X.

A standard Borel space is a measurable space which is isomorphic to (X, Borel(X)) for some Polish space X.

- A Polish space is a separable completely metrizable topological space.
- If X is a topological space, we denote by Borel(X) the smallest σ-algebra on X containing every open subset of X.
 Elements of Borel(X) are referred to as Borel subsets of X.
- A standard Borel space is a measurable space which is isomorphic to (X, Borel(X)) for some Polish space X.
- Fact: If X is a Polish space and B is a Borel subset of X, then B equipped with the σ-algebra {A ⊆ B; A ∈ Borel(X)} is a standard Borel space.

Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping φ: X → Y is said to be a Borel reduction from E to F provided that φ is measurable and

$$\forall x_1, x_2 \in X : (x_1, x_2) \in E \iff (\varphi(x_1), \varphi(x_2)) \in F.$$

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping φ: X → Y is said to be a Borel reduction from E to F provided that φ is measurable and

$$\forall x_1, x_2 \in X : (x_1, x_2) \in E \iff (\varphi(x_1), \varphi(x_2)) \in F.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We say that E is Borel reducible to F if there is a Borel reduction from E to F. If this is the case, we write E≤_BF.

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping φ: X → Y is said to be a Borel reduction from E to F provided that φ is measurable and

$$\forall x_1, x_2 \in X : (x_1, x_2) \in E \iff (\varphi(x_1), \varphi(x_2)) \in F.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- We say that E is Borel reducible to F if there is a Borel reduction from E to F. If this is the case, we write E≤_BF.
- If both E≤_BF and F≤_BE hold true, we say that E is Borel bireducible with F.

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping φ: X → Y is said to be a Borel reduction from E to F provided that φ is measurable and

$$\forall x_1, x_2 \in X : (x_1, x_2) \in E \iff (\varphi(x_1), \varphi(x_2)) \in F.$$

- We say that E is Borel reducible to F if there is a Borel reduction from E to F. If this is the case, we write E≤_BF.
- If both E≤_BF and F≤_BE hold true, we say that E is Borel bireducible with F.
- Many important equivalence relations (ERs) in mathematics can be naturally represented by ERs on suitable standard Borel spaces. The notion of Borel reducibility can then be applied.

► Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on ℝ.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ► Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on ℝ.
- ► Gao: The isomorphism ER of countable graphs (or countable linear orders) is Borel bireducible with the homeomorphism ER of compact sets in ℝ.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ► Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on ℝ.
- ► Gao: The isomorphism ER of countable graphs (or countable linear orders) is Borel bireducible with the homeomorphism ER of compact sets in ℝ.
- The works of Melleray and Zielinski imply that the homeomorphism ER of metrizable compact spaces is Borel bireducible with the isometry ER of separable Banach spaces.

- ► Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on ℝ.
- ► Gao: The isomorphism ER of countable graphs (or countable linear orders) is Borel bireducible with the homeomorphism ER of compact sets in ℝ.
- The works of Melleray and Zielinski imply that the homeomorphism ER of metrizable compact spaces is Borel bireducible with the isometry ER of separable Banach spaces.

Ferenczi, Louveau, Rosendal: The isomorphism ER of separable Banach spaces is Borel bireducible with the universal analytic ER.

Countable structures

An equivalence relation E on a standard Borel space is said to be classifiable by countable structures if there is a countable relation language L such that E is Borel reducible to the isomorphism ER of L-structures whose underlying set is N.

Countable structures

- An equivalence relation E on a standard Borel space is said to be classifiable by countable structures if there is a countable relation language L such that E is Borel reducible to the isomorphism ER of L-structures whose underlying set is N.
- Becker, Kechris: Let S_∞ be the symmetric group on N. An equivalence relation E on a standard Borel space X is classifiable by countable structures if and only if there is a standard Borel space Y and a Borel measurable action φ of S_∞ on Y such that E is Borel reducible to the orbit ER induced by φ.

Countable structures

- An equivalence relation E on a standard Borel space is said to be classifiable by countable structures if there is a countable relation language L such that E is Borel reducible to the isomorphism ER of L-structures whose underlying set is N.
- Becker, Kechris: Let S_∞ be the symmetric group on N. An equivalence relation E on a standard Borel space X is classifiable by countable structures if and only if there is a standard Borel space Y and a Borel measurable action φ of S_∞ on Y such that E is Borel reducible to the orbit ER induced by φ.
- Chang, Gao: Let n ∈ N. Then the homeomorphism ER of compact sets in Rⁿ is classifiable by countable structures if and only if n = 1.

Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.
- Back to ARs in ℝ²: Kuratowski has shown that if X ⊆ ℝ² is an AR, then ∂X is a rim-finite continuum.

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.
- Back to ARs in ℝ²: Kuratowski has shown that if X ⊆ ℝ² is an AR, then ∂X is a rim-finite continuum.
- Thus, knowing that planar ARs are homeomorphic if and only if their boundaries are homeomorphic, we obtain the following:

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.
- Back to ARs in ℝ²: Kuratowski has shown that if X ⊆ ℝ² is an AR, then ∂X is a rim-finite continuum.
- Thus, knowing that planar ARs are homeomorphic if and only if their boundaries are homeomorphic, we obtain the following:
- ▶ Dudák, Vejnar: The homeomorphism ER of ARs in ℝ² is classifiable by countable structures.

▶ Dudák, Vejnar: The homeomorphism ER of ARs in ℝ³ is not classifiable by countable structures.

- ▶ Dudák, Vejnar: The homeomorphism ER of ARs in ℝ³ is not classifiable by countable structures.
- ▶ Dudák, Vejnar: The homeomorphism ER of locally connected continua in ℝ² is not classifiable by countable structures.

- ▶ Dudák, Vejnar: The homeomorphism ER of ARs in ℝ³ is not classifiable by countable structures.
- ▶ Dudák, Vejnar: The homeomorphism ER of locally connected continua in ℝ² is not classifiable by countable structures.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Question 1: Is the homeomorphism ER of absolute neighborhood retracts in ℝ² classifiable by countable structures?

- ▶ Dudák, Vejnar: The homeomorphism ER of ARs in ℝ³ is not classifiable by countable structures.
- ▶ Dudák, Vejnar: The homeomorphism ER of locally connected continua in ℝ² is not classifiable by countable structures.

- ► Question 1: Is the homeomorphism ER of absolute neighborhood retracts in ℝ² classifiable by countable structures?
- ► Question 2: Is it true that the homeomorphism ER of compact sets in ℝ² is strictly less complex than the homeomorphism ER of metrizable compact spaces?

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?