S spaces and Moore-Mrowka with large continuum

Alan Dow ${ }^{1}$ and Saharon Shelah ${ }^{2}$

${ }^{1}$ footnotes not allowed
${ }^{2}$ except this one
TopoSym 2021-2

Question
Is it consistent with $c>\omega_{2}$ that there are no S spaces?

Question
Is it consistent with $c>\omega_{2}$ that there are no S spaces?
Theorem
Yes

Question

Is it consistent with $c>\omega_{2}$ that there are no S spaces?
Theorem
Yes
thanks for your attention

background

1. An S space (can be thought of) as a right separated HS regular topology on $\omega_{1} \quad\left(\alpha+1\right.$ is open for all $\left.\alpha<\omega_{1}\right)$

background

1. An S space (can be thought of) as a right separated HS regular topology on $\omega_{1} \quad\left(\alpha+1\right.$ is open for all $\left.\alpha<\omega_{1}\right)$
2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness.
that's R. C. Moore !?

background

1. An S space (can be thought of) as a right separated HS regular topology on $\omega_{1} \quad\left(\alpha+1\right.$ is open for all $\left.\alpha<\omega_{1}\right)$
2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness.
that's R. C. Moore !?
3. An Iw1-space is a separable initially \aleph_{1}-compact non-compact space of countable tightness.

background

1. An S space (can be thought of) as a right separated HS regular topology on $\omega_{1} \quad\left(\alpha+1\right.$ is open for all $\left.\alpha<\omega_{1}\right)$
2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness.
that's R. C. Moore !?
3. An Iw1-space is a separable initially \aleph_{1}-compact non-compact space of countable tightness.
4. The C̆ech-Stone compactification of an Iw1-space is a Moore-Mrowka space.

background

1. An S space (can be thought of) as a right separated HS regular topology on $\omega_{1} \quad\left(\alpha+1\right.$ is open for all $\left.\alpha<\omega_{1}\right)$
2. A Moore-Mrowka space is a compact (separable) non-sequential space of countable tightness.
that's R. C. Moore !?
3. An Iw1-space is a separable initially \aleph_{1}-compact non-compact space of countable tightness.
4. The Čech-Stone compactification of an Iw1-space is a Moore-Mrowka space.

It is independent if any of these exist but let's dig deeper

start with CH

S spaces exist

start with CH

S spaces exist

[Ostaszewski] \diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.

start with CH

S spaces exist

[Ostaszewski] \diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.
[Fedorchuk] \diamond implies there is compact HS (with many S subspaces) that has no converging sequences and every infinite subset has cardinality $>c$.

start with CH

S spaces exist

[Ostaszewski] \diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.
[Fedorchuk] \diamond implies there is compact HS (with many S subspaces) that has no converging sequences and every infinite subset has cardinality $>c$.

Two extreme versions of Moore-Mrowka spaces;
CH does not imply Moore-Mrowka spaces exist.

start with CH

S spaces exist

[Ostaszewski] \diamond implies there is additionally countably compact Θ so its 1-point compactification is a Moore-Mrowka space.
[Fedorchuk] \diamond implies there is compact HS (with many S subspaces) that has no converging sequences and every infinite subset has cardinality $>c$.

Two extreme versions of Moore-Mrowka spaces;
CH does not imply Moore-Mrowka spaces exist.
[Dow, van Douwen] There are no Iw1-spaces.

models of $\mathfrak{c}=\aleph_{2}$

models of $\mathfrak{c}=\aleph_{2}$

Cohen indestruct. versions of Ostaszewski and Fedorchuk exist
hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_{2}$

models of $\mathfrak{c}=\aleph_{2}$

Cohen indestruct. versions of Ostaszewski and Fedorchuk exist
hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_{2}$
[Rabus] It is consistent (with $\mathfrak{c}=\aleph_{2}$) that there is an Iw1-space.

models of $\mathfrak{c}=\aleph_{2}$

Cohen indestruct. versions of Ostaszewski and Fedorchuk exist
hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_{2}$
[Rabus] It is consistent (with $\mathfrak{c}=\aleph_{2}$) that there is an Iw1-space.
[Kosz., Juh, Soukup] the Iw1-space can be first countable
Theorem (Assume PFA)

models of $\mathfrak{c}=\aleph_{2}$

Cohen indestruct. versions of Ostaszewski and Fedorchuk exist
hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_{2}$
[Rabus] It is consistent (with $\mathfrak{c}=\aleph_{2}$) that there is an Iw1-space.
[Kosz., Juh, Soukup] the Iw1-space can be first countable
Theorem (Assume PFA)

1. [Stevo] there are no S spaces (more on this later)

models of $\mathfrak{c}=\aleph_{2}$

Cohen indestruct. versions of Ostaszewski and Fedorchuk exist
hence S and Moore-Mrowka spaces consistent with $\mathfrak{c}=\aleph_{2}$
[Rabus] It is consistent (with $\mathfrak{c}=\aleph_{2}$) that there is an Iw1-space.
[Kosz., Juh, Soukup] the Iw1-space can be first countable

Theorem (Assume PFA)

1. [Stevo] there are no S spaces (more on this later)
2. [Balogh] there are no Moore-Mrowka spaces and therefore no Iw1-spaces.

what about Martin's Axiom and $\mathfrak{c}=\aleph_{2}$?

1. [Szent.] there are no first countable S spaces (e.g. Θ)

what about Martin's Axiom and $\mathrm{c}=\aleph_{2}$?

1. [Szent.] there are no first countable S spaces (e.g. Θ)
2. [Avraham-Todorcevic] there can be S spaces

what about Martin's Axiom and $\mathfrak{c}=\aleph_{2}$?

1. [Szent.] there are no first countable S spaces (e.g. Θ)
2. [Avraham-Todorcevic] there can be S spaces
3. There can be an Iw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

what about Martin's Axiom and $\mathfrak{c}=\aleph_{2}$?

1. [Szent.] there are no first countable S spaces (e.g. Θ)
2. [Avraham-Todorcevic] there can be S spaces
3. There can be an Iw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

Rabus forces there to be a $\Theta_{\omega_{2}}$ (i.e. Ostaszewski style (loc. cpt. scattered) topology on ω_{2}). using Baum.-Shelah style forcing with Δ-function

what about Martin's Axiom and $\mathrm{c}=\aleph_{2}$?

1. [Szent.] there are no first countable S spaces (e.g. Θ)
2. [Avraham-Todorcevic] there can be S spaces
3. There can be an Iw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

Rabus forces there to be a $\Theta_{\omega_{2}}$ (i.e. Ostaszewski style (loc. cpt. scattered) topology on ω_{2}). using Baum.-Shelah style forcing with Δ-function
[KJS] adapt earlier Koszmider techniques to construct a finite condition (i.e. absolute) ccc poset Q_{0} that not only adds $\Theta_{\omega_{2}}$

what about Martin's Axiom and $\mathfrak{c}=\aleph_{2}$?

1. [Szent.] there are no first countable S spaces (e.g. Θ)
2. [Avraham-Todorcevic] there can be S spaces
3. There can be an Iw1-space (hence a Moore-Mrowka) this one we now tell you a little bit

Rabus forces there to be a $\Theta_{\omega_{2}}$ (i.e. Ostaszewski style (loc. cpt. scattered) topology on ω_{2}). using Baum.-Shelah style forcing with Δ-function
[KJS] adapt earlier Koszmider techniques to construct a finite condition (i.e. absolute) ccc poset Q_{0} that not only adds $\Theta_{\omega_{2}}$ but also a resolution $f: X \mapsto \Theta_{\omega_{2}}$ so that X is first countable Iw1 with very special properties.
bad picture

a special Iw1-space

The forcing Q_{0} ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_{2}}$ satisfies

a special Iw1-space

The forcing Q_{0} ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_{2}}$ satisfies

1. for each $\alpha \in \omega_{2}, f^{-1}(\{\alpha\})=\mathbb{C}_{\alpha}$ (Cantor set)

a special Iw1-space

The forcing Q_{0} ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_{2}}$ satisfies

1. for each $\alpha \in \omega_{2}, f^{-1}(\{\alpha\})=\mathbb{C}_{\alpha}$ (Cantor set)
2. f is a resolution in the sense that each $r \in \mathbb{C}_{\alpha}$, has (modulo a single compact set K_{r} with $f\left(K_{r}\right) \subset \alpha$) a countable clopen base of $<\alpha$-saturated sets $\left(f^{-1}(f(U) \cap \alpha) \subset U\right)$,

a special Iw1-space

The forcing Q_{0} ensures the continuous perfect mapping
$f: X \mapsto \Theta_{\omega_{2}}$ satisfies

1. for each $\alpha \in \omega_{2}, f^{-1}(\{\alpha\})=\mathbb{C}_{\alpha}$ (Cantor set)
2. f is a resolution in the sense that each $r \in \mathbb{C}_{\alpha}$, has (modulo a single compact set K_{r} with $f\left(K_{r}\right) \subset \alpha$) a countable clopen base of $<\alpha$-saturated sets $\left(f^{-1}(f(U) \cap \alpha) \subset U\right)$,
3. every infinite subset of $\Theta_{\omega_{2}}$ has compact closure or $\operatorname{co}-\omega_{1}$ closure (analogue of Θ); and, $\forall \alpha<\omega_{2},(\alpha, \alpha+\omega)$ has co- ω_{1}-closure.

a special lw1-space

The forcing Q_{0} ensures the continuous perfect mapping $f: X \mapsto \Theta_{\omega_{2}}$ satisfies

1. for each $\alpha \in \omega_{2}, f^{-1}(\{\alpha\})=\mathbb{C}_{\alpha}$ (Cantor set)
2. f is a resolution in the sense that each $r \in \mathbb{C}_{\alpha}$, has (modulo a single compact set K_{r} with $f\left(K_{r}\right) \subset \alpha$) a countable clopen base of $<\alpha$-saturated sets $\left(f^{-1}(f(U) \cap \alpha) \subset U\right)$,
3. every infinite subset of $\Theta_{\omega_{2}}$ has compact closure or $\operatorname{co}-\omega_{1}$ closure (analogue of Θ); and, $\forall \alpha<\omega_{2},(\alpha, \alpha+\omega)$ has co- ω_{1}-closure.

It can be checked (it was by me) that property 3. is preserved by ccc posets of cardinality \aleph_{1}

a special lw1-space

The forcing Q_{0} ensures the continuous perfect mapping
$f: X \mapsto \Theta_{\omega_{2}}$ satisfies

1. for each $\alpha \in \omega_{2}, f^{-1}(\{\alpha\})=\mathbb{C}_{\alpha}$ (Cantor set)
2. f is a resolution in the sense that each $r \in \mathbb{C}_{\alpha}$, has (modulo a single compact set K_{r} with $f\left(K_{r}\right) \subset \alpha$) a countable clopen base of $<\alpha$-saturated sets $\left(f^{-1}(f(U) \cap \alpha) \subset U\right)$,
3. every infinite subset of $\Theta_{\omega_{2}}$ has compact closure or $\operatorname{co}-\omega_{1}$ closure (analogue of Θ); and, $\forall \alpha<\omega_{2},(\alpha, \alpha+\omega)$ has co- ω_{1}-closure.

It can be checked (it was by me) that property 3. is preserved by ccc posets of cardinality \aleph_{1}
tightness of $\Theta_{\omega_{2}}$?? no need! the character of X is preserved by any poset. And that's how we get Martin's Axiom

Stevo's original 1982 proof of no S spaces

and a model with a Moore-Mrowka space and no S spaces!

Stevo's original 1982 proof of no S spaces

and a model with a Moore-Mrowka space and no S spaces!

Given $\vec{W}=\left\{W_{\alpha}: \alpha<\omega_{1}\right\} \subset\left[\omega_{1}\right]^{<\aleph_{1}}$ define $Q_{\vec{W}} \subset\left[\omega_{1}\right]^{<\aleph_{0}}$ where $\alpha \neq \beta \in q \in Q_{\vec{W}}$ implies $\alpha \notin W_{\beta}$, and ordered by \supset

Stevo's original 1982 proof of no S spaces

and a model with a Moore-Mrowka space and no S spaces!

Given $\vec{W}=\left\{W_{\alpha}: \alpha<\omega_{1}\right\} \subset\left[\omega_{1}\right]^{<\aleph_{1}}$ define $Q_{\vec{W}} \subset\left[\omega_{1}\right]^{<\aleph_{0}}$ where $\alpha \neq \beta \in q \in Q_{\vec{W}}$ implies $\alpha \notin W_{\beta}$, and ordered by \supset
\vec{W} is an S space sequence if $\alpha \in W_{\alpha}$ a clopen subset of $\alpha+1$ in an HS topology. Then $Q_{\vec{W}}$ adds a discrete subset

Stevo's original 1982 proof of no S spaces

and a model with a Moore-Mrowka space and no S spaces!

Given $\vec{W}=\left\{W_{\alpha}: \alpha<\omega_{1}\right\} \subset\left[\omega_{1}\right]^{<\aleph_{1}}$ define $Q_{\vec{W}} \subset\left[\omega_{1}\right]^{<\aleph_{0}}$ where $\alpha \neq \beta \in q \in Q_{\vec{W}}$ implies $\alpha \notin W_{\beta}$, and ordered by \supset
\vec{W} is an S space sequence if $\alpha \in W_{\alpha}$ a clopen subset of $\alpha+1$ in an HS topology. Then $Q_{\vec{W}}$ adds a discrete subset

Remark

$Q_{\vec{W}}$ is designed to force a discrete subset
For Moore-Mrowka just change to

$$
\alpha<\beta \in q \text { implies } \alpha \in W_{\beta}
$$

to force a free sequence
Hence my view that the problems are similar.

forcing tools

Remark

$Q_{\vec{W}}$ need not be ccc recall $\mathrm{MA}\left(\omega_{1}\right)$ is consistent with there being S spaces

forcing tools

Remark

$Q_{\vec{W}}$ need not be ccc recall $\mathrm{MA}\left(\omega_{1}\right)$ is consistent with there being S spaces

forcing tools

Remark

$Q_{\vec{W}}$ need not be ccc recall $\mathrm{MA}\left(\omega_{1}\right)$ is consistent with there being S spaces

Jensen's cub poset $\mathcal{J}=\left\{\langle\boldsymbol{a}, \boldsymbol{A}\rangle: \boldsymbol{a}=\overline{\boldsymbol{a}} \in\left[\omega_{1}\right]^{<\aleph_{1}}, \boldsymbol{A} \subset \omega_{1}\right.$ cub $\}$ and $(a, A)<(b, B)$ providing $b \subset a \subset b \cup B \backslash \max (b), A \subset B$ Let $C_{\mathcal{J}}$ denote the generic "fast" cub added

forcing tools

Remark

$Q_{\vec{W}}$ need not be ccc
recall $\mathrm{MA}\left(\omega_{1}\right)$ is consistent with there being S spaces

Jensen's cub poset $\mathcal{J}=\left\{\langle\boldsymbol{a}, \boldsymbol{A}\rangle: \boldsymbol{a}=\overline{\mathbf{a}} \in\left[\omega_{1}\right]^{<\aleph_{1}}, \boldsymbol{A} \subset \omega_{1}\right.$ cub $\}$ and $(a, A)<(b, B)$ providing $b \subset a \subset b \cup B \backslash \max (b), A \subset B$ Let $C_{\mathcal{J}}$ denote the generic "fast" cub added

Given a cub $C \subset \omega_{1}$, let (separated by C):

$$
Q_{\vec{W}}[C]=\left\{q \in Q_{\vec{W}}: \gamma \in C \rightarrow\left|q \cap\left(\gamma_{C}^{+} \backslash \gamma\right)\right| \leq 1\right\}
$$

forcing tools

Remark

$Q_{\vec{W}}$ need not be ccc
recall $\mathrm{MA}\left(\omega_{1}\right)$ is consistent with there being S spaces

Jensen's cub poset $\mathcal{J}=\left\{\langle\boldsymbol{a}, \boldsymbol{A}\rangle: \boldsymbol{a}=\overline{\boldsymbol{a}} \in\left[\omega_{1}\right]^{<\aleph_{1}}, \boldsymbol{A} \subset \omega_{1} \boldsymbol{c u b}\right\}$ and $(a, A)<(b, B)$ providing $b \subset a \subset b \cup B \backslash \max (b), A \subset B$ Let $C_{\mathcal{J}}$ denote the generic "fast" cub added

Given a cub $C \subset \omega_{1}$, let (separated by C):

$$
Q_{\vec{W}}[C]=\left\{q \in Q_{\vec{W}}: \gamma \in C \rightarrow\left|q \cap\left(\gamma_{C}^{+} \backslash \gamma\right)\right| \leq 1\right\}
$$

Remark

possibly even better: elementary submodels as side conditions

getting $Q_{\vec{W}}$ to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin
$\mathcal{C}_{\omega_{1}}$ adds ω_{1}-many Cohen reals

getting $Q_{\vec{W}}$ to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin
$\mathcal{C}_{\omega_{1}}$ adds ω_{1}-many Cohen reals
Lemma (Stevo)
Let R be a ccc poset and let \vec{W} be an S space sequence

$$
\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}} \Vdash \check{R} * Q_{\vec{W}}\left[C_{\mathcal{J}}\right] \text { is } c c c
$$

getting $Q_{\vec{W}}$ to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin
$\mathcal{C}_{\omega_{1}}$ adds ω_{1}-many Cohen reals
Lemma (Stevo)
Let R be a ccc poset and let \vec{W} be an S space sequence

$$
\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}} \Vdash \check{R} * Q_{\vec{W}}\left[C_{\mathcal{J}}\right] \text { is } c c c
$$

Lemma (Stevo)

Let $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ be the mixed finite/countable support iteration. Let R be a ccc poset.
$\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ is proper and forces that R remains ccc.

here's what happens next

here's what happens next

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle(\text { tail is ccc }- \text { call it } R)
$$

here's what happens next

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} * \quad \ldots\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle \text { (tail is } \mathrm{ccc} \text {) }
$$

here's what happens next

$$
\left({\left.c_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} * \quad \ldots \quad\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle(\mathrm{ccc})}^{*}\right.
$$

here's what happens next

made some room

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} * \quad \ldots \quad\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle(\mathrm{ccc})
$$

here's what happens next

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} * \quad\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2} \backslash \lambda} \quad *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle \text { (still ccc) }
$$

here's what happens next

$$
\left(\begin{array}{c}
\text { insert } \\
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *
\end{array} \quad\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2} \backslash \lambda} \quad *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle\right. \text { (still ccc) }
$$

then jump back to $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda+1} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle$ to choose \dot{Q}_{λ}
to continue the recursive construction of $\mathbb{P}_{\omega_{2}+\omega_{2}}$
[not Stevo] also $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ forces the [KJS] poset Q_{0} for $\Theta_{\omega_{2}}$ is not only ccc but still does its lw1-space thing.
[not Stevo] also $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ forces the [KJS] poset Q_{0} for $\Theta_{\omega_{2}}$ is not only ccc but still does its lw1-space thing.
[Stevo] Let $\lambda<\omega_{2}$ and assume that, for $0<\alpha<\lambda, \dot{Q}_{\alpha}$ is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\alpha} *\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle$-name of a ccc poset
[not Stevo] also $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ forces the [KJS] poset Q_{0} for $\Theta_{\omega_{2}}$ is not only ccc but still does its lw 1 -space thing.
[Stevo] Let $\lambda<\omega_{2}$ and assume that, for $0<\alpha<\lambda, \dot{Q}_{\alpha}$ is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\alpha} *\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle$-name of a ccc poset
assume that \vec{W} is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle$-name of an S space sequence
[not Stevo] also $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ forces the [KJS] poset Q_{0} for $\Theta_{\omega_{2}}$ is not only ccc but still does its Iw1-space thing.
[Stevo] Let $\lambda<\omega_{2}$ and assume that, for $0<\alpha<\lambda, \dot{Q}_{\alpha}$ is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\alpha} *\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle$-name of a ccc poset
assume that \vec{W} is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle$-name of an S space sequence
[yep, still Stevo] Then with $C_{\mathcal{J}, \lambda}$ being the cub at stage λ of $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ and with $\dot{Q}_{\lambda}=Q_{\vec{W}}\left[C_{\mathcal{J}, \lambda}\right]$

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}} *\left\langle\dot{Q}_{\beta}: \beta \leq \lambda\right\rangle \text { is ccc }
$$

for $\operatorname{MA}\left(\aleph_{1}\right)$: often for $\alpha<\omega_{2}$ let \dot{Q}_{α} be the next small ccc poset .
[not Stevo] also $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ forces the [KJS] poset Q_{0} for $\Theta_{\omega_{2}}$ is not only ccc but still does its Iw1-space thing.
[Stevo] Let $\lambda<\omega_{2}$ and assume that, for $0<\alpha<\lambda, \dot{Q}_{\alpha}$ is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\alpha} *\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle$-name of a ccc poset
assume that \vec{W} is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle$-name of an S space sequence
[yep, still Stevo] Then with $C_{\mathcal{J}, \lambda}$ being the cub at stage λ of $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}}$ and with $\dot{Q}_{\lambda}=Q_{\vec{W}}\left[C_{\mathcal{J}, \lambda}\right]$

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\omega_{2}} *\left\langle\dot{Q}_{\beta}: \beta \leq \lambda\right\rangle \text { is } \operatorname{ccc}
$$

for $\operatorname{MA}\left(\aleph_{1}\right)$: often for $\alpha<\omega_{2}$ let \dot{Q}_{α} be the next small ccc poset .

This gives no S spaces, MA , and Q_{0} gives a Moore-Mrowka

now for $\mathfrak{c}=\kappa>\aleph_{2}$ with suitable \diamond

Modifying an earlier Avraham result we let
$\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\kappa}$ be a very mixed support iteration

now for $\mathfrak{c}=\kappa>\aleph_{2}$ with suitable \diamond

Modifying an earlier Avraham result we let
$\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\kappa}$ be a very mixed support iteration
still finite for $\mathcal{C}_{\omega_{1}}$ terms, but a strange combination for $\langle\dot{\mathbf{a}}, \dot{\boldsymbol{A}}\rangle \in \dot{\mathcal{J}}_{\alpha}$

now for $\mathfrak{c}=\kappa>\aleph_{2}$ with suitable \diamond

Modifying an earlier Avraham result we let
$\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\kappa}$ be a very mixed support iteration
still finite for $\mathcal{C}_{\omega_{1}}$ terms, but a strange combination for $\langle\dot{a}, \dot{A}\rangle \in \dot{\mathcal{J}}_{\alpha}$
$\mathfrak{c}>\aleph_{1}$ implies that \mathcal{J} collapses \mathfrak{c} so \dot{a} is limited to having
support in an \aleph_{1}-sized subset of α and only special names (but with no limit on support) are permitted for \dot{A}.

now for $\mathfrak{c}=\kappa>\aleph_{2}$ with suitable

Modifying an earlier Avraham result we let
$\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\kappa}$ be a very mixed support iteration
still finite for $\mathcal{C}_{\omega_{1}}$ terms, but a strange combination for $\langle\dot{\mathbf{a}}, \dot{\boldsymbol{A}}\rangle \in \dot{\mathcal{J}}_{\alpha}$
$\mathfrak{c}>\aleph_{1}$ implies that \mathcal{J} collapses \mathfrak{c} so \dot{a} is limited to having support in an \aleph_{1}-sized subset of α and only special names (but with no limit on support) are permitted for \dot{A}.

Assume, by induction, that for some $\lambda<\kappa$, for each $\alpha<\lambda$, \dot{Q}_{α} is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\alpha} *\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle$-name of a ccc poset

then

A pretty non-trivial modification of several aspects of the proof

then

A pretty non-trivial modification of several aspects of the proof

Theorem

If \vec{W} is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle$-name of an S space sequence, then there is an $\alpha \geq \lambda$ so that

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\kappa} \Vdash\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle * Q\left[C_{\mathcal{J}, \alpha}\right] \text { is } \operatorname{ccc}
$$

where $\dot{Q}_{\beta} \lambda \leq \beta<\alpha$ can be, e.g. \mathcal{C}_{ω} and therefore can ensure no S spaces.

then

A pretty non-trivial modification of several aspects of the proof

Theorem

If \vec{W} is a $\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\lambda} *\left\langle\dot{Q}_{\beta}: \beta<\lambda\right\rangle$-name of an S space sequence, then there is an $\alpha \geq \lambda$ so that

$$
\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)_{\kappa} \Vdash\left\langle\dot{Q}_{\beta}: \beta<\alpha\right\rangle * Q\left[C_{\mathcal{J}, \alpha}\right] \text { is ccc }
$$

where $\dot{Q}_{\beta} \lambda \leq \beta<\alpha$ can be, e.g., \mathcal{C}_{ω} and therefore can ensure no S spaces.
with still more effort we can also ensure there are no Moore-Mrowka spaces with cardinality greater than κ (i.e. c). Much harder since we are still trying to kill with \aleph_{1}-sized posets.

