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Higson compactification

DEFINITION. If (X ,d) is a metric space, and f : X → R is a
bounded continuous function, we say that f is slowly
oscillating if

lim
x→∞

diam(f (Br (x))) = 0

for any fixed r and x tending to infinity in X , i.e.
d(x , x0)→∞ for some x0 ∈ X .

The Higson compactification X of X is the smallest one
containing X densely so that all bounded slowly oscillating
functions extend to X .
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Higson compactification

Let Ch be the set of all bounded slowly oscillating functions.
Then the Higson compactification of X can be obtained by
taking the closure of the image of the embedding

(f )f∈Ch : X →
∏

f∈Ch

[inf (f ), sup(f )] ∼= ICh .

The Higson compactification is similar to the Stone-Čech.
On the other hand, Z \ Z = R \ R but βZ \ Z 6= βR \ R.
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Higson Conjecture

Higson Conjecture. For the universal covering X of a
closed aspherical manifold M given the lifted from M metric
satisfies,

Ȟ i(X ) = 0 for i > 0.

A manifold is called aspherical if its universal covering is
contractible.
Example: n-torus is aspherical, the universal covering is
Rn.

A. Dranishnikov Universities of Florida

Embedding of Higson compactification



Higson Conjecture

Higson Conjecture. For the universal covering X of a
closed aspherical manifold M given the lifted from M metric
satisfies,

Ȟ i(X ) = 0 for i > 0.

A manifold is called aspherical if its universal covering is
contractible.
Example: n-torus is aspherical, the universal covering is
Rn.

A. Dranishnikov Universities of Florida

Embedding of Higson compactification



Higson Conjecture

Higson Conjecture. For the universal covering X of a
closed aspherical manifold M given the lifted from M metric
satisfies,
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Relation to Novikov conjecture

Assembly map: α : K∗(Bπ)→ K∗(Crπ)

Analytic Novikov conjecture: α is a monomorphism.
Baum-Connes conjecture: α is an isomorphism.
Coarse assembly map: A : K lf

∗ (Eπ)→ K∗(C∗Roe(Eπ)).
Coarse Baum-Connes conjecture: A is an isomorphism.
Coarse Novikov conjecture: A is monomorphism.
Coarse Baum-Connes implies Analytic Novikov.
Coarse Novikov implies Gromov-Lawson conjecture.
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Coarse assembly map

There is a commutative triangle

K∗(X , νX )
A //

∂ &&

K∗(C∗Roe(X ))

ww
K∗−1(νX )

.

where νX is the Higson corona: X = X ∪ νX .
Thus, if ∂ is injective, then A is injective.
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Relation to Novikov conjecture

The exact sequence of the pair (X , νX ) implies that if X̄ is
acyclic, then ∂ is an isomorphism.

Thus, the Higson conjecture implies the Coarse Novikov.
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Higson conjecture for 1-cohomology

Theorem. (Keesling) Ȟ1(X ) 6= 0 for any connected
unbounded metric space X.

Recall that Ȟ1(X ) = [X ,S1].

For X = R a nontrivial class is given by f : R→ S1 with
decaying variation, f (t) = exp(2πi

√
t). Then f̄ : R→ S1

cannot have a lift (
√

t is unbounded).
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Theorem. (Keesling) Ȟ1(X ) 6= 0 for any connected
unbounded metric space X.

Recall that Ȟ1(X ) = [X ,S1].

For X = R a nontrivial class is given by f : R→ S1 with
decaying variation, f (t) = exp(2πi

√
t). Then f̄ : R→ S1

cannot have a lift (
√

t is unbounded).

A. Dranishnikov Universities of Florida

Embedding of Higson compactification



Higson conjecture for 1-cohomology
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Main Result

Theorem 1.(Dr.-Keesling)

(Dr.-Keesling) Every simply connected proper geodesic metric
space X admits an embedding of its Higson compactification
into the product of adelic solenoids

F : X̄ →
∏
A

Σ∞

that induces an isomorphism of 1-dimensional Čech
cohomology.
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Solenoids

The p-adic solenoid Σp is the inverse limit:

Σp = lim
←
{S1 p← S1 p← S1 ← · · · }

of unit circles S1 ⊂ C where the bonding maps are z 7→ zp.
The universal cover R→ S1 lifts to an injective group
homomorphism R→ Σp.
The kernel of Σp → S1 is the group of p-adic integers Ap.
Note that Ap ∩ R = Z.
Clearly, Σp = (R× Ap)/Z for the diagonal embedding
Z→ R× Ap.
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Solenoids

The adelic solenoid can be defined as

Σ∞ = (R× Ẑ)/Z

where Ẑ is the profinite completion of the integers and
Z→ R× Ẑ is the diagonal map.
All the properties of p-adic solenoids hold for Σ∞.
Additionally, Ȟ1(Σ∞;Zp) = 0 for all p.
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Corollary.

For simply connected proper geodesic metric space X ,

Ȟ1(X ;Zp) = 0

for all p.
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Higson conjecture mod p

Mod p Higson Conjecture. Ȟ i(X ;Zp) = 0 for i > 0 for the
universal coverings X of aspherical manifolds.

The above Corollary states that the mod 2 Higson
conjecture holds true for i = 1.

By a theorem of Calder and Siegel, the mod p Higson
conjecture holds for the Stone-Čech compactification.

A. Dranishnikov Universities of Florida

Embedding of Higson compactification



Higson conjecture mod p
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Higson conjecture mod p

Theorem (Dr.-Ferry-Weinberger)

The mod 2 Higson conjecture for X = EΓ implies the Novikov
conjecture for the group Γ.

Here EΓ is the universal covering of the classifying space
BΓ = K (Γ,1).
Note that for Γ = π1(M) in case of an aspherical n-manifold
M, the space EΓ× R is homeomorphic to Rn+1.
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Satellite Results

Theorem 2.

For each discrete group Γ with finite complex BΓ there is a
Γ-equivariant embedding of the Higson compactification of EΓ
into the product of adelic solenoids

F : EΓ→
∏

Σ∞

that induces an epimorphism of the integral 1-dimensional
Čech cohomology.
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Satellite Results

Theorem 3.

For any p every simply connected proper geodesic metric
space X admits an embedding of its Higson compactification
into the product of p-adic solenoids

F : X̄ →
∏
A

Σp

that induces a rational isomorphism of 1-cohomology.
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Essential embedding into the product

We call a map f : X → Z essential if every map g : X → Z
homotopic to f is surjective.
We call a subset X ⊂

∏
Zα essential if its projection on

each factor pα : X → Zα is essential.
Corollary of Main Resut: For any p every simply connected
proper geodesic metric space X admits an essential
embedding of its Higson compactification into a product of
p-adic solenoids.
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Knaster Continua

We define a continuum Kp = Σp/ ∼ to be the quotient
space under the identification x ∼ −x .
A theorem of Bellamy says that K2 is homeomorphic to the
Knaster continuum, also known as the Bucket handle
continuum.
Proposition. Any surjective map f : Y → Kp of a connected
compact Hausdorff space is essential.
Question. Is it true that for any indecomposable continuum
X every surjective map f : Y → X of a compact connected
space is essential?
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Embedding into the product of Knaster continua

Theorem 4.

For any p and any simply connected finite dimensional proper
geodesic metric space X its Higson compactification can be
essentially embedded into the product of continua Kp.
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THANK YOU!!!
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