S spaces and Moore-Mrowka with large continuum

Alan Dow¹ and Saharon Shelah²

¹footnotes not allowed

²except this one

TopoSym 2021-2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Question

Is it consistent with $\mathfrak{c} > \omega_2$ that there are no S spaces?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

Is it consistent with $c > \omega_2$ that there are no S spaces?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Theorem

Yes

Question

Is it consistent with $c > \omega_2$ that there are no S spaces?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Theorem

Yes

thanks for your attention

background

1. An S space (can be thought of) as a right separated HS regular topology on ω_1 (α +1 is open for all $\alpha < \omega_1$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. An S space (can be thought of) as a right separated HS regular topology on ω_1 (α +1 is open for all $\alpha < \omega_1$)
- 2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness. that's R. C. Moore !?

1. An S space (can be thought of) as a right separated HS regular topology on ω_1 (α +1 is open for all $\alpha < \omega_1$)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness. that's R. C. Moore !?
- 3. An lw1-space is a separable initially ℵ₁-compact non-compact space of countable tightness.

- 1. An S space (can be thought of) as a right separated HS regular topology on ω_1 (α +1 is open for all $\alpha < \omega_1$)
- 2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness. that's R. C. Moore !?
- 3. An lw1-space is a separable initially ℵ₁-compact non-compact space of countable tightness.
- 4. The Čech-Stone compactification of an lw1-space is a Moore-Mrowka space.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. An S space (can be thought of) as a right separated HS regular topology on ω_1 (α +1 is open for all $\alpha < \omega_1$)
- 2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness. that's R. C. Moore !?
- 3. An lw1-space is a separable initially ℵ₁-compact non-compact space of countable tightness.
- 4. The Čech-Stone compactification of an lw1-space is a Moore-Mrowka space.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is independent if any of these exist but let's dig deeper

 $\begin{array}{l} [Ostaszewski] \diamondsuit implies there is additionally countably compact \\ \varTheta \text{ so its 1-point compactification is a Moore-Mrowka space.} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

[Ostaszewski] \Diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\label{eq:subspaces} \begin{array}{l} [\mbox{Fedorchuk}] \diamondsuit \mbox{ implies there is compact HS (with many S subspaces) that has no converging sequences and every infinite subset has cardinality <math display="inline">> \mathfrak{c}. \end{array}$

[Ostaszewski] \Diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.

Two extreme versions of Moore-Mrowka spaces; CH does not imply Moore-Mrowka spaces exist.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[Ostaszewski] \Diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.

Two extreme versions of Moore-Mrowka spaces; CH does not imply Moore-Mrowka spaces exist.

[Dow, van Douwen] There are no lw1-spaces.

・ロト・日本・モート ヨー うくの

hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_2$

hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_2$

[Rabus] It is consistent (with $c = \aleph_2$) that there is an Iw1-space.

hence S and Moore-Mrowka spaces consistent with $\mathfrak{c} = \aleph_2$

[Rabus] It is consistent (with $c = \aleph_2$) that there is an lw1-space.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[Kosz., Juh, Soukup] the lw1-space can be first countable

Theorem (Assume PFA)

hence S and Moore-Mrowka spaces consistent with $\mathfrak{c} = \aleph_2$

[Rabus] It is consistent (with $c = \aleph_2$) that there is an Iw1-space.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[Kosz., Juh, Soukup] the lw1-space can be first countable

Theorem (Assume PFA)

1. [Stevo] there are no S spaces (more on this later)

hence S and Moore-Mrowka spaces consistent with $\mathfrak{c} = \aleph_2$

[Rabus] It is consistent (with $c = \aleph_2$) that there is an Iw1-space.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[Kosz., Juh, Soukup] the lw1-space can be first countable

Theorem (Assume PFA)

- 1. [Stevo] there are no S spaces (more on this later)
- 2. [Balogh] there are no Moore-Mrowka spaces and therefore no lw1-spaces.

1. [Szent.] there are no first countable S spaces (e.g. Θ)

1. [Szent.] there are no first countable S spaces (e.g. Θ)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2. [Avraham-Todorcevic] there can be S spaces

- 1. [Szent.] there are no first countable S spaces (e.g. Θ)
- 2. [Avraham-Todorcevic] there can be S spaces
- 3. There can be an lw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. [Szent.] there are no first countable S spaces (e.g. Θ)
- 2. [Avraham-Todorcevic] there can be S spaces
- 3. There can be an lw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

Rabus forces there to be a Θ_{ω_2} (i.e. Ostaszewski style (loc. cpt. scattered) topology on ω_2). using Baum.-Shelah style forcing with Δ -function

- 1. [Szent.] there are no first countable S spaces (e.g. Θ)
- 2. [Avraham-Todorcevic] there can be S spaces
- 3. There can be an lw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

Rabus forces there to be a Θ_{ω_2} (i.e. Ostaszewski style (loc. cpt. scattered) topology on ω_2). using Baum.-Shelah style forcing with Δ -function

[KJS] adapt earlier Koszmider techniques to construct a finite condition (i.e. absolute) ccc poset Q_0 that not only adds Θ_{ω_2}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. [Szent.] there are no first countable S spaces (e.g. Θ)
- 2. [Avraham-Todorcevic] there can be S spaces
- 3. There can be an lw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

Rabus forces there to be a Θ_{ω_2} (i.e. Ostaszewski style (loc. cpt. scattered) topology on ω_2). using Baum.-Shelah style forcing with Δ -function

[KJS] adapt earlier Koszmider techniques to construct a finite condition (i.e. absolute) ccc poset Q_0 that not only adds Θ_{ω_2}

but also a resolution $f : X \mapsto \Theta_{\omega_2}$ so that X is first countable lw1 with very special properties.

bad picture

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The forcing Q_0 ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_2}$ satisfies

The forcing Q_0 ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_2}$ satisfies

1. for each $\alpha \in \omega_2$, $f^{-1}(\{\alpha\}) = \mathbb{C}_{\alpha}$ (Cantor set)

The forcing Q_0 ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_2}$ satisfies

- 1. for each $\alpha \in \omega_2$, $f^{-1}(\{\alpha\}) = \mathbb{C}_{\alpha}$ (Cantor set)
- *f* is a resolution in the sense that each *r* ∈ C_α, has (modulo a single compact set *K_r* with *f*(*K_r*) ⊂ α) a countable clopen base of <α-saturated sets (*f*⁻¹(*f*(*U*) ∩ α) ⊂ *U*),

The forcing Q_0 ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_2}$ satisfies

- 1. for each $\alpha \in \omega_2$, $f^{-1}(\{\alpha\}) = \mathbb{C}_{\alpha}$ (Cantor set)
- *f* is a resolution in the sense that each *r* ∈ C_α, has (modulo a single compact set *K_r* with *f*(*K_r*) ⊂ α) a countable clopen base of <α-saturated sets (*f*⁻¹(*f*(*U*) ∩ α) ⊂ *U*),
- 3. every infinite subset of Θ_{ω_2} has compact closure or $co-\omega_1$ closure (analogue of Θ); and, $\forall \alpha < \omega_2$, $(\alpha, \alpha + \omega)$ has $co-\omega_1$ -closure.

The forcing Q_0 ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_2}$ satisfies

- 1. for each $\alpha \in \omega_2$, $f^{-1}(\{\alpha\}) = \mathbb{C}_{\alpha}$ (Cantor set)
- *f* is a resolution in the sense that each *r* ∈ C_α, has (modulo a single compact set *K_r* with *f*(*K_r*) ⊂ α) a countable clopen base of <α-saturated sets (*f*⁻¹(*f*(*U*) ∩ α) ⊂ *U*),
- 3. every infinite subset of Θ_{ω_2} has compact closure or $co-\omega_1$ closure (analogue of Θ); and, $\forall \alpha < \omega_2$, $(\alpha, \alpha + \omega)$ has $co-\omega_1$ -closure.

It can be checked (it was by me) that property 3. is preserved by ccc posets of cardinality \aleph_1

The forcing Q_0 ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_2}$ satisfies

- 1. for each $\alpha \in \omega_2$, $f^{-1}(\{\alpha\}) = \mathbb{C}_{\alpha}$ (Cantor set)
- *f* is a resolution in the sense that each *r* ∈ C_α, has (modulo a single compact set *K_r* with *f*(*K_r*) ⊂ α) a countable clopen base of <α-saturated sets (*f*⁻¹(*f*(*U*) ∩ α) ⊂ *U*),
- 3. every infinite subset of Θ_{ω_2} has compact closure or $co-\omega_1$ closure (analogue of Θ); and, $\forall \alpha < \omega_2$, $(\alpha, \alpha + \omega)$ has $co-\omega_1$ -closure.

It can be checked (it was by me) that property 3. is preserved by ccc posets of cardinality \aleph_1

tightness of Θ_{ω_2} ?? no need! the character of X is preserved by any poset. And that's how we get Martin's Axiom

and a model with a Moore-Mrowka space and no S spaces!

and a model with a Moore-Mrowka space and no S spaces!

Given $\vec{W} = \{ W_{\alpha} : \alpha < \omega_1 \} \subset [\omega_1]^{<\aleph_1}$ define $Q_{\vec{W}} \subset [\omega_1]^{<\aleph_0}$ where $\alpha \neq \beta \in q \in Q_{\vec{W}}$ implies $\alpha \notin W_{\beta}$, and ordered by \supset

うしん 山田 ・山田・山田・山田・

and a model with a Moore-Mrowka space and no S spaces!

Given $\vec{W} = \{W_{\alpha} : \alpha < \omega_1\} \subset [\omega_1]^{<\aleph_1}$ define $Q_{\vec{W}} \subset [\omega_1]^{<\aleph_0}$ where $\alpha \neq \beta \in q \in Q_{\vec{W}}$ implies $\alpha \notin W_{\beta}$, and ordered by \supset

 \vec{W} is an S space sequence if $\alpha \in W_{\alpha}$ a clopen subset of $\alpha+1$ in an HS topology. Then $Q_{\vec{W}}$ adds a discrete subset

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and a model with a Moore-Mrowka space and no S spaces!

Given $\vec{W} = \{W_{\alpha} : \alpha < \omega_1\} \subset [\omega_1]^{<\aleph_1}$ define $Q_{\vec{W}} \subset [\omega_1]^{<\aleph_0}$ where $\alpha \neq \beta \in q \in Q_{\vec{W}}$ implies $\alpha \notin W_{\beta}$, and ordered by \supset

 \vec{W} is an S space sequence if $\alpha \in W_{\alpha}$ a clopen subset of $\alpha+1$ in an HS topology. Then $Q_{\vec{W}}$ adds a discrete subset

Remark

 $Q_{\vec{W}}$ is designed to force a discrete subset

For Moore-Mrowka just change to

 $\alpha < \beta \in q$ implies $\alpha \in W_{\beta}$

to force a free sequence

Hence my view that the problems are similar.

forcing tools

Remark

 $Q_{\vec{W}}$ need not be ccc recall MA(ω_1) is consistent with there being S spaces

forcing tools

Remark

 $Q_{\vec{W}}$ need not be ccc recall MA(ω_1) is consistent with there being S spaces

Remark

 $Q_{\vec{W}}$ need not be ccc recall MA(ω_1) is consistent with there being S spaces

Jensen's cub poset $\mathcal{J} = \{ \langle a, A \rangle : a = \overline{a} \in [\omega_1]^{<\aleph_1}, A \subset \omega_1 \text{ cub} \}$ and (a, A) < (b, B) providing $b \subset a \subset b \cup B \setminus \max(b), A \subset B$ Let $C_{\mathcal{J}}$ denote the generic "fast" cub added

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

 $Q_{\vec{W}}$ need not be ccc recall MA(ω_1) is consistent with there being S spaces

Jensen's cub poset $\mathcal{J} = \{ \langle a, A \rangle : a = \overline{a} \in [\omega_1]^{<\aleph_1}, A \subset \omega_1 \text{ cub} \}$ and (a, A) < (b, B) providing $b \subset a \subset b \cup B \setminus \max(b), A \subset B$ Let $C_{\mathcal{J}}$ denote the generic "fast" cub added

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given a cub $C \subset \omega_1$, let (separated by C): $Q_{\vec{W}}[C] = \{ q \in Q_{\vec{W}} : \gamma \in C \rightarrow |q \cap (\gamma_C^+ \setminus \gamma)| \le 1 \}$

Remark

 $Q_{\vec{W}}$ need not be ccc recall MA(ω_1) is consistent with there being S spaces

Jensen's cub poset $\mathcal{J} = \{ \langle a, A \rangle : a = \overline{a} \in [\omega_1]^{<\aleph_1}, A \subset \omega_1 \text{ cub} \}$ and (a, A) < (b, B) providing $b \subset a \subset b \cup B \setminus \max(b), A \subset B$ Let $C_{\mathcal{J}}$ denote the generic "fast" cub added

Given a cub $C \subset \omega_1$, let (separated by C): $Q_{\vec{W}}[C] = \{q \in Q_{\vec{W}} : \gamma \in C \rightarrow |q \cap (\gamma_C^+ \setminus \gamma)| \le 1\}$

Remark

possibly even better: elementary submodels as side conditions

getting $Q_{\vec{W}}$ to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin

 \mathcal{C}_{ω_1} adds ω_1 -many Cohen reals

getting $Q_{\vec{W}}$ to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin

 \mathcal{C}_{ω_1} adds ω_1 -many Cohen reals

Lemma (Stevo)

Let R be a ccc poset and let \vec{W} be an S space sequence

$$\mathcal{C}_{\omega_1} * \dot{\mathcal{J}} \Vdash \check{R} * Q_{\vec{W}}[C_{\mathcal{J}}]$$
 is ccc

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

getting $Q_{\vec{W}}$ to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin

 \mathcal{C}_{ω_1} adds ω_1 -many Cohen reals

Lemma (Stevo)

Let R be a ccc poset and let \vec{W} be an S space sequence

$$\mathcal{C}_{\omega_1} * \dot{\mathcal{J}} \Vdash \check{R} * Q_{\vec{W}}[C_{\mathcal{J}}]$$
 is ccc

Lemma (Stevo)

Let $(C_{\omega_1} * \dot{\mathcal{J}})_{\omega_2}$ be the mixed finite/countable support iteration. Let R be a ccc poset.

 $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2}$ is proper and forces that R remains ccc.

here's what happens next

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんぐ

$$\left(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}}
ight)_{\lambda} * \langle \dot{\mathcal{Q}}_{eta} : eta < \lambda
ight
angle$$
 (tail is ccc – call it *R*)

・ロト・4日・4日・4日・日・900

$$\left(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}}
ight)_{\lambda} * \qquad ... \langle \dot{\mathcal{Q}}_{eta} : eta < \lambda
ight
angle ext{ (tail is ccc)}$$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

here's what happens next

$$\left(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}}
ight)_{\lambda} * \qquad ... \qquad \langle \dot{\mathcal{Q}}_{eta} : eta < \lambda
angle ~~$$
 (ccc)

made some room

...

 $\langle \dot{Q}_{\beta} : \beta < \lambda \rangle$ (ccc)

here's what happens next

insert

 $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2} \setminus \lambda} * \langle \dot{\mathcal{Q}}_{\beta} : \beta < \lambda \rangle$ (still ccc)

$$\begin{array}{c} \text{insert} \\ \left(\mathcal{C}_{\omega_{1}} \ast \dot{\mathcal{J}}\right)_{\lambda} \ast & \left(\mathcal{C}_{\omega_{1}} \ast \dot{\mathcal{J}}\right)_{\omega_{2} \setminus \lambda} & \ast \langle \dot{\boldsymbol{Q}}_{\beta} : \beta < \lambda \rangle \text{ (still ccc)} \end{array}$$

then jump back to $\left(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}}\right)_{\lambda+1} * \langle \dot{\mathbf{Q}}_{\beta} : \beta < \lambda \rangle$ to choose $\dot{\mathbf{Q}}_{\lambda}$

to continue the recursive construction of $\mathbb{P}_{\omega_2+\omega_2}$

[not Stevo] also $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2}$ forces the [KJS] poset Q_0 for Θ_{ω_2} is not only ccc but still does its lw1-space thing.

[not Stevo] also $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2}$ forces the [KJS] poset Q_0 for Θ_{ω_2} is not only ccc but still does its lw1-space thing.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[Stevo] Let $\lambda < \omega_2$ and assume that, for $0 < \alpha < \lambda$, \dot{Q}_{α} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\alpha} * \langle \dot{Q}_{\beta} : \beta < \alpha \rangle$ -name of a ccc poset

[not Stevo] also $(C_{\omega_1} * \dot{J})_{\omega_2}$ forces the [KJS] poset Q_0 for Θ_{ω_2} is not only ccc but still does its lw1-space thing.

[Stevo] Let $\lambda < \omega_2$ and assume that, for $0 < \alpha < \lambda$, \dot{Q}_{α} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\alpha} * \langle \dot{Q}_{\beta} : \beta < \alpha \rangle$ -name of a ccc poset

assume that \vec{W} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\lambda} * \langle \dot{Q}_{\beta} : \beta < \lambda \rangle$ -name of an S space sequence

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[not Stevo] also $(C_{\omega_1} * \dot{J})_{\omega_2}$ forces the [KJS] poset Q_0 for Θ_{ω_2} is not only ccc but still does its lw1-space thing.

[Stevo] Let $\lambda < \omega_2$ and assume that, for $0 < \alpha < \lambda$, \dot{Q}_{α} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\alpha} * \langle \dot{Q}_{\beta} : \beta < \alpha \rangle$ -name of a ccc poset

assume that \vec{W} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\lambda} * \langle \dot{Q}_{\beta} : \beta < \lambda \rangle$ -name of an S space sequence

[yep, still Stevo] Then with $C_{\mathcal{J},\lambda}$ being the cub at stage λ of $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2}$ and with $\dot{Q}_{\lambda} = Q_{\vec{W}}[C_{\mathcal{J},\lambda}]$

$$(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2} * \langle \dot{\mathbf{Q}}_{eta} : eta \leq \lambda
angle$$
 is ccc

for MA(\aleph_1): often for $\alpha < \omega_2$ let Q_α be the next small ccc poset.

(日) (日) (日) (日) (日) (日) (日)

[not Stevo] also $(C_{\omega_1} * \dot{J})_{\omega_2}$ forces the [KJS] poset Q_0 for Θ_{ω_2} is not only ccc but still does its lw1-space thing.

[Stevo] Let $\lambda < \omega_2$ and assume that, for $0 < \alpha < \lambda$, \dot{Q}_{α} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\alpha} * \langle \dot{Q}_{\beta} : \beta < \alpha \rangle$ -name of a ccc poset

assume that \vec{W} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\lambda} * \langle \dot{Q}_{\beta} : \beta < \lambda \rangle$ -name of an S space sequence

[yep, still Stevo] Then with $C_{\mathcal{J},\lambda}$ being the cub at stage λ of $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2}$ and with $\dot{Q}_{\lambda} = Q_{\vec{W}}[C_{\mathcal{J},\lambda}]$

$$(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\omega_2} * \langle \dot{oldsymbol{Q}}_eta : eta \leq \lambda
angle ~~ ext{is ccc}$$

for MA(\aleph_1): often for $\alpha < \omega_2$ let Q_α be the next small ccc poset.

This gives no S spaces, MA, and Q₀ gives a Moore-Mrowka

Modifying an earlier Avraham result we let $(C_{\omega_1} * \dot{\mathcal{J}})_{\kappa}$ be a very mixed support iteration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Modifying an earlier Avraham result we let

 $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\kappa}$ be a very mixed support iteration

still finite for \mathcal{C}_{ω_1} terms, but a strange combination for $\langle \dot{a}, \dot{A} \rangle \in \dot{\mathcal{J}}_{\alpha}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modifying an earlier Avraham result we let

 $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\kappa}$ be a very mixed support iteration

still finite for \mathcal{C}_{ω_1} terms, but a strange combination for $\langle \dot{a}, \dot{A} \rangle \in \dot{\mathcal{J}}_{\alpha}$

 $\mathfrak{c} > \aleph_1$ implies that \mathcal{J} collapses \mathfrak{c} so \dot{a} is limited to having support in an \aleph_1 -sized subset of α and only special names (but with no limit on support) are permitted for \dot{A} .

Modifying an earlier Avraham result we let

 $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\kappa}$ be a very mixed support iteration

still finite for \mathcal{C}_{ω_1} terms, but a strange combination for $\langle \dot{a}, \dot{A} \rangle \in \dot{\mathcal{J}}_{\alpha}$

 $\mathfrak{c} > \aleph_1$ implies that \mathcal{J} collapses \mathfrak{c} so \dot{a} is limited to having support in an \aleph_1 -sized subset of α and only special names (but with no limit on support) are permitted for \dot{A} .

Assume, by induction, that for some $\lambda < \kappa$, for each $\alpha < \lambda$, \dot{Q}_{α} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\alpha} * \langle \dot{Q}_{\beta} : \beta < \alpha \rangle$ -name of a ccc poset

A pretty non-trivial modification of several aspects of the proof

then

A pretty non-trivial modification of several aspects of the proof

Theorem

If \vec{W} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\lambda} * \langle \dot{\mathbf{Q}}_{\beta} : \beta < \lambda \rangle$ -name of an S space sequence, then there is an $\alpha \ge \lambda$ so that

$$(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\kappa} \Vdash \langle \dot{\mathcal{Q}}_{\beta} : \beta < \alpha \rangle * \mathcal{Q}[\mathcal{C}_{\mathcal{J},\alpha}]$$
 is ccc

where $\dot{\mathbf{Q}}_{\beta}$ $\lambda \leq \beta < \alpha$ can be, e.g. , C_{ω} and therefore can ensure no S spaces.

then

A pretty non-trivial modification of several aspects of the proof

Theorem

If \vec{W} is a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\lambda} * \langle \dot{Q}_{\beta} : \beta < \lambda \rangle$ -name of an S space sequence, then there is an $\alpha \ge \lambda$ so that

$$(\mathcal{C}_{\omega_1} * \dot{\mathcal{J}})_{\kappa} \Vdash \langle \dot{\mathcal{Q}}_{\beta} : \beta < \alpha \rangle * \mathcal{Q}[\mathcal{C}_{\mathcal{J},\alpha}]$$
 is ccc

where $\dot{\mathbf{Q}}_{\beta}$ $\lambda \leq \beta < \alpha$ can be, e.g. , C_{ω} and therefore can ensure no S spaces.

with still more effort we can also ensure there are no Moore-Mrowka spaces with cardinality greater than κ (i.e. c). Much harder since we are still trying to *kill* with \aleph_1 -sized posets.