Planar absolute retracts and countable structures

Jan Dudák
Charles University in Prague

TOPOSYM 2022

Retracts and absolute retracts

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping $f: Z \rightarrow Y$ such that $f(y)=y$ for every $y \in Y$.

Retracts and absolute retracts

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping $f: Z \rightarrow Y$ such that $f(y)=y$ for every $y \in Y$.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.

Retracts and absolute retracts

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping $f: Z \rightarrow Y$ such that $f(y)=y$ for every $y \in Y$.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.
- A metrizable compact space X is an AR if and only if it is homeomorphic to a retract of the Hilbert cube $Q=[0,1]^{\mathbb{N}}$.

Retracts and absolute retracts

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping $f: Z \rightarrow Y$ such that $f(y)=y$ for every $y \in Y$.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.
- A metrizable compact space X is an AR if and only if it is homeomorphic to a retract of the Hilbert cube $Q=[0,1]^{\mathbb{N}}$.
- Every AR is a locally connected continuum.

Retracts and absolute retracts

- A subspace Y of a topological space Z is said to be a retract of Z if there is a continuous mapping $f: Z \rightarrow Y$ such that $f(y)=y$ for every $y \in Y$.
- A metrizable compact space X is said to be an absolute retract (AR) provided that for every homeomorphic embedding f of X into a metrizable compact space Z, the image of f is a retract of Z.
- A metrizable compact space X is an AR if and only if it is homeomorphic to a retract of the Hilbert cube $Q=[0,1]^{\mathbb{N}}$.
- Every AR is a locally connected continuum.
- Borsuk: A locally connected continuum $X \subseteq \mathbb{R}^{2}$ is an AR if and only if $\mathbb{R}^{2} \backslash X$ is connected.

Planar continua and their boundaries

- By the domain invariance theorem, for any $n \in \mathbb{N}$ and any two closed sets $A, B \subseteq \mathbb{R}^{n}$, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.

Planar continua and their boundaries

- By the domain invariance theorem, for any $n \in \mathbb{N}$ and any two closed sets $A, B \subseteq \mathbb{R}^{n}$, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.
- The converse is not true: the closed unit ball in \mathbb{R}^{n} is not homeomorphic to the unit sphere in \mathbb{R}^{n}, even though their boundaries are homeomorphic.

Planar continua and their boundaries

- By the domain invariance theorem, for any $n \in \mathbb{N}$ and any two closed sets $A, B \subseteq \mathbb{R}^{n}$, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.
- The converse is not true: the closed unit ball in \mathbb{R}^{n} is not homeomorphic to the unit sphere in \mathbb{R}^{n}, even though their boundaries are homeomorphic.
- Trivially, if $A, B \subseteq \mathbb{R}^{1}$ are continua such that ∂A is homeomorphic to ∂B, then A is homeomorphic to B.

Planar continua and their boundaries

- By the domain invariance theorem, for any $n \in \mathbb{N}$ and any two closed sets $A, B \subseteq \mathbb{R}^{n}$, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.
- The converse is not true: the closed unit ball in \mathbb{R}^{n} is not homeomorphic to the unit sphere in \mathbb{R}^{n}, even though their boundaries are homeomorphic.
- Trivially, if $A, B \subseteq \mathbb{R}^{1}$ are continua such that ∂A is homeomorphic to ∂B, then A is homeomorphic to B.
- In \mathbb{R}^{2}, this is not true anymore (consider the closed unit disc and the unit circle).

Planar continua and their boundaries

- By the domain invariance theorem, for any $n \in \mathbb{N}$ and any two closed sets $A, B \subseteq \mathbb{R}^{n}$, if A is homeomorphic to B, then ∂A is homeomorphic to ∂B.
- The converse is not true: the closed unit ball in \mathbb{R}^{n} is not homeomorphic to the unit sphere in \mathbb{R}^{n}, even though their boundaries are homeomorphic.
- Trivially, if $A, B \subseteq \mathbb{R}^{1}$ are continua such that ∂A is homeomorphic to ∂B, then A is homeomorphic to B.
- In \mathbb{R}^{2}, this is not true anymore (consider the closed unit disc and the unit circle).
- Dudák, Vejnar: If $X_{1}, X_{2} \subseteq \mathbb{R}^{2}$ are ARs such that ∂X_{1} is homeomorphic to ∂X_{2}, then X_{1} is homeomorphic to X_{2}.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.
- For each $i \in\{1,2\}$, let \mathcal{S}_{i} be the family of all simple closed curves contained in ∂X_{i}.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.
- For each $i \in\{1,2\}$, let \mathcal{S}_{i} be the family of all simple closed curves contained in ∂X_{i}.
- For every $C \in \mathcal{S}_{1}$, denote $\widehat{C}=h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between \mathcal{S}_{1} and \mathcal{S}_{2}.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.
- For each $i \in\{1,2\}$, let \mathcal{S}_{i} be the family of all simple closed curves contained in ∂X_{i}.
- For every $C \in \mathcal{S}_{1}$, denote $\widehat{C}=h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between \mathcal{S}_{1} and \mathcal{S}_{2}.
- It can be shown that for each $i \in\{1,2\}$, the family $\left\{\operatorname{ins}(C) ; C \in \mathcal{S}_{i}\right\} \cup\left\{\partial X_{i}\right\}$ is a partition of X_{i}.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.
- For each $i \in\{1,2\}$, let \mathcal{S}_{i} be the family of all simple closed curves contained in ∂X_{i}.
- For every $C \in \mathcal{S}_{1}$, denote $\widehat{C}=h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between \mathcal{S}_{1} and \mathcal{S}_{2}.
- It can be shown that for each $i \in\{1,2\}$, the family $\left\{\operatorname{ins}(C) ; C \in \mathcal{S}_{i}\right\} \cup\left\{\partial X_{i}\right\}$ is a partition of X_{i}.
- For every $C \in \mathcal{S}_{1}$, there is a homeomorphism $g_{C}: C \cup \operatorname{ins}(C) \rightarrow \widehat{C} \cup \operatorname{ins}(\widehat{C})$ extending $h \upharpoonright c$.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.
- For each $i \in\{1,2\}$, let \mathcal{S}_{i} be the family of all simple closed curves contained in ∂X_{i}.
- For every $C \in \mathcal{S}_{1}$, denote $\widehat{C}=h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between \mathcal{S}_{1} and \mathcal{S}_{2}.
- It can be shown that for each $i \in\{1,2\}$, the family $\left\{\operatorname{ins}(C) ; C \in \mathcal{S}_{i}\right\} \cup\left\{\partial X_{i}\right\}$ is a partition of X_{i}.
- For every $C \in \mathcal{S}_{1}$, there is a homeomorphism $g_{C}: C \cup \operatorname{ins}(C) \rightarrow \widehat{C} \cup \operatorname{ins}(\widehat{C})$ extending $h \upharpoonright c$.
- Define a mapping $f: X_{1} \rightarrow X_{2}$ by $f(x)=h(x)$ for $x \in \partial X_{1}$ and by $f(x)=g_{C}(x)$ for $x \in \operatorname{ins}(C), C \in \mathcal{S}_{1}$.

Sketch of the proof

- Let $h: \partial X_{1} \rightarrow \partial X_{2}$ be a homeomorphism.
- For every simple closed curve $C \subseteq \mathbb{R}^{2}$, denote by ins (C) the bounded component of $\mathbb{R}^{2} \backslash C$.
- For each $i \in\{1,2\}$, let \mathcal{S}_{i} be the family of all simple closed curves contained in ∂X_{i}.
- For every $C \in \mathcal{S}_{1}$, denote $\widehat{C}=h[C]$. Then the mapping $C \mapsto \widehat{C}$ is a bijection between \mathcal{S}_{1} and \mathcal{S}_{2}.
- It can be shown that for each $i \in\{1,2\}$, the family $\left\{\operatorname{ins}(C) ; C \in \mathcal{S}_{i}\right\} \cup\left\{\partial X_{i}\right\}$ is a partition of X_{i}.
- For every $C \in \mathcal{S}_{1}$, there is a homeomorphism $g_{C}: C \cup \operatorname{ins}(C) \rightarrow \widehat{C} \cup \operatorname{ins}(\widehat{C})$ extending $h \upharpoonright c$.
- Define a mapping $f: X_{1} \rightarrow X_{2}$ by $f(x)=h(x)$ for $x \in \partial X_{1}$ and by $f(x)=g_{C}(x)$ for $x \in \operatorname{ins}(C), C \in \mathcal{S}_{1}$.
- It can be shown that f is a homeomorphism.

Polish and standard Borel spaces

- A Polish space is a separable completely metrizable topological space.

Polish and standard Borel spaces

- A Polish space is a separable completely metrizable topological space.

Polish and standard Borel spaces

- A Polish space is a separable completely metrizable topological space.
- If X is a topological space, we denote by $\operatorname{Borel}(X)$ the smallest σ-algebra on X containing every open subset of X. Elements of $\operatorname{Borel}(X)$ are referred to as Borel subsets of X.

Polish and standard Borel spaces

- A Polish space is a separable completely metrizable topological space.
- If X is a topological space, we denote by $\operatorname{Borel}(X)$ the smallest σ-algebra on X containing every open subset of X. Elements of $\operatorname{Borel}(X)$ are referred to as Borel subsets of X.
- A standard Borel space is a measurable space which is isomorphic to $(X, \operatorname{Borel}(X))$ for some Polish space X.

Polish and standard Borel spaces

- A Polish space is a separable completely metrizable topological space.
- If X is a topological space, we denote by $\operatorname{Borel}(X)$ the smallest σ-algebra on X containing every open subset of X. Elements of $\operatorname{Borel}(X)$ are referred to as Borel subsets of X.
- A standard Borel space is a measurable space which is isomorphic to $(X, \operatorname{Borel}(X))$ for some Polish space X.
- Fact: If X is a Polish space and B is a Borel subset of X, then B equipped with the σ-algebra $\{A \subseteq B ; A \in \operatorname{Borel}(X)\}$ is a standard Borel space.

Borel reductions

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.

Borel reductions

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping $\varphi: X \rightarrow Y$ is said to be a Borel reduction from E to F provided that φ is measurable and

$$
\forall x_{1}, x_{2} \in X:\left(x_{1}, x_{2}\right) \in E \Longleftrightarrow\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) \in F
$$

Borel reductions

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping $\varphi: X \rightarrow Y$ is said to be a Borel reduction from E to F provided that φ is measurable and

$$
\forall x_{1}, x_{2} \in X:\left(x_{1}, x_{2}\right) \in E \Longleftrightarrow\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) \in F
$$

- We say that E is Borel reducible to F if there is a Borel reduction from E to F. If this is the case, we write $E \leq_{B} F$.

Borel reductions

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping $\varphi: X \rightarrow Y$ is said to be a Borel reduction from E to F provided that φ is measurable and

$$
\forall x_{1}, x_{2} \in X:\left(x_{1}, x_{2}\right) \in E \Longleftrightarrow\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) \in F
$$

- We say that E is Borel reducible to F if there is a Borel reduction from E to F. If this is the case, we write $E \leq_{B} F$.
- If both $E \leq_{B} F$ and $F \leq_{B} E$ hold true, we say that E is Borel bireducible with F.

Borel reductions

- Let X, Y be standard Borel spaces and let E, F be equivalence relations on X, Y respectively.
- A mapping $\varphi: X \rightarrow Y$ is said to be a Borel reduction from E to F provided that φ is measurable and

$$
\forall x_{1}, x_{2} \in X:\left(x_{1}, x_{2}\right) \in E \Longleftrightarrow\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) \in F
$$

- We say that E is Borel reducible to F if there is a Borel reduction from E to F. If this is the case, we write $E \leq_{B} F$.
- If both $E \leq_{B} F$ and $F \leq_{B} E$ hold true, we say that E is Borel bireducible with F.
- Many important equivalence relations (ERs) in mathematics can be naturally represented by ERs on suitable standard Borel spaces. The notion of Borel reducibility can then be applied.

Examples of known results

- Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on \mathbb{R}.

Examples of known results

- Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on \mathbb{R}.
- Gao: The isomorphism ER of countable graphs (or countable linear orders) is Borel bireducible with the homeomorphism ER of compact sets in \mathbb{R}.

Examples of known results

- Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on \mathbb{R}.
- Gao: The isomorphism ER of countable graphs (or countable linear orders) is Borel bireducible with the homeomorphism ER of compact sets in \mathbb{R}.
- The works of Melleray and Zielinski imply that the homeomorphism ER of metrizable compact spaces is Borel bireducible with the isometry ER of separable Banach spaces.

Examples of known results

- Gromov: The isometry ER of compact metric spaces is Borel bireducible with the identity relation on \mathbb{R}.
- Gao: The isomorphism ER of countable graphs (or countable linear orders) is Borel bireducible with the homeomorphism ER of compact sets in \mathbb{R}.
- The works of Melleray and Zielinski imply that the homeomorphism ER of metrizable compact spaces is Borel bireducible with the isometry ER of separable Banach spaces.
- Ferenczi, Louveau, Rosendal: The isomorphism ER of separable Banach spaces is Borel bireducible with the universal analytic ER.

Countable structures

- An equivalence relation E on a standard Borel space is said to be classifiable by countable structures if there is a countable relation language \mathcal{L} such that E is Borel reducible to the isomorphism ER of \mathcal{L}-structures whose underlying set is \mathbb{N}.

Countable structures

- An equivalence relation E on a standard Borel space is said to be classifiable by countable structures if there is a countable relation language \mathcal{L} such that E is Borel reducible to the isomorphism ER of \mathcal{L}-structures whose underlying set is \mathbb{N}.
- Becker, Kechris: Let S_{∞} be the symmetric group on \mathbb{N}. An equivalence relation E on a standard Borel space X is classifiable by countable structures if and only if there is a standard Borel space Y and a Borel measurable action φ of S_{∞} on Y such that E is Borel reducible to the orbit ER induced by φ.

Countable structures

- An equivalence relation E on a standard Borel space is said to be classifiable by countable structures if there is a countable relation language \mathcal{L} such that E is Borel reducible to the isomorphism ER of \mathcal{L}-structures whose underlying set is \mathbb{N}.
- Becker, Kechris: Let S_{∞} be the symmetric group on \mathbb{N}. An equivalence relation E on a standard Borel space X is classifiable by countable structures if and only if there is a standard Borel space Y and a Borel measurable action φ of S_{∞} on Y such that E is Borel reducible to the orbit ER induced by φ.
- Chang, Gao: Let $n \in \mathbb{N}$. Then the homeomorphism ER of compact sets in \mathbb{R}^{n} is classifiable by countable structures if and only if $n=1$.

The homeomorphism ER of absolute retracts

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.

The homeomorphism ER of absolute retracts

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.

The homeomorphism ER of absolute retracts

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.
- Back to ARs in \mathbb{R}^{2} : Kuratowski has shown that if $X \subseteq \mathbb{R}^{2}$ is an $A R$, then ∂X is a rim-finite continuum.

The homeomorphism ER of absolute retracts

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.
- Back to ARs in \mathbb{R}^{2} : Kuratowski has shown that if $X \subseteq \mathbb{R}^{2}$ is an $A R$, then ∂X is a rim-finite continuum.
- Thus, knowing that planar ARs are homeomorphic if and only if their boundaries are homeomorphic, we obtain the following:

The homeomorphism ER of absolute retracts

- Krupski, Vejnar: The homeomorphism ER of ARs is Borel bireducible with the homeomorphism ER of metrizable compact spaces. In particular, it is not classifiable by countable structures.
- Krupski, Vejnar: The homeomorphism ER of metrizable rim-finite continua is classifiable by countable structures.
- Back to ARs in \mathbb{R}^{2} : Kuratowski has shown that if $X \subseteq \mathbb{R}^{2}$ is an $A R$, then ∂X is a rim-finite continuum.
- Thus, knowing that planar ARs are homeomorphic if and only if their boundaries are homeomorphic, we obtain the following:
- Dudák, Vejnar: The homeomorphism ER of ARs in \mathbb{R}^{2} is classifiable by countable structures.

Non-classification results and open problems

- Dudák, Vejnar: The homeomorphism ER of ARs in \mathbb{R}^{3} is not classifiable by countable structures.

Non-classification results and open problems

- Dudák, Vejnar: The homeomorphism ER of ARs in \mathbb{R}^{3} is not classifiable by countable structures.
- Dudák, Vejnar: The homeomorphism ER of locally connected continua in \mathbb{R}^{2} is not classifiable by countable structures.

Non-classification results and open problems

- Dudák, Vejnar: The homeomorphism ER of ARs in \mathbb{R}^{3} is not classifiable by countable structures.
- Dudák, Vejnar: The homeomorphism ER of locally connected continua in \mathbb{R}^{2} is not classifiable by countable structures.
- Question 1: Is the homeomorphism ER of absolute neighborhood retracts in \mathbb{R}^{2} classifiable by countable structures?

Non-classification results and open problems

- Dudák, Vejnar: The homeomorphism ER of ARs in \mathbb{R}^{3} is not classifiable by countable structures.
- Dudák, Vejnar: The homeomorphism ER of locally connected continua in \mathbb{R}^{2} is not classifiable by countable structures.
- Question 1: Is the homeomorphism ER of absolute neighborhood retracts in \mathbb{R}^{2} classifiable by countable structures?
- Question 2: Is it true that the homeomorphism ER of compact sets in \mathbb{R}^{2} is strictly less complex than the homeomorphism ER of metrizable compact spaces?

Thank you for your attention.

