Entropy of amenable monoid actions

Dikran Dikranjan Udine University, Italy

13th Symposium on General Topology and its Relations to Modern Analysis and Algebra July 25–29, 2022, Prague

joint work with Anna Giordano Bruno and Simone Virili

1. Introduction

- 2. Amenable monoid actions on normed monoids and their entropy
 - 2.1 Normed monoids and actions
 - 2.2 The entropy
- 3. Algebraic and topological Peters normed monoids
 - 3.1 G-actions on Peters normed monoids
 - 3.2 Proof of the Bridge Theorem for group actions
- 4. The Ore localization and the Ore colocalization
 - 4.1 The Ore colocalization (reduction to the case of actions by surjective maps)
 - 2.2 The Ore localization (reduction to the case of actions by injective maps)
- 5. Addition Theorem for h_{top}
- 6. The Bridge Theorem
- 7. An application: the Addition Theorem for <u>h</u>

joint work with Anna Giordano Bruno and Simone Virili

- 1. Introduction
- 2. Amenable monoid actions on normed monoids and their entropy
 - 2.1 Normed monoids and actions
 - 2.2 The entropy
- 3. Algebraic and topological Peters normed monoids
 - 3.1 G-actions on Peters normed monoids
 - 3.2 Proof of the Bridge Theorem for group actions
- 4. The Ore localization and the Ore colocalization
 - 4.1 The Ore colocalization (reduction to the case of actions by surjective maps)
 - 2.2 The Ore localization (reduction to the case of actions by injective maps)
- 5. Addition Theorem for $h_{\rm top}$
- 6. The Bridge Theorem
- 7. An application: the Addition Theorem for h_{alg}

Information Theory – Claude Shannon in 1948

• Ergodic Theory – Kolmogorov and Sinai in 1958

- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is continuous; produces topological entropy $h_{top}(T)$.

 for an abelian group (X,+), T is a homomorphism; produces algebraic entropy h_{alg}(T).

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

メロト メポト メヨト メヨ

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.
- In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.
- for a topological space (X, τ) , T is continuous; produces topological entropy $h_{top}(T)$.
- for an abelian group (X, +), T is a *homomorphism*; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

メロト メポト メヨト メヨ

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
 Algebraical Dynamics Weiss and Peters in 1976.
 In each setting the entropy h(T) of a transformation T : X → X is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.
- for a topological space (X, τ) , T is continuous; produces topological entropy $h_{top}(T)$.
- for an abelian group (X, +), T is a *homomorphism*; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

(日)

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965

• Algebraical Dynamics – Weiss and Peters in 1976. In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is continuous; produces topological entropy $h_{top}(T)$.
- for an abelian group (X, +), T is a *homomorphism*; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

(日)

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is continuous; produces topological entropy $h_{top}(T)$.
- for an abelian group (X, +), T is a *homomorphism*; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

(日)

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T: X \to X$ is

a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is *continuous*; produces topological entropy $h_{top}(T)$.
- for an abelian group (X, +), T is a *homomorphism*; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

イロト イヨト イヨト イヨ

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is *continuous*; produces *topological entropy* $h_{top}(T)$.
- for an abelian group (X, +), T is a *homomorphism*; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\hookrightarrow} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\hookrightarrow} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

▲□ ► < □ ► </p>

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is *continuous*; produces *topological entropy* $h_{top}(T)$.
- for an abelian group (X, +), T is a homomorphism; produces algebraic entropy h_{alg}(T).

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\frown} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\frown} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow).

▲ 同 ▶ ▲ 三 ▶ ▲

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is *continuous*; produces *topological entropy* $h_{top}(T)$.
- for an abelian group (X, +), T is a homomorphism; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T : X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\frown} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\frown} X$ of amenable monoids S on compact space X or a discrete

group X (definitions follow)

- Information Theory Claude Shannon in 1948
- Ergodic Theory Kolmogorov and Sinai in 1958
- Topological Dynamics Adler, Konheim, McAndrew in 1965
- Algebraical Dynamics Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation $T : X \to X$ is a non-negative real number or ∞ measuring the randomness or disorder attributed to T.

- for a topological space (X, τ) , T is *continuous*; produces *topological entropy* $h_{top}(T)$.
- for an abelian group (X, +), T is a homomorphism; produces algebraic entropy $h_{alg}(T)$.

In both cases we have a self-map $T: X \to X$ that defines a left action $\mathbb{N} \stackrel{\lambda}{\frown} X$ of the monoid $(\mathbb{N}, +)$ on X in the standard way $\lambda(n) = T^n$. Later the definition of entropy was extended to actions $S \stackrel{\lambda}{\frown} X$ of amenable monoids S on compact space X or a discrete group X (definitions follow). M. Weiss proved in 1975 that an endomorphism $f : K \to K$ of a totally disconnected compact Abelian group K satisfies $h_{\text{top}}(f) = h_{\text{alg}}(f^{\wedge})$, where $f^{\wedge} : K^{\wedge} \to K^{\wedge}$ is the Pontryagin dual of f.

Let us call Bridge Theorem this remarkable equality.

Peters 1979 verified the Bridge Theorem for automorphisms of metrizable compact Abelian groups (\mathbb{Z} -actions). Giordano Bruno and DD [2010], verified the Bridge Theorem for all continuous endomorphisms of arbitrary compact Abelian groups (\mathbb{N} -actions).

This talk is dedicated to the Bridge Theorem and its applications.

Theorem (**Bridge Theorem)**

If S is a cancellative right amenable monoid, K a compact Abelian group and $K \stackrel{\rho}{\curvearrowleft} S$ a right S-action, then $h_{top}(\rho) = h_{alg}(\rho^{\wedge})$.

Proved by H.Li [2012] for *S* a countable amenable group and *K* compact metrizable and some sofic group action by Liang [2019]

< ロ > < 同 > < 三 > < 三 >

M. Weiss proved in 1975 that an endomorphism $f : K \to K$ of a totally disconnected compact Abelian group K satisfies $h_{\text{top}}(f) = h_{\text{alg}}(f^{\wedge})$, where $f^{\wedge} : K^{\wedge} \to K^{\wedge}$ is the Pontryagin dual of f.

Let us call Bridge Theorem this remarkable equality.

Peters 1979 verified the Bridge Theorem for automorphisms of metrizable compact Abelian groups (\mathbb{Z} -actions). Giordano Bruno and DD [2010], verified the Bridge Theorem for all continuous endomorphisms of arbitrary compact Abelian groups (\mathbb{N} -actions).

This talk is dedicated to the Bridge Theorem and its applications.

Theorem (**Bridge Theorem**)

If S is a cancellative right amenable monoid, K a compact Abelian group and $K \stackrel{\rho}{\curvearrowleft} S$ a right S-action, then $h_{top}(\rho) = h_{alg}(\rho^{\wedge})$.

Proved by H.Li [2012] for *S* a countable amenable group and *K* compact metrizable and some sofic group action by Liang [2019]

< ロ > < 同 > < 三 > < 三 >

M. Weiss proved in 1975 that an endomorphism $f : K \to K$ of a totally disconnected compact Abelian group K satisfies $h_{\text{top}}(f) = h_{\text{alg}}(f^{\wedge})$, where $f^{\wedge} : K^{\wedge} \to K^{\wedge}$ is the Pontryagin dual of f.

Let us call Bridge Theorem this remarkable equality.

Peters 1979 verified the Bridge Theorem for automorphisms of metrizable compact Abelian groups (\mathbb{Z} -actions). Giordano Bruno and DD [2010], verified the Bridge Theorem for all continuous endomorphisms of arbitrary compact Abelian groups (\mathbb{N} -actions).

This talk is dedicated to the Bridge Theorem and its applications.

Theorem (Bridge Theorem)

If S is a cancellative right amenable monoid, K a compact Abelian group and $K \stackrel{\rho}{\curvearrowleft} S$ a right S-action, then $h_{top}(\rho) = h_{alg}(\rho^{\wedge})$.

Proved by H.Li [2012] for S a countable amenable group and K compact metrizable and some sofic group action by Liang [2019].

A right Følner net for a monoid S is a net $\{F_i\}_{i \in I}$ in $\mathcal{P}_{\mathrm{fin}}(S) = [S]^{<\omega} \setminus \{\emptyset\}$ such that $\lim_{i \in I} \frac{|F_i \setminus F_i|}{|F_i|} = 0$ for every $s \in S$. We say that a cancellative monoid S is right amenable if it admits a right Følner net. (Amenability can be defined using finitely additive right invariant measures.)

Example

 $(\mathbb{N}, +)$ is amenable, witnessed by the Følner sequence $F_n = \{0, 1, \dots, n-1\}$. Every commutative monoid is amenable.

A right Følner net for a monoid S is a net $\{F_i\}_{i \in I}$ in $\mathcal{P}_{\mathrm{fin}}(S) = [S]^{<\omega} \setminus \{\emptyset\}$ such that $\lim_{i \in I} \frac{|F_i \setminus F_i|}{|F_i|} = 0$ for every $s \in S$. We say that a cancellative monoid S is right amenable if it admits a right Følner net. (Amenability can be defined using finitely additive right invariant measures.)

Example

 $(\mathbb{N}, +)$ is amenable, witnessed by the Følner sequence $F_n = \{0, 1, \dots, n-1\}$. Every commutative monoid is amenable.

A right Følner net for a monoid S is a net $\{F_i\}_{i \in I}$ in $\mathcal{P}_{\mathrm{fin}}(S) = [S]^{<\omega} \setminus \{\emptyset\}$ such that $\lim_{i \in I} \frac{|F_i \setminus F_i|}{|F_i|} = 0$ for every $s \in S$. We say that a cancellative monoid S is right amenable if it admits a right Følner net. (Amenability can be defined using finitely additive right invariant measures.)

Example

 $(\mathbb{N},+)$ is amenable, witnessed by the Følner sequence $F_n = \{0,1,\ldots,n-1\}$. Every commutative monoid is amenable.

A right Følner net for a monoid S is a net $\{F_i\}_{i \in I}$ in $\mathcal{P}_{\mathrm{fin}}(S) = [S]^{<\omega} \setminus \{\emptyset\}$ such that $\lim_{i \in I} \frac{|F_{is} \setminus F_{i}|}{|F_{i}|} = 0$ for every $s \in S$. We say that a cancellative monoid S is right amenable if it admits a right Følner net. (Amenability can be defined using finitely additive right invariant measures.)

Example

 $(\mathbb{N},+)$ is amenable, witnessed by the Følner sequence $F_n = \{0,1,\ldots,n-1\}$. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements $s, t \in S$, the intersection $Ss \cap St \neq \emptyset$ is not trivial.

Clearly, S is left Ore iff (S, \leq) is directed, with the partial preorder defined by $s \leq s'$ iff s' = ts for some $t \in S$.

A cancellative and right amenable monoid S is always left Ore, and therefore, S can be embedded in a group $G := S^{-1}S$ that we call group of left fractions of S, then G is amenable.

A right Følner net for a monoid S is a net $\{F_i\}_{i \in I}$ in $\mathcal{P}_{\mathrm{fin}}(S) = [S]^{<\omega} \setminus \{\emptyset\}$ such that $\lim_{i \in I} \frac{|F_i \setminus F_i|}{|F_i|} = 0$ for every $s \in S$. We say that a cancellative monoid S is right amenable if it admits a right Følner net. (Amenability can be defined using finitely additive right invariant measures.)

Example

 $(\mathbb{N},+)$ is amenable, witnessed by the Følner sequence $F_n = \{0,1,\ldots,n-1\}$. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements $s, t \in S$, the intersection $Ss \cap St \neq \emptyset$ is not trivial. Clearly, S is left Ore iff (S, \leq) is directed, with the partial preorder defined by s < s' iff s' = ts for some $t \in S$.

A cancellative and right amenable monoid S is always left Ore, and therefore, S can be embedded in a group $G := S^{-1}S$ that we call group of left fractions of S, then G is amenable.

A right Følner net for a monoid S is a net $\{F_i\}_{i \in I}$ in $\mathcal{P}_{\mathrm{fin}}(S) = [S]^{<\omega} \setminus \{\emptyset\}$ such that $\lim_{i \in I} \frac{|F_i \setminus F_i|}{|F_i|} = 0$ for every $s \in S$. We say that a cancellative monoid S is right amenable if it admits a right Følner net. (Amenability can be defined using finitely additive right invariant measures.)

Example

 $(\mathbb{N},+)$ is amenable, witnessed by the Følner sequence $F_n = \{0, 1, \dots, n-1\}$. Every commutative monoid is amenable.

The category ${\mathfrak M}$ of normed monoids

An objects of \mathfrak{M} is a normed monoid, i.e., a pair (M, v) where (M, +) is a commutative monoid and $v : M \to \mathbb{R}_{\geq 0}$ is a function. A morphism $\phi : (M_1, v_1) \to (M_2, v_2)$ in \mathfrak{M} is a contracting monoid homomorphism $\phi : M_1 \to M_2$ (i.e., $v_2(\phi(m)) \leq v_1(m)$ for all $m \in M_1$). So, ϕ is an isomorphism in \mathfrak{M} if it is a monoid isomorphism and $v_2(\phi(m)) = v_1(m)$ for all $m \in M_1$.

The norm v of normed monoid (M, v) is said to be:

- monotone provided $v(x) \le v(x+y)$, for all $x, y \in M$;
- sub-additive provided $v(x + y) \le v(x) + v(y)$, for all x, $y \in M$.

The entropies h_{alg} and h_{top} are based on the following normed monoids (other entropies can be obtained using other normed monoids).

▲ 同 ▶ ▲ 国 ▶ ▲ 国

The category ${\mathfrak M}$ of normed monoids

An objects of \mathfrak{M} is a *normed monoid*, i.e., a pair (M, v) where (M, +) is a commutative monoid and $v \colon M \to \mathbb{R}_{\geq 0}$ is a function.

A morphism $\phi: (M_1, v_1) \to (M_2, v_2)$ in \mathfrak{M} is a contracting monoid homomorphism $\phi: M_1 \to M_2$ (i.e., $v_2(\phi(m)) \leq v_1(m)$ for all $m \in M_1$). So, ϕ is an *isomorphism* in \mathfrak{M} if it is a monoid isomorphism and $v_2(\phi(m)) = v_1(m)$ for all $m \in M_1$.

The norm v of normed monoid (M, v) is said to be:

- monotone provided $v(x) \le v(x+y)$, for all $x, y \in M$;
- sub-additive provided $v(x + y) \le v(x) + v(y)$, for all x, $y \in M$.

The entropies h_{alg} and h_{top} are based on the following normed monoids (other entropies can be obtained using other normed monoids).

・ 同 ト ・ ヨ ト ・ ヨ

The category \mathfrak{M} of normed monoids

An objects of \mathfrak{M} is a *normed monoid*, i.e., a pair (M, v) where (M, +) is a commutative monoid and $v: M \to \mathbb{R}_{\geq 0}$ is a function. A morphism $\phi: (M_1, v_1) \to (M_2, v_2)$ in \mathfrak{M} is a contracting monoid homomorphism $\phi: M_1 \to M_2$ (i.e., $v_2(\phi(m)) \leq v_1(m)$ for all $m \in M_1$). So, ϕ is an *isomorphism* in \mathfrak{M} if it is a monoid isomorphism and $v_2(\phi(m)) = v_1(m)$ for all $m \in M_1$.

The norm v of normed monoid (M, v) is said to be:

- monotone provided $v(x) \le v(x + y)$, for all $x, y \in M$;
- sub-additive provided $v(x + y) \le v(x) + v(y)$, for all x, $y \in M$.

The entropies h_{alg} and h_{top} are based on the following normed monoids (other entropies can be obtained using other normed monoids).

周 ト イ ヨ ト イ ヨ ト

The category \mathfrak{M} of normed monoids

An objects of \mathfrak{M} is a *normed monoid*, i.e., a pair (M, v) where (M, +) is a commutative monoid and $v: M \to \mathbb{R}_{\geq 0}$ is a function. A morphism $\phi: (M_1, v_1) \to (M_2, v_2)$ in \mathfrak{M} is a contracting monoid homomorphism $\phi: M_1 \to M_2$ (i.e., $v_2(\phi(m)) \leq v_1(m)$ for all $m \in M_1$). So, ϕ is an *isomorphism* in \mathfrak{M} if it is a monoid isomorphism and $v_2(\phi(m)) = v_1(m)$ for all $m \in M_1$.

The norm v of normed monoid (M, v) is said to be:

- monotone provided $v(x) \le v(x+y)$, for all $x, y \in M$;
- sub-additive provided $v(x + y) \le v(x) + v(y)$, for all x, $y \in M$.

The entropies h_{alg} and h_{top} are based on the following normed monoids (other entropies can be obtained using other normed monoids).

伺 ト イ ヨ ト イ ヨ ト

The category \mathfrak{M} of normed monoids

An objects of \mathfrak{M} is a *normed monoid*, i.e., a pair (M, v) where (M, +) is a commutative monoid and $v: M \to \mathbb{R}_{\geq 0}$ is a function. A morphism $\phi: (M_1, v_1) \to (M_2, v_2)$ in \mathfrak{M} is a contracting monoid homomorphism $\phi: M_1 \to M_2$ (i.e., $v_2(\phi(m)) \leq v_1(m)$ for all $m \in M_1$). So, ϕ is an *isomorphism* in \mathfrak{M} if it is a monoid isomorphism and $v_2(\phi(m)) = v_1(m)$ for all $m \in M_1$.

The norm v of normed monoid (M, v) is said to be:

- monotone provided $v(x) \le v(x+y)$, for all $x, y \in M$;
- sub-additive provided $v(x + y) \le v(x) + v(y)$, for all x, $y \in M$.

The entropies h_{alg} and h_{top} are based on the following normed monoids (other entropies can be obtained using other normed monoids).

伺 ト イ ヨ ト イ ヨ ト

Example (1)

Let X be a discrete Abelian group and $\mathfrak{F}(X)$ be the family of all finite symmetric subsets of X containing 0. The pair $(\mathfrak{F}(X), +)$ is a commutative monoid (as $F_1 + F_2 = F_2 + F_1$ for $F_1, F_2 \in \mathfrak{F}(X)$), with norm defined by $v_{\mathfrak{F}}(F) = \log |F|$, for all $F \in \mathfrak{F}(X)$. The norm $v_{\mathfrak{F}}$ is both monotone and sub-additive.

Example (2)

Let K be a compact space and cov(K) the family of its open covers. For U, V∈ cov(K) let U ∨ V = {U ∩ V : U∈U, V∈V}. Then (cov(K), ∨) is a commutative monoid with a monotone and sub-additive norm given by v_{cov}(U) = log N(U) for all for all U ∈ cov(K), where N(U)=min{|V| : cov(K) ∋ V ⊆ U}.

• Let K be a compact group, μ its Haar measure K and $\mathfrak{U}(K)$ be the family of all symmetric compact neighborhoods of 0 in K. Then the pair $(\mathfrak{U}(K), \cap)$ is a commutative monoid, with norm $v_{\mathfrak{U}}$ defined by $v_{\mathfrak{U}}(U) = -\log \mu(U)$, for each $U \in \mathfrak{U}(K)$. Clearly, $v_{\mathfrak{U}}$ is monotone, but not subadditive in general.

Example (1)

Let X be a discrete Abelian group and $\mathfrak{F}(X)$ be the family of all finite symmetric subsets of X containing 0. The pair $(\mathfrak{F}(X), +)$ is a commutative monoid (as $F_1 + F_2 = F_2 + F_1$ for $F_1, F_2 \in \mathfrak{F}(X)$), with norm defined by $v_{\mathfrak{F}}(F) = \log |F|$, for all $F \in \mathfrak{F}(X)$. The norm $v_{\mathfrak{F}}$ is both monotone and sub-additive.

Example (2)

- Let K be a compact space and cov(K) the family of its open covers. For U, V∈ cov(K) let U ∨ V = {U ∩ V : U∈U, V∈V}. Then (cov(K), ∨) is a commutative monoid with a monotone and sub-additive norm given by v_{cov}(U) = log N(U) for all for all U ∈ cov(K), where N(U) = min{|V| : cov(K) ∋ V ⊆ U}.
- Let K be a compact group, µ its Haar measure K and 𝔅(K) be the family of all symmetric compact neighborhoods of 0 in K. Then the pair (𝔅(K), ∩) is a commutative monoid, with norm v_{𝔅ℓ} defined by v_{𝔅ℓ}(U) = − log µ(U), for each U ∈ 𝔅(K). Clearly, v_{𝔅ℓ} is monotone, but not subadditive in general.

Example (1)

Let X be a discrete Abelian group and $\mathfrak{F}(X)$ be the family of all finite symmetric subsets of X containing 0. The pair $(\mathfrak{F}(X), +)$ is a commutative monoid (as $F_1 + F_2 = F_2 + F_1$ for $F_1, F_2 \in \mathfrak{F}(X)$), with norm defined by $v_{\mathfrak{F}}(F) = \log |F|$, for all $F \in \mathfrak{F}(X)$. The norm $v_{\mathfrak{F}}$ is both monotone and sub-additive.

Example (2)

- Let K be a compact space and cov(K) the family of its open covers. For U, V∈ cov(K) let U ∨ V = {U ∩ V : U∈U, V∈V}. Then (cov(K), ∨) is a commutative monoid with a monotone and sub-additive norm given by v_{cov}(U) = log N(U) for all for all U ∈ cov(K), where N(U)=min{|V| : cov(K) ∋ V ⊆ U}.
- ② Let K be a compact group, µ its Haar measure K and 𝔅(K) be the family of all symmetric compact neighborhoods of 0 in K. Then the pair (𝔅(K), ∩) is a commutative monoid, with norm v_{𝔅ℓ} defined by v_{𝔅ℓ}(U) = $-\log µ(U)$, for each U ∈ 𝔅(K). Clearly, v_{𝔅ℓ} is monotone, but not subadditive in general.

Actions and trajectories in $\mathfrak M$

Let G be a fixed infinite cancellative right amenable monoid and M = ((M, +), v) a normed monoid. A G-action $G \stackrel{\alpha}{\frown} M$ on M is a monoid homomorphism $\alpha \colon G \to \operatorname{End}(M)$ (where $\operatorname{End}(M)$ is the monoid of all endomorphisms of normed monoids $M \to M$). For $x \in M$ and $F = \{f_1, \ldots, f_k\} \subseteq G$, define the F-trajectory of x by

$$T_F(\alpha, x) = \alpha_{f_1}(x) + \ldots + \alpha_{f_k}(x).$$

Two left *G*-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_1}{\frown} M_1$ on the normed monoids (M_1, v_1) and (M_2, v_2) are conjugated if there exists a *G*-equivariant isomorphism of normed monoids $f: M_1 \to M_2$, that is, $f \circ (\alpha_1)_g = (\alpha_2)_g \circ f$ for all $g \in G$.

One can introduce two weaker than conjugation notions of "equivalence" between actions on normed monoids:

.

Actions and trajectories in \mathfrak{M}

Let G be a fixed infinite cancellative right amenable monoid and M = ((M, +), v) a normed monoid. A G-action $G \stackrel{\alpha}{\frown} M$ on M is a monoid homomorphism $\alpha \colon G \to \operatorname{End}(M)$ (where $\operatorname{End}(M)$ is the monoid of all endomorphisms of normed monoids $M \to M$). For $x \in M$ and $F = \{f_1, \ldots, f_k\} \subseteq G$, define the F-trajectory of x by

$$T_F(\alpha, x) = \alpha_{f_1}(x) + \ldots + \alpha_{f_k}(x).$$

Two left G-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_1}{\frown} M_1$ on the normed monoids (M_1, v_1) and (M_2, v_2) are conjugated if there exists a G-equivariant isomorphism of normed monoids $f: M_1 \to M_2$, that is, $f \circ (\alpha_1)_g = (\alpha_2)_g \circ f$ for all $g \in G$.

One can introduce two weaker than conjugation notions of "equivalence" between actions on normed monoids:

Actions and trajectories in $\mathfrak M$

Let G be a fixed infinite cancellative right amenable monoid and M = ((M, +), v) a normed monoid. A G-action $G \stackrel{\alpha}{\frown} M$ on M is a monoid homomorphism $\alpha \colon G \to \operatorname{End}(M)$ (where $\operatorname{End}(M)$ is the monoid of all endomorphisms of normed monoids $M \to M$). For $x \in M$ and $F = \{f_1, \ldots, f_k\} \subseteq G$, define the F-trajectory of x by

$$T_F(\alpha, x) = \alpha_{f_1}(x) + \ldots + \alpha_{f_k}(x).$$

Two left G-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_1}{\frown} M_1$ on the normed monoids (M_1, v_1) and (M_2, v_2) are conjugated if there exists a G-equivariant isomorphism of normed monoids $f: M_1 \to M_2$, that is, $f \circ (\alpha_1)_g = (\alpha_2)_g \circ f$ for all $g \in G$.

One can introduce two weaker than conjugation notions of "equivalence" between actions on normed monoids:

Definition

For G-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_2}{\frown} M_2$, where $M_i = (M_i, v_i) \in \mathfrak{M}$ for i = 1, 2. we say that:

1. α_2 dominates α_1 if, for each $x \in M_1$, there exists $y \in M_2$ such that, $v_1(T_F(\alpha_1, x)) \leq v_2(T_F(\alpha_2, y))$ for all $F \in \mathcal{P}_{fin}(G)$,

2. α_2 asymptotically dominates α_1 if, for every right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ for S and for every $x \in M_1$, there exist a sequence $\{y_n\}_{n \in \mathbb{N}}$ in M_2 and functions $f_n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $n \in \mathbb{N}$, such that: $-\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to $\mathrm{id} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ on every bounded interval [0, C],

– there exists $j \in I$ such that, for all $i \geq j$ in I and all $n \in \mathbb{N}$,

$$\frac{v_1(\mathcal{T}_{F_i}(\alpha_1, x))}{|F_i|} \le f_n\left(\frac{v_2(\mathcal{T}_{F_i}(\alpha_2, y_n))}{|F_i|}\right)$$

3. α_1 is *equivalent* (resp., asymptotically equivalent) to α_2 if these two actions dominate (resp., asymptotically dominate) each other.

conjugated ightarrow equivalent ightarrow asymptotically equivalent

Definition

For *G*-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_2}{\frown} M_2$, where $M_i = (M_i, v_i) \in \mathfrak{M}$ for i = 1, 2. we say that:

1. α_2 dominates α_1 if, for each $x \in M_1$, there exists $y \in M_2$ such that, $v_1(T_F(\alpha_1, x)) \leq v_2(T_F(\alpha_2, y))$ for all $F \in \mathcal{P}_{fin}(G)$,

2. α_2 asymptotically dominates α_1 if, for every right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ for S and for every $x \in M_1$, there exist a sequence $\{y_n\}_{n \in \mathbb{N}}$ in M_2 and functions $f_n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $n \in \mathbb{N}$, such that:

 $- \{f_n\}_{n \in \mathbb{N}}$ converges uniformly to $\mathrm{id} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ on every bounded interval [0, C],

– there exists $j\in I$ such that, for all $i\geq j$ in I and all $n\in\mathbb{N},$

$$\frac{v_1(T_{F_i}(\alpha_1, x))}{|F_i|} \leq f_n\left(\frac{v_2(T_{F_i}(\alpha_2, y_n))}{|F_i|}\right)$$

3. α_1 is *equivalent* (resp., asymptotically equivalent) to α_2 if these two actions dominate (resp., asymptotically dominate) each other.

conjugated ightarrow equivalent ightarrow asymptotically equivalent

Definition

For G-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_2}{\frown} M_2$, where $M_i = (M_i, v_i) \in \mathfrak{M}$ for i = 1, 2. we say that:

1. α_2 dominates α_1 if, for each $x \in M_1$, there exists $y \in M_2$ such that, $v_1(T_F(\alpha_1, x)) \leq v_2(T_F(\alpha_2, y))$ for all $F \in \mathcal{P}_{fin}(G)$,

2. α_2 asymptotically dominates α_1 if, for every right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ for S and for every $x \in M_1$, there exist a sequence $\{y_n\}_{n \in \mathbb{N}}$ in M_2 and functions $f_n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $n \in \mathbb{N}$, such that: $-\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to $\mathrm{id} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ on every bounded interval [0, C],

– there exists $j\in I$ such that, for all $i\geq j$ in I and all $n\in\mathbb{N},$

$$\frac{v_1(T_{F_i}(\alpha_1, x))}{|F_i|} \leq f_n\left(\frac{v_2(T_{F_i}(\alpha_2, y_n))}{|F_i|}\right)$$

3. α_1 is *equivalent* (resp., asymptotically equivalent) to α_2 if these two actions dominate (resp., asymptotically dominate) each other.

conjugated ightarrow equivalent ightarrow asymptotically equivalent
Definition

For *G*-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_2}{\frown} M_2$, where $M_i = (M_i, v_i) \in \mathfrak{M}$ for i = 1, 2. we say that:

1. α_2 dominates α_1 if, for each $x \in M_1$, there exists $y \in M_2$ such that, $v_1(T_F(\alpha_1, x)) \leq v_2(T_F(\alpha_2, y))$ for all $F \in \mathcal{P}_{fin}(G)$,

2. α_2 asymptotically dominates α_1 if, for every right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ for S and for every $x \in M_1$, there exist a sequence $\{y_n\}_{n \in \mathbb{N}}$ in M_2 and functions $f_n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $n \in \mathbb{N}$, such that: $-\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to $\mathrm{id} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ on every bounded interval [0, C],

– there exists $j \in I$ such that, for all $i \ge j$ in I and all $n \in \mathbb{N}$,

$$\frac{\mathsf{v}_1(\mathcal{T}_{F_i}(\alpha_1, \mathbf{x}))}{|F_i|} \leq f_n\left(\frac{\mathsf{v}_2(\mathcal{T}_{F_i}(\alpha_2, \mathbf{y}_n))}{|F_i|}\right).$$

3. α_1 is *equivalent* (resp., asymptotically equivalent) to α_2 if these two actions dominate (resp., asymptotically dominate) each other.

conjugated ightarrow equivalent ightarrow asymptotically equivalent

Definition

For *G*-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_2}{\frown} M_2$, where $M_i = (M_i, v_i) \in \mathfrak{M}$ for i = 1, 2. we say that:

1. α_2 dominates α_1 if, for each $x \in M_1$, there exists $y \in M_2$ such that, $v_1(T_F(\alpha_1, x)) \leq v_2(T_F(\alpha_2, y))$ for all $F \in \mathcal{P}_{fin}(G)$,

2. α_2 asymptotically dominates α_1 if, for every right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ for S and for every $x \in M_1$, there exist a sequence $\{y_n\}_{n \in \mathbb{N}}$ in M_2 and functions $f_n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $n \in \mathbb{N}$, such that: $-\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to $\mathrm{id} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ on every bounded interval [0, C],

- there exists $j \in I$ such that, for all $i \ge j$ in I and all $n \in \mathbb{N}$,

$$\frac{v_1(T_{F_i}(\alpha_1, x))}{|F_i|} \leq f_n\left(\frac{v_2(T_{F_i}(\alpha_2, y_n))}{|F_i|}\right)$$

3. α_1 is *equivalent* (resp., asymptotically equivalent) to α_2 if these two actions dominate (resp., asymptotically dominate) each other.

conjugated ightarrow equivalent ightarrow asymptotically equivalent

Definition

For *G*-actions $G \stackrel{\alpha_1}{\frown} M_1$ and $G \stackrel{\alpha_2}{\frown} M_2$, where $M_i = (M_i, v_i) \in \mathfrak{M}$ for i = 1, 2. we say that:

1. α_2 dominates α_1 if, for each $x \in M_1$, there exists $y \in M_2$ such that, $v_1(T_F(\alpha_1, x)) \leq v_2(T_F(\alpha_2, y))$ for all $F \in \mathcal{P}_{fin}(G)$,

2. α_2 asymptotically dominates α_1 if, for every right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ for S and for every $x \in M_1$, there exist a sequence $\{y_n\}_{n \in \mathbb{N}}$ in M_2 and functions $f_n \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $n \in \mathbb{N}$, such that: $-\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to $\mathrm{id} \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ on every bounded interval [0, C],

– there exists $j \in I$ such that, for all $i \ge j$ in I and all $n \in \mathbb{N}$,

$$\frac{v_1(T_{F_i}(\alpha_1, x))}{|F_i|} \leq f_n\left(\frac{v_2(T_{F_i}(\alpha_2, y_n))}{|F_i|}\right)$$

3. α_1 is *equivalent* (resp., asymptotically equivalent) to α_2 if these two actions dominate (resp., asymptotically dominate) each other.

 $\mathsf{conjugated} \to \mathsf{equivalent} \to \mathsf{asymptotically} \ \mathsf{equivalent}$

Definition

Let M = (M, v) be a normed monoid with v monotone, $G \stackrel{\alpha}{\frown} M$ a left G-action. Then for a right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ of G the \mathfrak{s} -entropy of α at $m \in M$ is

$$H(\alpha, \mathfrak{s}, m) = \overline{\lim_{i \in I} \frac{v(T_{F_i}(\alpha, m))}{|F_i|}}.$$

The s-entropy of α is $h(\lambda, \mathfrak{s}) = \sup_{m \in M} H(\lambda, \mathfrak{s}, m)$.

If v is also sub-additive, then $H(\alpha, \mathfrak{s}, m)$ is a limit, independent on the choice of \mathfrak{s} (which measures the growth of $T_{F_i}(\alpha, m)$).

On the normed monoids in Examples (1) and (2), one has the following *G*-actions induced by a left *G*-action $G \stackrel{\lambda}{\frown} X$ and by a right *G*-action $K \stackrel{\beta}{\frown} G$, respectively on a discrete Abelian group X and on a compact space *K*.

Definition

Let M = (M, v) be a normed monoid with v monotone, $G \stackrel{\alpha}{\frown} M$ a left *G*-action. Then for a right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ of *G* the \mathfrak{s} -entropy of α at $m \in M$ is

$$H(\alpha,\mathfrak{s},m)=\overline{\lim_{i\in I}}\,\frac{v(T_{F_i}(\alpha,m))}{|F_i|}.$$

The s-entropy of
$$\alpha$$
 is $h(\lambda, \mathfrak{s}) = \sup_{m \in M} H(\lambda, \mathfrak{s}, m)$.

If v is also sub-additive, then $H(\alpha, \mathfrak{s}, m)$ is a limit, independent on the choice of \mathfrak{s} (which measures the growth of $\mathcal{T}_{F_i}(\alpha, m)$).

On the normed monoids in Examples (1) and (2), one has the following *G*-actions induced by a left *G*-action $G \stackrel{\lambda}{\frown} X$ and by a right *G*-action $K \stackrel{\rho}{\frown} G$, respectively on a discrete Abelian group X and on a compact space *K*.

Definition

Let M = (M, v) be a normed monoid with v monotone, $G \stackrel{\alpha}{\frown} M$ a left *G*-action. Then for a right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ of *G* the \mathfrak{s} -entropy of α at $m \in M$ is

$$H(\alpha,\mathfrak{s},m)=\overline{\lim_{i\in I}}\,\frac{v(T_{F_i}(\alpha,m))}{|F_i|}.$$

The
$$\mathfrak{s}$$
-entropy of α is $h(\lambda, \mathfrak{s}) = \sup_{m \in \mathcal{M}} H(\lambda, \mathfrak{s}, m)$.

If v is also sub-additive, then $H(\alpha, \mathfrak{s}, m)$ is a limit, independent on the choice of \mathfrak{s} (which measures the growth of $T_{F_i}(\alpha, m)$).

On the normed monoids in Examples (1) and (2), one has the following *G*-actions induced by a left *G*-action $G \stackrel{\lambda}{\frown} X$ and by a right *G*-action $K \stackrel{\rho}{\frown} G$, respectively on a discrete Abelian group *X* and on a compact space *K*.

Definition

Let M = (M, v) be a normed monoid with v monotone, $G \stackrel{\alpha}{\frown} M$ a left *G*-action. Then for a right Følner net $\mathfrak{s} = \{F_i\}_{i \in I}$ of *G* the \mathfrak{s} -entropy of α at $m \in M$ is

$$H(\alpha,\mathfrak{s},m)=\overline{\lim_{i\in I}}\,\frac{v(T_{F_i}(\alpha,m))}{|F_i|}.$$

The
$$\mathfrak{s}$$
-entropy of α is $h(\lambda, \mathfrak{s}) = \sup_{m \in M} H(\lambda, \mathfrak{s}, m)$.

If v is also sub-additive, then $H(\alpha, \mathfrak{s}, m)$ is a limit, independent on the choice of \mathfrak{s} (which measures the growth of $T_{F_i}(\alpha, m)$).

On the normed monoids in Examples (1) and (2), one has the following G-actions induced by a left G-action $G \stackrel{\lambda}{\curvearrowleft} X$ and by a right G-action $K \stackrel{\rho}{\backsim} G$, respectively on a discrete Abelian group X and on a compact space K.

Let K be a compact space and $K \curvearrowleft{\rho}{\curvearrowleft} G$ a right G-action. Define the left G-actions:

 $\ \, { \ O \ } \ \, G \stackrel{\rho_{\rm cov}}{\curvearrowright} {\rm cov}(K), \ \, {\rm by} \ \, (\rho_{\rm cov})_g(\mathcal{U}) = \rho_g^{-1}(\mathcal{U}), \ \, {\rm for \ every} \ \, g \in G;$

 $T_F(\rho_{\mathrm{cov}}, \mathcal{U}) = \bigvee_{g \in F} \rho_g^{-1}(\mathcal{U}) \text{ and } T_F(\rho_{\mathfrak{U}}, \mathcal{U}) = \bigcap_{g \in F} \rho_g^{-1}(\mathcal{U})$

In particular, for any right Følner net \mathfrak{s} for G, $H(\rho_{\rm cov}, \mathfrak{s}, \mathcal{U}) = H_{\rm top}(\rho, \mathcal{U})$ and $h(\rho, \mathfrak{s}) = h_{\rm top}(\rho)$ is the topological entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ coincides with Bowen's entropy h_{Bowen} with respect to \mathfrak{s} .

イロト イヨト イヨト

Let K be a compact space and $K \curvearrowleft{\rho}{\sim} G$ a right G-action. Define the left G-actions:

 $\ \, { \ O \ } \ \, { G \ } ^{\rho_{\rm cov}} _{\frown} \, {\rm cov}({ K }), \, {\rm by} \, (\rho_{\rm cov})_g({ \mathcal U}) = \rho_g^{-1}({ \mathcal U}), \, {\rm for \ every} \, g \in { G };$

$$T_F(\rho_{\mathrm{cov}}, \mathcal{U}) = \bigvee_{g \in F} \rho_g^{-1}(\mathcal{U}) \text{ and } T_F(\rho_{\mathfrak{U}}, \mathcal{U}) = \bigcap_{g \in F} \rho_g^{-1}(\mathcal{U})$$

In particular, for any right Følner net \mathfrak{s} for G, $H(\rho_{\rm cov}, \mathfrak{s}, \mathcal{U}) = H_{\rm top}(\rho, \mathcal{U})$ and $h(\rho, \mathfrak{s}) = h_{\rm top}(\rho)$ is the topological entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ coincides with Bowen's entropy h_{Bowen} with respect to \mathfrak{s} .

< ロ > < 同 > < 三 > < 三 >

Let K be a compact space and $K \curvearrowleft{\rho}{\sim} G$ a right G-action. Define the left G-actions:

For any $F \in \mathcal{P}_{\operatorname{fin}}(G)$, $\mathcal{U} \in \operatorname{cov}(K)$ and $U \in \mathfrak{U}(K)$,

$$T_F(\rho_{\mathrm{cov}}, \mathcal{U}) = \bigvee_{g \in F} \rho_g^{-1}(\mathcal{U}) \text{ and } T_F(\rho_{\mathfrak{U}}, \mathcal{U}) = \bigcap_{g \in F} \rho_g^{-1}(\mathcal{U})$$

In particular, for any right Følner net \mathfrak{s} for G, $H(\rho_{\rm cov}, \mathfrak{s}, \mathcal{U}) = H_{\rm top}(\rho, \mathcal{U})$ and $h(\rho, \mathfrak{s}) = h_{\rm top}(\rho)$ is the topological entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ coincides with Bowen's entropy h_{Bowen} with respect to \mathfrak{s} .

< ロ > < 同 > < 三 > < 三 >

Let K be a compact space and $K \curvearrowleft{\rho}{\sim} G$ a right G-action. Define the left G-actions:

$$\ \, {\tt G} \ \, \overset{\rho_{\rm cov}}{\curvearrowright} \ \, {\rm cov}({\sf K}), \ \, {\sf by} \ \, (\rho_{\rm cov})_g({\cal U}) = \rho_g^{-1}({\cal U}), \ \, {\sf for \ \, every} \ \, g\in {\sf G};$$

 $\ \, { \ O } \ \, { \ G } \ \, \overset{\rho_{\mathfrak{U}}}{ \sim} \mathfrak{U}(K), \, \text{by} \, (\rho_{\mathfrak{U}})_g(U) = \rho_g^{-1}(U), \, \text{for every} \, g \in G.$

For any $F \in \mathcal{P}_{\operatorname{fin}}(G)$, $\mathcal{U} \in \operatorname{cov}(K)$ and $U \in \mathfrak{U}(K)$,

$$T_F(\rho_{cov}, \mathcal{U}) = \bigvee_{g \in F} \rho_g^{-1}(\mathcal{U}) \text{ and } T_F(\rho_{\mathfrak{U}}, \mathcal{U}) = \bigcap_{g \in F} \rho_g^{-1}(\mathcal{U})$$

In particular, for any right Følner net \mathfrak{s} for G, $H(\rho_{\rm cov}, \mathfrak{s}, \mathcal{U}) = H_{\rm top}(\rho, \mathcal{U})$ and $h(\rho, \mathfrak{s}) = h_{\rm top}(\rho)$ is the topological entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ coincides with Bowen's entropy h_{Bowen} with respect to \mathfrak{s} .

イロト イポト イラト イラ

Let K be a compact space and $K \curvearrowleft{\rho}{\curvearrowleft} G$ a right G-action. Define the left G-actions:

$$\ \, {\tt G} \ \, \overset{\rho_{\rm cov}}{\curvearrowright} \ \, {\rm cov}({\sf K}), \ \, {\sf by} \ \, (\rho_{\rm cov})_g({\cal U}) = \rho_g^{-1}({\cal U}), \ \, {\sf for \ \, every} \ \, g\in {\sf G};$$

 $\ \, { \ O \ } \ \, { \ G \ } ^{\rho_{\mathfrak{U}}} _{\sim} \mathfrak{U}(K), \ \, \mathrm{by} \ \, (\rho_{\mathfrak{U}})_g(U) = \rho_g^{-1}(U), \ \, \mathrm{for \ every} \ \, g \in G.$

For any $F \in \mathcal{P}_{\operatorname{fin}}(G)$, $\mathcal{U} \in \operatorname{cov}(K)$ and $U \in \mathfrak{U}(K)$,

$$T_F(\rho_{\rm cov}, \mathcal{U}) = \bigvee_{g \in F} \rho_g^{-1}(\mathcal{U}) \text{ and } T_F(\rho_{\mathfrak{U}}, \mathcal{U}) = \bigcap_{g \in F} \rho_g^{-1}(\mathcal{U})$$

In particular, for any right Følner net \mathfrak{s} for G, $H(\rho_{cov}, \mathfrak{s}, \mathcal{U}) = H_{top}(\rho, \mathcal{U})$ and $h(\rho, \mathfrak{s}) = h_{top}(\rho)$ is the topological entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ coincides with Bowen's entropy h_{Bowen} with respect to \mathfrak{s} .

イロト イポト イラト イラト

Let K be a compact space and $K \curvearrowleft{\rho}{\sim} G$ a right G-action. Define the left G-actions:

$$\ \, {\tt G} \ \, \overset{\rho_{\rm cov}}{\curvearrowright} \ \, {\rm cov}({\sf K}), \ \, {\sf by} \ \, (\rho_{\rm cov})_g({\cal U}) = \rho_g^{-1}({\cal U}), \ \, {\sf for \ \, every} \ \, g\in {\sf G};$$

 $\ \, { \ O \ } \ \, { \ G \ } ^{\rho_{\mathfrak{U}}} \mathcal{U}(K), \ \, \text{by} \ (\rho_{\mathfrak{U}})_g(U) = \rho_g^{-1}(U), \ \, \text{for every} \ g \in G.$

For any $F \in \mathcal{P}_{\operatorname{fin}}(G)$, $\mathcal{U} \in \operatorname{cov}(K)$ and $U \in \mathfrak{U}(K)$,

$$T_F(\rho_{\rm cov}, \mathcal{U}) = \bigvee_{g \in F} \rho_g^{-1}(\mathcal{U}) \text{ and } T_F(\rho_{\mathfrak{U}}, \mathcal{U}) = \bigcap_{g \in F} \rho_g^{-1}(\mathcal{U})$$

In particular, for any right Følner net \mathfrak{s} for G, $H(\rho_{\rm cov}, \mathfrak{s}, \mathcal{U}) = H_{\rm top}(\rho, \mathcal{U})$ and $h(\rho, \mathfrak{s}) = h_{\rm top}(\rho)$ is the topological entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ coincides with Bowen's entropy h_{Bowen} with respect to \mathfrak{s} .

Let X be a discrete Abelian group and $G \stackrel{\lambda}{\curvearrowright} X$ a left G-action.

The left *G*-action $G \stackrel{\wedge \mathfrak{F}}{\curvearrowright} \mathfrak{F}(X)$ is defined by $(\lambda_{\mathfrak{F}})_g(F) = \lambda_g(F)$ for $g \in G, F \in \mathcal{P}_{\mathrm{fin}}(G)$. Then for any $F \in \mathcal{P}_{\mathrm{fin}}(G)$ and $E \in \mathfrak{F}(X)$,

$$T_F(\lambda_{\mathfrak{F}}, E) = \sum_{g \in F} \lambda_g(E),$$

is the $\lambda_{\mathfrak{F}}$ -trajectory of L with respect to F. The limit $H_{\text{alg}}(\lambda, E) := H(\lambda_{\mathfrak{F}}, \mathfrak{s}, E)$ (for some right Følner net \mathfrak{s} for G) is the algebraic entropy of λ w.r.t. E and $h_{\text{alg}}(\lambda) := h(\lambda_{\mathfrak{F}}, \mathfrak{s}) -$ the algebraic entropy of λ , as defined by Fornasiero, Giordano Bruno, DD [2019] (for \mathbb{N} -actions h_{alg} was introduced by Giordano Bruno, DD [2010], for \mathbb{Z} -actions it coincides with Peters' entropy h_{alg} although his definition cannot be extended to \mathbb{N} -actions).

Let X be a discrete Abelian group and $G \stackrel{\lambda}{\curvearrowright} X$ a left G-action. The left G-action $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ is defined by $(\lambda_{\mathfrak{F}})_g(F) = \lambda_g(F)$ for $g \in G, F \in \mathcal{P}_{\mathrm{fin}}(G)$. Then for any $F \in \mathcal{P}_{\mathrm{fin}}(G)$ and $E \in \mathfrak{F}(X)$,

$$T_F(\lambda_{\mathfrak{F}}, E) = \sum_{g \in F} \lambda_g(E),$$

is the $\lambda_{\mathfrak{F}}$ -trajectory of *L* with respect to *F*.

The limit $H_{alg}(\lambda, E) := H(\lambda_{\mathfrak{F}}, \mathfrak{s}, E)$ (for some right Følner net \mathfrak{s} for G) is the algebraic entropy of λ w.r.t. E and $h_{alg}(\lambda) := h(\lambda_{\mathfrak{F}}, \mathfrak{s}) -$ the algebraic entropy of λ , as defined by Fornasiero, Giordano Bruno, DD [2019] (for \mathbb{N} -actions h_{alg} was introduced by Giordano Bruno, DD [2010], for \mathbb{Z} -actions it coincides with Peters' entropy h_{alg} although his definition cannot be extended to \mathbb{N} -actions).

Let X be a discrete Abelian group and $G \stackrel{\lambda}{\curvearrowright} X$ a left G-action. The left G-action $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ is defined by $(\lambda_{\mathfrak{F}})_g(F) = \lambda_g(F)$ for $g \in G, F \in \mathcal{P}_{\mathrm{fin}}(G)$. Then for any $F \in \mathcal{P}_{\mathrm{fin}}(G)$ and $E \in \mathfrak{F}(X)$,

$$T_F(\lambda_{\mathfrak{F}}, E) = \sum_{g \in F} \lambda_g(E),$$

is the $\lambda_{\mathfrak{F}}$ -trajectory of L with respect to F. The limit $H_{\text{alg}}(\lambda, E) := H(\lambda_{\mathfrak{F}}, \mathfrak{s}, E)$ (for some right Følner net \mathfrak{s} for G) is the algebraic entropy of λ w.r.t. E and $h_{\text{alg}}(\lambda) := h(\lambda_{\mathfrak{F}}, \mathfrak{s}) -$ the algebraic entropy of λ , as defined by Fornasiero, Giordano Bruno, DD [2019] (for N-actions h_{alg} was introduced by Giordano Bruno, DD [2010], for \mathbb{Z} -actions it coincides with Peters' entropy h_{alg} although his definition cannot be extended to N-actions).

Let X be a discrete Abelian group and $G \stackrel{\lambda}{\curvearrowright} X$ a left G-action. The left G-action $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ is defined by $(\lambda_{\mathfrak{F}})_g(F) = \lambda_g(F)$ for $g \in G, F \in \mathcal{P}_{\mathrm{fin}}(G)$. Then for any $F \in \mathcal{P}_{\mathrm{fin}}(G)$ and $E \in \mathfrak{F}(X)$,

$$T_F(\lambda_{\mathfrak{F}}, E) = \sum_{g \in F} \lambda_g(E),$$

is the $\lambda_{\mathfrak{F}}$ -trajectory of L with respect to F. The limit $H_{\text{alg}}(\lambda, E) := H(\lambda_{\mathfrak{F}}, \mathfrak{s}, E)$ (for some right Følner net \mathfrak{s} for G) is the algebraic entropy of λ w.r.t. E and $h_{\text{alg}}(\lambda) := h(\lambda_{\mathfrak{F}}, \mathfrak{s}) -$ the algebraic entropy of λ , as defined by Fornasiero, Giordano Bruno, DD [2019] (for \mathbb{N} -actions h_{alg} was introduced by Giordano Bruno, DD [2010], for \mathbb{Z} -actions it coincides with Peters' entropy h_{alg} although his definition cannot be extended to \mathbb{N} -actions).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The following lemma plays a key role in the proof of the Bridge Theorem:

_emma

Let $M_1 = (M_1, v_1)$ and $M_2 = (M_2, v_2)$ be two normed monoids, and $G \stackrel{\alpha_1}{\sim} M_1$, $G \stackrel{\alpha_2}{\sim} M_2$ left G-actions. If α_1 and α_2 are asymptotically equivalent, then $h(\alpha_1, \mathfrak{s}) = h(\alpha_2, \mathfrak{s})$ for every right Følner net \mathfrak{s} for G.

Theorem

If G is an amenable group and $K \stackrel{\rho}{\curvearrowleft} G$ a right linear action on a compact group K, then $G \stackrel{\rho_{\mathfrak{U}}}{\hookrightarrow} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\operatorname{cov}}}{\curvearrowright} \operatorname{cov}(K)$ are equivalent. So, $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{\operatorname{cov}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Since $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ is Bowen's entropy, this gives as a by-product a new proof of the well known fact that $h_{top} = h_{Bowen}$ in compact groups.

< ロ > < 同 > < 三 > < 三 >

The following lemma plays a key role in the proof of the Bridge Theorem:

Lemma

Let $M_1 = (M_1, v_1)$ and $M_2 = (M_2, v_2)$ be two normed monoids, and $G \stackrel{\alpha_1}{\frown} M_1$, $G \stackrel{\alpha_2}{\frown} M_2$ left G-actions. If α_1 and α_2 are asymptotically equivalent, then $h(\alpha_1, \mathfrak{s}) = h(\alpha_2, \mathfrak{s})$ for every right Følner net \mathfrak{s} for G.

Theorem

If G is an amenable group and $K \stackrel{\rho}{\curvearrowleft} G$ a right linear action on a compact group K, then $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{cov}}{\curvearrowright} \operatorname{cov}(K)$ are equivalent. So, $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Since $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ is Bowen's entropy, this gives as a by-product a new proof of the well known fact that $h_{top} = h_{Bowen}$ in compact groups.

• • = • • = •

The following lemma plays a key role in the proof of the Bridge Theorem:

Lemma

Let $M_1 = (M_1, v_1)$ and $M_2 = (M_2, v_2)$ be two normed monoids, and $G \stackrel{\alpha_1}{\frown} M_1$, $G \stackrel{\alpha_2}{\frown} M_2$ left G-actions. If α_1 and α_2 are asymptotically equivalent, then $h(\alpha_1, \mathfrak{s}) = h(\alpha_2, \mathfrak{s})$ for every right Følner net \mathfrak{s} for G.

Theorem

If G is an amenable group and $K \curvearrowright^{\rho} G$ a right linear action on a compact group K, then $G \curvearrowright^{\rho_{\mathfrak{U}}} \mathfrak{U}(K)$ and $G \curvearrowright^{\rho_{cov}} \operatorname{cov}(K)$ are equivalent. So, $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Since $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ is Bowen's entropy, this gives as a by-product a new proof of the well known fact that $h_{top} = h_{Bowen}$ in compact groups.

★ ∃ ► < ∃ ►</p>

The following lemma plays a key role in the proof of the Bridge Theorem:

Lemma

Let $M_1 = (M_1, v_1)$ and $M_2 = (M_2, v_2)$ be two normed monoids, and $G \stackrel{\alpha_1}{\frown} M_1$, $G \stackrel{\alpha_2}{\frown} M_2$ left G-actions. If α_1 and α_2 are asymptotically equivalent, then $h(\alpha_1, \mathfrak{s}) = h(\alpha_2, \mathfrak{s})$ for every right Følner net \mathfrak{s} for G.

Theorem

If G is an amenable group and $K \curvearrowright^{\rho} G$ a right linear action on a compact group K, then $G \curvearrowright^{\rho_{\mathfrak{U}}} \mathfrak{U}(K)$ and $G \curvearrowright^{\rho_{cov}} \operatorname{cov}(K)$ are equivalent. So, $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Since $h(\rho_{\mathfrak{U}}, \mathfrak{s})$ is Bowen's entropy, this gives as a by-product a new proof of the well known fact that $h_{top} = h_{Bowen}$ in compact groups.

For an infinite LCA group Γ let $\mathfrak{U}(\Gamma)$ be the family of symmetric compact neighborhoods of $0 \in \Gamma$ and μ be a fixed Haar measure. Our main interest is in the case when $\Gamma = X$ is discrete (so μ is the counting measure) and when $\Gamma = K$ is compact (when there is a unique Haar measure such that $\mu(K) = 1$.

 $L^{1}(\Gamma)$ – the space of absolutely integrable functions $\phi \colon \Gamma \to \mathbb{C}$ (those having $||\phi||_{1} = \int_{x \in \Gamma} |\phi(x)| \delta \mu(x) < \infty$), identifying those that coincide almost everywhere, so that $||-||_{1}$ is a norm on $L^{1}(\Gamma)$. $\mathfrak{P}(\Gamma)$ – the set of continuous and positive-definite functions on Γ ($\phi \colon \Gamma \to \mathbb{C}$, is positive-definite if $\sum_{i,j=1}^{n} c_{i}\overline{c_{j}}\phi(x_{i} - x_{j}) \in \mathbb{R}_{\geq 0}$, for all $n \in \mathbb{N}_{>0}$, $x_{1}, \ldots, x_{n} \in \Gamma$ and $c_{1}, \ldots, c_{n} \in \mathbb{C}$).

If $\phi, \psi \in L^1(\Gamma)$ then $\int_{y \in \Gamma} |\phi(y)\psi(x - y)|\delta\mu(y) < \infty$ for almost all $x \in \Gamma$, so the convolution

$$(\phi * \psi)(x) = \int_{y \in \Gamma} \phi(y)\psi(x - y)\delta\mu(y)$$

is defined almost everywhere and $\phi st \psi \in L^1(\Gamma)$.

For an infinite LCA group Γ let $\mathfrak{U}(\Gamma)$ be the family of symmetric compact neighborhoods of $0 \in \Gamma$ and μ be a fixed Haar measure. Our main interest is in the case when $\Gamma = X$ is discrete (so μ is the counting measure) and when $\Gamma = K$ is compact (when there is a unique Haar measure such that $\mu(K) = 1$.

 $L^{1}(\Gamma)$ – the space of absolutely integrable functions $\phi \colon \Gamma \to \mathbb{C}$ (those having $||\phi||_{1} = \int_{x \in \Gamma} |\phi(x)| \delta \mu(x) < \infty$), identifying those that coincide almost everywhere, so that $||-||_{1}$ is a norm on $L^{1}(\Gamma)$. $\mathfrak{P}(\Gamma)$ – the set of continuous and positive-definite functions on Γ ($\phi \colon \Gamma \to \mathbb{C}$, is positive-definite if $\sum_{i,j=1}^{n} c_{i}\overline{c_{j}}\phi(x_{i} - x_{j}) \in \mathbb{R}_{\geq 0}$, for all $n \in \mathbb{N}_{>0}$, $x_{1}, \ldots, x_{n} \in \Gamma$ and $c_{1}, \ldots, c_{n} \in \mathbb{C}$).

If $\phi, \psi \in L^1(\Gamma)$ then $\int_{y \in \Gamma} |\phi(y)\psi(x - y)|\delta\mu(y) < \infty$ for almost all $x \in \Gamma$, so the convolution

$$(\phi * \psi)(x) = \int_{y \in \Gamma} \phi(y)\psi(x - y)\delta\mu(y)$$

is defined almost everywhere and $\phi * \psi \in L^1([\underline{\Gamma}), \underline{\Gamma}]$

For an infinite LCA group Γ let $\mathfrak{U}(\Gamma)$ be the family of symmetric compact neighborhoods of $0 \in \Gamma$ and μ be a fixed Haar measure. Our main interest is in the case when $\Gamma = X$ is discrete (so μ is the counting measure) and when $\Gamma = K$ is compact (when there is a unique Haar measure such that $\mu(K) = 1$.

 $L^{1}(\Gamma)$ – the space of absolutely integrable functions $\phi: \Gamma \to \mathbb{C}$ (those having $||\phi||_{1} = \int_{x \in \Gamma} |\phi(x)| \delta \mu(x) < \infty$), identifying those that coincide almost everywhere, so that $||-||_{1}$ is a norm on $L^{1}(\Gamma)$. $\mathfrak{P}(\Gamma)$ – the set of continuous and positive-definite functions on Γ ($\phi: \Gamma \to \mathbb{C}$, is positive-definite if $\sum_{i,j=1}^{n} c_{i}\overline{c_{j}}\phi(x_{i}-x_{j}) \in \mathbb{R}_{\geq 0}$, for all $n \in \mathbb{N}_{>0}, x_{1}, \ldots, x_{n} \in \Gamma$ and $c_{1}, \ldots, c_{n} \in \mathbb{C}$).

If $\phi, \psi \in L^1(\Gamma)$ then $\int_{y \in \Gamma} |\phi(y)\psi(x-y)|\delta\mu(y) < \infty$ for almost all $x \in \Gamma$, so the convolution

$$(\phi * \psi)(x) = \int_{y \in \Gamma} \phi(y)\psi(x - y)\delta\mu(y)$$

is defined almost everywhere and $\phi * \psi \in L^1(\Gamma)$.

For an infinite LCA group Γ let $\mathfrak{U}(\Gamma)$ be the family of symmetric compact neighborhoods of $0 \in \Gamma$ and μ be a fixed Haar measure. Our main interest is in the case when $\Gamma = X$ is discrete (so μ is the counting measure) and when $\Gamma = K$ is compact (when there is a unique Haar measure such that $\mu(K) = 1$.

 $L^{1}(\Gamma)$ – the space of absolutely integrable functions $\phi: \Gamma \to \mathbb{C}$ (those having $||\phi||_{1} = \int_{x \in \Gamma} |\phi(x)| \delta \mu(x) < \infty$), identifying those that coincide almost everywhere, so that $||-||_{1}$ is a norm on $L^{1}(\Gamma)$. $\mathfrak{P}(\Gamma)$ – the set of continuous and positive-definite functions on Γ ($\phi: \Gamma \to \mathbb{C}$, is positive-definite if $\sum_{i,j=1}^{n} c_{i}\overline{c_{j}}\phi(x_{i} - x_{j}) \in \mathbb{R}_{\geq 0}$, for all $n \in \mathbb{N}_{>0}, x_{1}, \ldots, x_{n} \in \Gamma$ and $c_{1}, \ldots, c_{n} \in \mathbb{C}$).

If $\phi, \psi \in L^1(\Gamma)$ then $\int_{y \in \Gamma} |\phi(y)\psi(x-y)|\delta\mu(y) < \infty$ for almost all $x \in \Gamma$, so the convolution

$$(\phi * \psi)(x) = \int_{y \in \Gamma} \phi(y)\psi(x - y)\delta\mu(y)$$

is defined almost everywhere and $\phi st \psi \in L^1(\Gamma)$.

For an infinite LCA group Γ let $\mathfrak{U}(\Gamma)$ be the family of symmetric compact neighborhoods of $0 \in \Gamma$ and μ be a fixed Haar measure. Our main interest is in the case when $\Gamma = X$ is discrete (so μ is the counting measure) and when $\Gamma = K$ is compact (when there is a unique Haar measure such that $\mu(K) = 1$.

 $L^{1}(\Gamma)$ – the space of absolutely integrable functions $\phi: \Gamma \to \mathbb{C}$ (those having $||\phi||_{1} = \int_{x \in \Gamma} |\phi(x)| \delta \mu(x) < \infty$), identifying those that coincide almost everywhere, so that $||-||_{1}$ is a norm on $L^{1}(\Gamma)$. $\mathfrak{P}(\Gamma)$ – the set of continuous and positive-definite functions on Γ ($\phi: \Gamma \to \mathbb{C}$, is positive-definite if $\sum_{i,j=1}^{n} c_{i}\overline{c_{j}}\phi(x_{i} - x_{j}) \in \mathbb{R}_{\geq 0}$, for all $n \in \mathbb{N}_{>0}$, $x_{1}, \ldots, x_{n} \in \Gamma$ and $c_{1}, \ldots, c_{n} \in \mathbb{C}$).

If $\phi, \psi \in L^1(\Gamma)$ then $\int_{y \in \Gamma} |\phi(y)\psi(x-y)|\delta\mu(y) < \infty$ for almost all $x \in \Gamma$, so the convolution

$$(\phi * \psi)(x) = \int_{y \in \Gamma} \phi(y)\psi(x-y)\delta\mu(y)$$

is defined almost everywhere and $\phi * \psi \in L^1(\Gamma)$.

Let $\mathcal{M}(\Gamma) = \{ \phi \in L^1(\Gamma) \cap \mathfrak{P}(\Gamma) : \phi(\Gamma) \subseteq \mathbb{R}_{\geq 0} \} \setminus \{ 0 \}$ for any LCA group Γ .

For the discrete Abelian group X, the algebraic Peters monoid is $\mathcal{M}_{alg}(X) := (\mathcal{M}(X), *, \chi_{\{0\}})$. Define $w_{alg} \colon \mathcal{M}_{alg}(X) \to \mathbb{R}_{\geq 0}$, by

 $w_{\mathrm{alg}}(\phi) = \log(||\phi||_1/\phi(0)) \ \ \text{for} \ \ \phi \in \mathcal{M}(X).$

This makes sense since $||\phi||_1 = \sum_{x \in X} \phi(x) \ge \phi(0) \ne 0$.

.emma

In the above notation:

- $(\mathcal{M}_{alg}(X), w_{alg})$ is a commutative normed monoid;
- \bigcirc the norm $w_{alg}: \mathcal{M}_{alg}(X) \to \mathbb{R}_{\geq 0}$ is monotone.

(日本) (日本) (日本)

Let $\mathcal{M}(\Gamma) = \{ \phi \in L^1(\Gamma) \cap \mathfrak{P}(\Gamma) : \phi(\Gamma) \subseteq \mathbb{R}_{\geq 0} \} \setminus \{ 0 \}$ for any LCA group Γ .

For the discrete Abelian group X, the algebraic Peters monoid is $\mathcal{M}_{\mathrm{alg}}(X) := (\mathcal{M}(X), *, \chi_{\{0\}})$. Define $w_{\mathrm{alg}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0}$, by

 $w_{\mathrm{alg}}(\phi) = \log(||\phi||_1/\phi(0)) \ \ ext{for} \ \ \phi \in \mathcal{M}(X).$

This makes sense since $||\phi||_1 = \sum_{x \in X} \phi(x) \ge \phi(0) \neq 0$.

_emma

In the above notation:

- (*M*_{alg}(X), w_{alg}) is a commutative normed monoid;
- 9 the norm $w_{alg} \colon \mathcal{M}_{alg}(X) \to \mathbb{R}_{\geq 0}$ is monotone.

< 同 > < 三 > < 三 > -

Let $\mathcal{M}(\Gamma) = \{ \phi \in L^1(\Gamma) \cap \mathfrak{P}(\Gamma) : \phi(\Gamma) \subseteq \mathbb{R}_{\geq 0} \} \setminus \{ 0 \}$ for any LCA group Γ .

For the discrete Abelian group X, the algebraic Peters monoid is $\mathcal{M}_{\mathrm{alg}}(X) := (\mathcal{M}(X), *, \chi_{\{0\}})$. Define $w_{\mathrm{alg}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0}$, by

 $w_{\mathrm{alg}}(\phi) = \log(||\phi||_1/\phi(0)) \ \ ext{for} \ \ \phi \in \mathcal{M}(X).$

This makes sense since $||\phi||_1 = \sum_{x \in X} \phi(x) \ge \phi(0) \neq 0$.

_emma

In the above notation:

- (*M*_{alg}(X), w_{alg}) is a commutative normed monoid;
- 9 the norm $w_{alg} \colon \mathcal{M}_{alg}(X) \to \mathbb{R}_{\geq 0}$ is monotone.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Let $\mathcal{M}(\Gamma) = \{ \phi \in L^1(\Gamma) \cap \mathfrak{P}(\Gamma) : \phi(\Gamma) \subseteq \mathbb{R}_{\geq 0} \} \setminus \{ 0 \}$ for any LCA group Γ .

For the discrete Abelian group X, the algebraic Peters monoid is $\mathcal{M}_{\mathrm{alg}}(X) := (\mathcal{M}(X), *, \chi_{\{0\}})$. Define $w_{\mathrm{alg}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0}$, by

 $w_{\mathrm{alg}}(\phi) = \log(||\phi||_1/\phi(0)) \ \ ext{for} \ \ \phi \in \mathcal{M}(X).$

This makes sense since $||\phi||_1 = \sum_{x \in X} \phi(x) \ge \phi(0) \neq 0$.

Lemma

In the above notation:

- $(\mathcal{M}_{\mathrm{alg}}(X), w_{\mathrm{alg}}) \text{ is a commutative normed monoid; }$
- @ the norm $w_{alg}: \mathcal{M}_{alg}(X) \to \mathbb{R}_{\geq 0}$ is monotone.

Dually, for a compact Abelian group K, the topological Peters monoid is $\mathcal{M}_{top}(K) = (\mathcal{M}(K), \cdot, \chi_K)$. Define the norm

 $w_{\mathrm{top}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0},$

by $w_{alg}(\phi) = \log(\phi(0)/||\phi||_1)$ for $\phi \in \mathcal{M}(K)$. This definition is correct since $\phi(0) \ge ||\phi||_1 > 0$ (being $\phi(0) \ge \phi(x)$ for every $x \in K$).

.emma

In the above notation:

- $(\mathcal{M}_{top}(K), w_{top})$ is a commutative normed monoid.
- the norm w_{top} is monotone.

Next we see that these two normed moinoids are isomorphic when $K = X^{\wedge}$.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Dually, for a compact Abelian group K, the topological Peters monoid is $\mathcal{M}_{top}(K) = (\mathcal{M}(K), \cdot, \chi_K)$. Define the norm

 $w_{\mathrm{top}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0},$

by $w_{alg}(\phi) = \log(\phi(0)/||\phi||_1)$ for $\phi \in \mathcal{M}(K)$. This definition is correct since $\phi(0) \ge ||\phi||_1 > 0$ (being $\phi(0) \ge \phi(x)$ for every $x \in K$).

emma

In the above notation:

- \bigcirc $(\mathcal{M}_{top}(K), w_{top})$ is a commutative normed monoid.
- the norm w_{top} is monotone.

Next we see that these two normed moinoids are isomorphic when $K = X^{\wedge}$.

< 同 ト < 三 ト < 三 ト

Dually, for a compact Abelian group K, the topological Peters monoid is $\mathcal{M}_{top}(K) = (\mathcal{M}(K), \cdot, \chi_K)$. Define the norm

$$w_{\mathrm{top}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0},$$

by $w_{alg}(\phi) = \log(\phi(0)/||\phi||_1)$ for $\phi \in \mathcal{M}(K)$. This definition is correct since $\phi(0) \ge ||\phi||_1 > 0$ (being $\phi(0) \ge \phi(x)$ for every $x \in K$).

emma

In the above notation:

- $\bigcirc (\mathcal{M}_{top}(K), w_{top})$ is a commutative normed monoid.
- *the norm w*top *is monotone.*

Next we see that these two normed moinoids are isomorphic when $K = X^{\wedge}$.

直 ト イヨ ト イヨト

Dually, for a compact Abelian group K, the topological Peters monoid is $\mathcal{M}_{top}(K) = (\mathcal{M}(K), \cdot, \chi_K)$. Define the norm

$$w_{\mathrm{top}} \colon \mathcal{M}_{\mathrm{alg}}(X) \to \mathbb{R}_{\geq 0},$$

by $w_{alg}(\phi) = \log(\phi(0)/||\phi||_1)$ for $\phi \in \mathcal{M}(K)$. This definition is correct since $\phi(0) \ge ||\phi||_1 > 0$ (being $\phi(0) \ge \phi(x)$ for every $x \in K$).

Lemma

In the above notation:

•
$$(\mathcal{M}_{top}(K), w_{top})$$
 is a commutative normed monoid.

2) the norm w_{top} is monotone.

Next we see that these two normed moinoids are isomorphic when $K = X^{\wedge}$.

直 ト イヨ ト イヨト

For a LCA group Γ the *Fourier transform* $\widehat{\phi} \colon \widehat{\Gamma} \to \mathbb{C}$ of $\phi \in L^1(\Gamma)$ is defined by

$$\widehat{\phi}(\gamma) = (\phi * \gamma)(0) = \int_{y \in \Gamma} \phi(y)\gamma(-y)\delta\mu(y) = \int_{y \in \Gamma} \phi(y)\overline{\gamma(y)}\delta\mu(y),$$

for $\gamma \in \Gamma^{\wedge}$.

I heorem

If X is a discrete abelian group and $K = X^{\wedge}$, then the Fourier transform

$$\widehat{(-)}: \mathcal{M}_{\mathrm{alg}}(X) \to \mathcal{M}_{\mathrm{top}}(K), \qquad \phi \mapsto \widehat{\phi}$$

is an isomorphism of normed monoids. Hence, $\widehat{\chi_{\{0\}}} = \chi_K$, $\widehat{\phi * \psi} = \widehat{\phi} \cdot \widehat{\psi}$ and $w_{alg}(\phi) = w_{top}(\widehat{\phi})$, for all $\phi, \psi \in \mathcal{M}_{alg}(X)$.

.

For a LCA group Γ the *Fourier transform* $\widehat{\phi} \colon \widehat{\Gamma} \to \mathbb{C}$ of $\phi \in L^1(\Gamma)$ is defined by

$$\widehat{\phi}(\gamma) = (\phi * \gamma)(0) = \int_{y \in \Gamma} \phi(y)\gamma(-y)\delta\mu(y) = \int_{y \in \Gamma} \phi(y)\overline{\gamma(y)}\delta\mu(y),$$

for $\gamma \in \Gamma^{\wedge}$.

Theorem

If X is a discrete abelian group and $K = X^{\wedge}$, then the Fourier transform

$$\widehat{(-)}: \mathcal{M}_{\mathrm{alg}}(X) \to \mathcal{M}_{\mathrm{top}}(K), \qquad \phi \mapsto \widehat{\phi}$$

is an isomorphism of normed monoids. Hence, $\widehat{\chi_{\{0\}}} = \chi_K$, $\widehat{\phi * \psi} = \widehat{\phi} \cdot \widehat{\psi}$ and $w_{alg}(\phi) = w_{top}(\widehat{\phi})$, for all $\phi, \psi \in \mathcal{M}_{alg}(X)$.
In the sequel G is an amenable group. For a right linear action $K \stackrel{\rho}{\curvearrowleft} G$ on a compact abelian group K the left action $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$, defined by $(\rho_{\text{top}})_g(\phi) = \phi \circ \rho_g$ ($\phi \in \mathcal{M}_{\text{top}}(X)$, $g \in G$), is an action by isomorphisms of normed monoids.

Similarly, for a discrete abelian group X and left linear action $G\stackrel{\lambda}{\sim} X$ the action

 $G \stackrel{\lambda_{\mathrm{alg}}}{\curvearrowright} \mathcal{M}_{\mathrm{alg}}(X), \quad \text{ such that } \quad (\lambda_{\mathrm{alg}})_g(\phi) = \phi \circ \lambda_g^{-1},$ for all $\phi \in \mathcal{M}_{\mathrm{alg}}(X)$ and $g \in G$, is well-defined.

Proposition (Justin Peters' equality)

For a left linear action $G \stackrel{\lambda}{\curvearrowright} X$ on a discrete abelian group X, $K = X^{\wedge}$ and the dual action $K \stackrel{\rho=\lambda^{\wedge}}{\curvearrowleft} G$ the G-actions $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$ are conjugated via the isomorphism of normed monoids induced by the Fourier transform $\widehat{(-)}: \mathcal{M}_{\text{alg}}(X) \to \mathcal{M}_{\text{top}}(K), \phi \mapsto \widehat{\phi}$. Hence, $h(\lambda_{\text{alg}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G. In the sequel *G* is an amenable group. For a right linear action $K \stackrel{\rho}{\curvearrowleft} G$ on a compact abelian group *K* the left action $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$, defined by $(\rho_{\text{top}})_g(\phi) = \phi \circ \rho_g$ ($\phi \in \mathcal{M}_{\text{top}}(X)$, $g \in G$), is an action by isomorphisms of normed monoids. Similarly, for a discrete abelian group *X* and left linear action $G \stackrel{\lambda}{\curvearrowright} X$ the action

 $G \stackrel{\lambda_{\mathrm{alg}}}{\curvearrowright} \mathcal{M}_{\mathrm{alg}}(X), \quad \text{such that} \quad (\lambda_{\mathrm{alg}})_g(\phi) = \phi \circ \lambda_g^{-1},$ for all $\phi \in \mathcal{M}_{\mathrm{alg}}(X)$ and $g \in G$, is well-defined.

Proposition (Justin Peters' equality)

For a left linear action $G \stackrel{\lambda}{\curvearrowright} X$ on a discrete abelian group X, $K = X^{\wedge}$ and the dual action $K \stackrel{\rho=\lambda^{\wedge}}{\curvearrowleft} G$ the G-actions $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$ are conjugated via the isomorphism of normed monoids induced by the Fourier transform $\widehat{(-)}: \mathcal{M}_{\text{alg}}(X) \to \mathcal{M}_{\text{top}}(K), \phi \mapsto \widehat{\phi}$. Hence, $h(\lambda_{\text{alg}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G. In the sequel *G* is an amenable group. For a right linear action $K \stackrel{\rho}{\curvearrowleft} G$ on a compact abelian group *K* the left action $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$, defined by $(\rho_{\text{top}})_g(\phi) = \phi \circ \rho_g$ ($\phi \in \mathcal{M}_{\text{top}}(X)$, $g \in G$), is an action by isomorphisms of normed monoids. Similarly, for a discrete abelian group *X* and left linear action $G \stackrel{\lambda}{\curvearrowright} X$ the action

 $G \stackrel{\lambda_{\mathrm{alg}}}{\curvearrowright} \mathcal{M}_{\mathrm{alg}}(X), \quad \text{such that} \quad (\lambda_{\mathrm{alg}})_g(\phi) = \phi \circ \lambda_g^{-1},$ for all $\phi \in \mathcal{M}_{\mathrm{alg}}(X)$ and $g \in G$, is well-defined.

Proposition (Justin Peters' equality)

For a left linear action $G \stackrel{\lambda}{\curvearrowright} X$ on a discrete abelian group X, $K = X^{\wedge}$ and the dual action $K \stackrel{\rho = \lambda^{\wedge}}{\curvearrowleft} G$ the G-actions $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowleft} \mathcal{M}_{\text{top}}(K)$ are conjugated via the isomorphism of normed monoids induced by the Fourier transform $\widehat{(-)}: \mathcal{M}_{\text{alg}}(X) \to \mathcal{M}_{\text{top}}(K), \phi \mapsto \widehat{\phi}$. Hence, $h(\lambda_{\text{alg}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G. In the sequel *G* is an amenable group. For a right linear action $K \stackrel{\rho}{\curvearrowleft} G$ on a compact abelian group *K* the left action $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$, defined by $(\rho_{\text{top}})_g(\phi) = \phi \circ \rho_g$ ($\phi \in \mathcal{M}_{\text{top}}(X)$, $g \in G$), is an action by isomorphisms of normed monoids. Similarly, for a discrete abelian group *X* and left linear action $G \stackrel{\lambda}{\curvearrowright} X$ the action

 $G \stackrel{\lambda_{\mathrm{alg}}}{\curvearrowright} \mathcal{M}_{\mathrm{alg}}(X), \quad \text{such that} \quad (\lambda_{\mathrm{alg}})_g(\phi) = \phi \circ \lambda_g^{-1},$ for all $\phi \in \mathcal{M}_{\mathrm{alg}}(X)$ and $g \in G$, is well-defined.

Proposition (Justin Peters' equality)

For a left linear action $G \stackrel{\lambda}{\frown} X$ on a discrete abelian group X, $K = X^{\wedge}$ and the dual action $K \stackrel{\rho = \lambda^{\wedge}}{\frown} G$ the G-actions $G \stackrel{\lambda_{\text{alg}}}{\frown} \mathcal{M}_{\text{alg}}(X)$ and $G \stackrel{\rho_{\text{top}}}{\frown} \mathcal{M}_{\text{top}}(K)$ are conjugated via the isomorphism of normed monoids induced by the Fourier transform $\widehat{(-)}: \mathcal{M}_{\text{alg}}(X) \to \mathcal{M}_{\text{top}}(K), \phi \mapsto \widehat{\phi}$. Hence, $h(\lambda_{\text{alg}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\mathrm{alg}}}{\curvearrowright} \mathcal{M}_{\mathrm{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\mathrm{top}}}{\curvearrowright} \mathcal{M}_{\mathrm{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}},\mathfrak{s}) = h(\lambda_{\mathrm{alg}},\mathfrak{s})$ and $h(\rho_{\mathfrak{U}},\mathfrak{s}) = h(\rho_{\mathrm{top}},\mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge})$.

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\mathrm{alg}}}{\curvearrowright} \mathcal{M}_{\mathrm{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\mathrm{top}}}{\curvearrowright} \mathcal{M}_{\mathrm{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}},\mathfrak{s}) = h(\lambda_{\mathrm{alg}},\mathfrak{s})$ and $h(\rho_{\mathfrak{U}},\mathfrak{s}) = h(\rho_{\mathrm{top}},\mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge})$.

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\operatorname{alg}}}{\curvearrowright} \mathcal{M}_{\operatorname{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{I}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\operatorname{top}}}{\curvearrowright} \mathcal{M}_{\operatorname{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\operatorname{alg}}, \mathfrak{s})$ and $h(\rho_{\mathfrak{I}}, \mathfrak{s}) = h(\rho_{\operatorname{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge})$.

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}},\mathfrak{s}) = h(\lambda_{\text{alg}},\mathfrak{s})$ and $h(\rho_{\mathfrak{U}},\mathfrak{s}) = h(\rho_{\text{top}},\mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge})$.

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

 $h_{\mathrm{alg}}(\lambda) = h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\mathrm{alg}}, \mathfrak{s}) \stackrel{J.P.}{=} h(\rho_{\mathrm{top}}, \mathfrak{s}) = h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{\mathrm{cov}}, \mathfrak{s}) = h_{\mathrm{top}}(\rho).$

・ロト ・四ト ・ヨト ・

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\text{alg}}, \mathfrak{s})$ and $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge})$.

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\text{alg}}, \mathfrak{s})$ and $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge}).$

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

 $h_{\mathrm{alg}}(\lambda) = h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\mathrm{alg}}, \mathfrak{s}) \stackrel{J.P.}{=} h(\rho_{\mathrm{top}}, \mathfrak{s}) = h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{\mathrm{cov}}, \mathfrak{s}) = h_{\mathrm{top}}(\rho).$

* E + * E + - E

In the sequel X a discrete Abelian group with a left G-action $G \stackrel{\lambda}{\frown} X$, $K = X^{\wedge}$ and $K \stackrel{\rho}{\frown} G$, with $\rho = \lambda^{\wedge}$.

Proposition

• $G \stackrel{\lambda_{\mathfrak{F}}}{\curvearrowright} \mathfrak{F}(X)$ and $G \stackrel{\lambda_{\text{alg}}}{\curvearrowright} \mathcal{M}_{\text{alg}}(X)$ are asymptotically equivalent. • $G \stackrel{\rho_{\mathfrak{U}}}{\curvearrowright} \mathfrak{U}(K)$ and $G \stackrel{\rho_{\text{top}}}{\curvearrowright} \mathcal{M}_{\text{top}}(K)$ are asymptotically equivalent. Hence, $h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\text{alg}}, \mathfrak{s})$ and $h(\rho_{\mathfrak{U}}, \mathfrak{s}) = h(\rho_{\text{top}}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G.

Bridge Theorem. $h_{alg}(\lambda) = h_{top}(\lambda^{\wedge}).$

Proof. As $h(\rho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(\rho_{cov}, \mathfrak{s})$ for every Følner net \mathfrak{s} for G, combining with the above (black) equalities one can conclude that

$$h_{\mathrm{alg}}(\lambda) = h(\lambda_{\mathfrak{F}}, \mathfrak{s}) = h(\lambda_{\mathrm{alg}}, \mathfrak{s}) \stackrel{J.P.}{=} h(
ho_{\mathrm{top}}, \mathfrak{s}) = h(
ho_{\mathfrak{U}}, \mathfrak{s}) \stackrel{*}{=} h(
ho_{\mathrm{cov}}, \mathfrak{s}) = h_{\mathrm{top}}(
ho).$$

伺 ト イヨト イヨト

For a right action $K \not\sim S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \not\sim G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps

1. $h_{top}(\bar{\rho}) = h_{top}(\rho)$ for the restricted action $\bar{K} \curvearrowleft^{\rho} S$.

2. this reduction is functorial, i.e., if $K' \stackrel{\rho}{\sim} S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then $\phi(\bar{K}) \subseteq \bar{K}'$ and the continuous S-equivariant map $\bar{\phi} = \phi \upharpoonright_{\bar{K}} \colon \bar{K} \to \bar{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps)

1. $h_{top}(\bar{
ho}) = h_{top}(
ho)$ for the restricted action $\bar{K} \curvearrowleft^{
ho} S$.

2. this reduction is functorial, i.e., if $K' \stackrel{\rho}{\sim} S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then $\phi(\bar{K}) \subseteq \bar{K}'$ and the continuous S-equivariant map $\bar{\phi} = \phi \upharpoonright_{\bar{K}} \colon \bar{K} \to \bar{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps)

1. $h_{top}(\bar{\rho}) = h_{top}(\rho)$ for the restricted action $\bar{K} \curvearrowright^{\rho} S$.

2. this reduction is functorial, i.e., if $K' \stackrel{\rho}{\sim} S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then $\phi(\bar{K}) \subseteq \bar{K}'$ and the continuous S-equivariant map $\bar{\phi} = \phi \upharpoonright_{\bar{K}} \colon \bar{K} \to \bar{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps)

1. $h_{top}(\bar{\rho}) = h_{top}(\rho)$ for the restricted action $\bar{K} \stackrel{\rho}{\curvearrowleft} S$.

2. this reduction is functorial, i.e., if $K' \stackrel{\rho}{\sim} S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then $\phi(\overline{K}) \subseteq \overline{K}'$ and the continuous S-equivariant map $\overline{\phi} = \phi \upharpoonright_{\overline{K}} \colon \overline{K} \to \overline{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \restriction_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps)

1. $h_{top}(\bar{\rho}) = h_{top}(\rho)$ for the restricted action $\bar{K} \curvearrowleft{\bar{\rho}} S$.

2. this reduction is functorial, i.e., if $K' \not\sim S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then $\phi(\bar{K}) \subseteq \bar{K}'$ and the continuous S-equivariant map $\bar{\phi} = \phi \upharpoonright_{\bar{K}} \colon \bar{K} \to \bar{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps)

1. $h_{top}(\bar{\rho}) = h_{top}(\rho)$ for the restricted action $\bar{K} \curvearrowleft{\bar{\rho}} S$.

2. this reduction is functorial, i.e., if $K' \stackrel{P}{\sim} S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then $\phi(\overline{K}) \subseteq \overline{K}'$ and the continuous S-equivariant map $\overline{\phi} = \phi \mid_{\overline{K}} \colon \overline{K} \to \overline{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build (in 2 steps) its Ore colocalization $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact Hausdorff space and G is the group of left fractions of S. This construction preserves the topological entropy and linearity.

The surjective core of $K \stackrel{\rho}{\hookrightarrow} S$ is the closed *S*-invariant subspace $\bar{K} = E(\rho) := \bigcap_{t \in S} \rho_t(K) \stackrel{\varepsilon_K}{\hookrightarrow} K$ of *K*.

The restriction $\bar{\rho}_s := \rho_s \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}$ is surjective for all $s \in S$.

Theorem (reduction to actions by surjective maps)

1. $h_{top}(\bar{\rho}) = h_{top}(\rho)$ for the restricted action $\bar{K} \stackrel{\bar{\rho}}{\curvearrowleft} S$.

2. this reduction is functorial, i.e., if $K' \stackrel{\rho'}{\curvearrowleft} S$ is an action on a compact Hausdorff space K' and $\phi: K \to K'$ is an S-equivariant continuous map, then $\phi(\bar{K}) \subseteq \bar{K}'$ and the continuous S-equivariant map $\bar{\phi} = \phi \upharpoonright_{\bar{K}} : \bar{K} \to \bar{K}'$ is injective (resp., surjective), whenever ϕ is is injective (resp., surjective).

According to the well-known Halmos' paradigm, a continuous endomorphism $f : K \to K$ of a compact group is measure-preserving with respect to the Haar measure of K if and only if f is surjective.

Therefore, when applied to a right linear action $K \stackrel{\rho}{\curvearrowleft} S$ on a compact group K, the above theorem allows us to pass from ρ to the *S*-action $E(\rho) = \overline{K} \stackrel{\overline{\rho}}{\frown} S$ by surjective continuous endomorphisms, hence measure-preserving maps.

According to the well-known Halmos' paradigm, a continuous endomorphism $f : K \to K$ of a compact group is measure-preserving with respect to the Haar measure of K if and only if f is surjective.

Therefore, when applied to a right linear action $K \stackrel{\rho}{\frown} S$ on a compact group K, the above theorem allows us to pass from ρ to the *S*-action $E(\rho) = \overline{K} \stackrel{\overline{\rho}}{\frown} S$ by surjective continuous endomorphisms, hence measure-preserving maps.

According to the well-known Halmos' paradigm, a continuous endomorphism $f : K \to K$ of a compact group is measure-preserving with respect to the Haar measure of K if and only if f is surjective.

Therefore, when applied to a right linear action $K \curvearrowright^{\rho} S$ on a compact group K, the above theorem allows us to pass from ρ to the S-action $E(\rho) = \bar{K} \curvearrowright^{\bar{\rho}} S$ by surjective continuous endomorphisms, hence measure-preserving maps.

According to the well-known Halmos' paradigm, a continuous endomorphism $f : K \to K$ of a compact group is measure-preserving with respect to the Haar measure of K if and only if f is surjective.

Therefore, when applied to a right linear action $K \stackrel{\rho}{\curvearrowleft} S$ on a compact group K, the above theorem allows us to pass from ρ to the S-action $E(\rho) = \bar{K} \stackrel{\bar{\rho}}{\backsim} S$ by surjective continuous endomorphisms, hence measure-preserving maps.

For the inverse system $\Re = \{(K_g, \bar{\rho}_s : K_g \to K_{gs}) : g \in G, s \in S\}$, where $K_g = \bar{K}$ for all $g \in G$, let $K^* := \varprojlim \Re$. The canonical map $\pi_g = \pi_g^K : K^* \to K_g$ is surjective for all $g \in G$. For $g \in G$ let $\rho_g^* : K^* \to K^*$ be the unique possible continuous map such that the following diagram commutes for all $h \in G$:

This defines a right G-action $K^* \stackrel{\rho}{\frown} G$, named (left) Ore colocalization of $K \stackrel{\rho}{\frown} S$.

The next lemma collects some properties of the Ore colocalization

For the inverse system $\Re = \{(K_g, \bar{\rho}_s \colon K_g \to K_{gs}) : g \in G, s \in S\}$, where $K_g = \bar{K}$ for all $g \in G$, let $K^* := \varprojlim \Re$. The canonical map $\pi_g = \pi_g^K \colon K^* \to K_g$ is surjective for all $g \in G$. For $g \in G$ let $\rho_g^* \colon K^* \to K^*$ be the unique possible continuous map such that the following diagram commutes for all $h \in G$:

This defines a right *G*-action $K^* \stackrel{\rho}{\frown} G$, named (left) Ore colocalization of $K \stackrel{\rho}{\frown} S$.

The next lemma collects some properties of the Ore colocalization

For the inverse system $\Re = \{(K_g, \bar{\rho}_s \colon K_g \to K_{gs}) : g \in G, s \in S\}$, where $K_g = \bar{K}$ for all $g \in G$, let $K^* := \varprojlim \Re$. The canonical map $\pi_g = \pi_g^K \colon K^* \to K_g$ is surjective for all $g \in G$. For $g \in G$ let $\rho_g^* \colon K^* \to K^*$ be the unique possible continuous map such that the following diagram commutes for all $h \in G$:

This defines a right *G*-action $K^* \stackrel{\rho^*}{\curvearrowleft} G$, named (left) Ore colocalization of $K \stackrel{\rho}{\curvearrowleft} S$.

The next lemma collects some properties of the Ore colocalization

For the inverse system $\Re = \{(K_g, \bar{\rho}_s \colon K_g \to K_{gs}) : g \in G, s \in S\}$, where $K_g = \bar{K}$ for all $g \in G$, let $K^* := \varprojlim \Re$. The canonical map $\pi_g = \pi_g^K \colon K^* \to K_g$ is surjective for all $g \in G$. For $g \in G$ let $\rho_g^* \colon K^* \to K^*$ be the unique possible continuous map such that the following diagram commutes for all $h \in G$:

This defines a right *G*-action $K^* \stackrel{\rho^*}{\curvearrowleft} G$, named (left) Ore colocalization of $K \stackrel{\rho}{\backsim} S$.

The next lemma collects some properties of the Ore colocalization.

Lemma

- $\pi_1: K^* \to \overline{K}$ is (surjective and) S-equivariant, when K^* is endowed with the restriction $(\rho^*)_{|S}$ of the action ρ^* to $S \leq G$;
- the Ore colocalization is functorial, i.e., if K' ∽ S is an action on a compact Hausdorff space K' and φ: K → K' is an S-equivariant continuous map, then there is a unique continuous map φ*: K* → (K')* such that, for every g ∈ G, the following diagram commutes

Furthermore, ϕ^* is G-equivariant and if ϕ is injective (resp., surjective) then so is ϕ^* .

ヘロト ヘヨト ヘヨト

Lemma

- $\pi_1: K^* \to \overline{K}$ is (surjective and) S-equivariant, when K^* is endowed with the restriction $(\rho^*)_{|S|}$ of the action ρ^* to $S \leq G$;
 - the Ore colocalization is functorial, i.e., if $K' \stackrel{\rho}{\frown} S$ is an action on a compact Hausdorff space K' and $\phi: K \to K'$ is an S-equivariant continuous map, then there is a unique continuous map $\phi^*: K^* \to (K')^*$ such that, for every $g \in G$, the following diagram commutes

Furthermore, ϕ^* is G-equivariant and if ϕ is injective (resp., surjective) then so is ϕ^* .

ヘロト ヘヨト ヘヨト

Lemma

- In π₁: K^{*} → K
 is (surjective and) S-equivariant, when K^{*} is endowed with the restriction (ρ^{*})_↑s of the action ρ^{*} to S ≤ G;
- (a) the Ore colocalization is functorial, i.e., if $K' \stackrel{\rho'}{\curvearrowleft} S$ is an action on a compact Hausdorff space K' and $\phi \colon K \to K'$ is an S-equivariant continuous map, then there is a unique continuous map $\phi^* \colon K^* \to (K')^*$ such that, for every $g \in G$, the following diagram commutes

Furthermore, ϕ^* is G-equivariant and if ϕ is injective (resp., surjective) then so is ϕ^* .

• • = • • = •

Let $K \curvearrowleft^{\rho} S$ be a right S-action by continuous self-maps on a compact Hausdorff space K. Then $h_{top}(\rho) = h_{top}(\bar{\rho}) = h_{top}(\rho^*)$.

_emma (exactness of the Ore colocalization of linear actions)

Let $K \stackrel{\rho}{\frown} S$ be a linear S-action on a compact group $K, H \leq K$ be a closed S-invariant subgroup and let $H \stackrel{\rho_H}{\frown} S$ and $K/H \stackrel{\rho_{K/H}}{\frown} S$ be the S-actions induced by ρ on H and on the left coset space K/H, respectively. If $\iota: H \to K$ is the inclusion and $\pi: K \to K/H$ the projection, then:

• the action $H^* \stackrel{(\rho_H)^*}{\curvearrowleft} G$ is conjugated to the action $\iota^*(H^*) \stackrel{(\rho^*)_{\iota^*(H^*)}}{\curvearrowleft} G;$

• $\pi^* : K^* \to (K/H)^*$ is a surjective, *G*-equivariant, continuous and open map; moreover, the action $(K/H)^* \stackrel{(\rho_{K/H})^*}{\curvearrowleft} G$ is conjugated to the action $K^*/H^* \stackrel{(\rho^*)_{K^*/H^*}}{\backsim} G$ induced by ρ^* on the space of left H*-cosets.

Let $K \curvearrowleft^{\rho} S$ be a right S-action by continuous self-maps on a compact Hausdorff space K. Then $h_{top}(\rho) = h_{top}(\bar{\rho}) = h_{top}(\rho^*)$.

Lemma (exactness of the Ore colocalization of linear actions)

Let $K \curvearrowleft^{\rho} S$ be a linear S-action on a compact group $K, H \leq K$ be a closed S-invariant subgroup and let $H \curvearrowleft^{\rho_H} S$ and $K/H \curvearrowleft^{\rho_{K/H}} S$ be the S-actions induced by ρ on H and on the left coset space K/H, respectively. If $\iota: H \to K$ is the inclusion and $\pi: K \to K/H$ the projection, then:

• the action $H^* \stackrel{(\rho_H)}{\curvearrowleft} G$ is conjugated to the action $\iota^*(H^*) \stackrel{(\rho^*)_{\iota^*(H^*)}}{\backsim} G;$

Image of the space of left H*-cosets. $\pi^*: K^* \to (K/H)^* \text{ is a surjective, } G\text{-equivariant, continuous}$ and open map; moreover, the action $(K/H)^* \stackrel{(\rho_{K/H})^*}{\curvearrowleft} G$ is
conjugated to the action $K^*/H^* \stackrel{(\rho^*)_{K^*/H^*}}{\curvearrowleft} G$ induced by ρ^* on the space of left H*-cosets.

Let $K \curvearrowleft^{\rho} S$ be a right S-action by continuous self-maps on a compact Hausdorff space K. Then $h_{top}(\rho) = h_{top}(\bar{\rho}) = h_{top}(\rho^*)$.

Lemma (exactness of the Ore colocalization of linear actions)

Let $K \curvearrowleft^{\rho} S$ be a linear S-action on a compact group $K, H \leq K$ be a closed S-invariant subgroup and let $H \curvearrowleft^{\rho_H} S$ and $K/H \curvearrowleft^{\rho_{K/H}} S$ be the S-actions induced by ρ on H and on the left coset space K/H, respectively. If $\iota: H \to K$ is the inclusion and $\pi: K \to K/H$ the projection, then:

• the action $H^* \stackrel{(\rho_H)^*}{\curvearrowleft} G$ is conjugated to the action $\iota^*(H^*) \stackrel{(\rho^*)_{\iota^*(H^*)}}{\backsim} G;$

() $\pi^* \colon K^* \to (K/H)^*$ is a surjective, *G*-equivariant, continuous and open map; moreover, the action $(K/H)^* \stackrel{(\rho_{K/H})^*}{\curvearrowleft} G$ is conjugated to the action $K^*/H^* \stackrel{(\rho^*)_{K^*/H^*}}{\curvearrowleft} G$ induced by ρ^* on the space of left H*-cosets.

Let $K \curvearrowleft^{\rho} S$ be a right S-action by continuous self-maps on a compact Hausdorff space K. Then $h_{top}(\rho) = h_{top}(\bar{\rho}) = h_{top}(\rho^*)$.

Lemma (exactness of the Ore colocalization of linear actions)

Let $K \curvearrowleft^{\rho} S$ be a linear S-action on a compact group $K, H \leq K$ be a closed S-invariant subgroup and let $H \curvearrowleft^{\rho_H} S$ and $K/H \curvearrowleft^{\rho_{K/H}} S$ be the S-actions induced by ρ on H and on the left coset space K/H, respectively. If $\iota: H \to K$ is the inclusion and $\pi: K \to K/H$ the projection, then:

the action $H^* \stackrel{(\rho_H)^*}{\curvearrowleft} G$ is conjugated to the action $\iota^*(H^*) \stackrel{(\rho^*)_{\iota^*(H^*)}}{\curvearrowleft} G;$

② π^* : $K^* \to (K/H)^*$ is a surjective, *G*-equivariant, continuous and open map; moreover, the action $(K/H)^* \stackrel{(\rho_{K/H})^*}{\curvearrowleft} G$ is conjugated to the action $K^*/H^* \stackrel{(\rho^*)_{K^*/H^*}}{\backsim} G$ induced by ρ^* on the space of left H^{*}-cosets.

Reduction to the case of actions by injective maps

For a left linear action $S \stackrel{\wedge}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{alg}(\lambda) = h_{alg}(\lambda^*)$).

Starting with a left *S*-action $S \stackrel{\wedge}{\hookrightarrow} X$ on an Abelian group *X*, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of *X* with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, *S*-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left S-action $S \stackrel{\wedge}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

- $\overline{\lambda}$ acts on \overline{X} by injective endomorphisms (i.e., $\overline{\lambda}_s$ is injective for all $s \in S$) and $h_{\text{alg}}(\overline{\lambda}) = h_{\text{alg}}(\lambda)$;
- this reduction is functorial, i.e., if $S \stackrel{\wedge}{\frown} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective), $\bar{\phi} = \bar{\phi} \circ \pi_X$

Reduction to the case of actions by injective maps

For a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{\rm alg}(\lambda) = h_{\rm alg}(\lambda^*)$).

Starting with a left S-action $S \stackrel{\wedge}{\curvearrowright} X$ on an Abelian group X, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of X with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, S-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left *S*-action $S \stackrel{\wedge}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

- $\overline{\lambda}$ acts on \overline{X} by injective endomorphisms (i.e., $\overline{\lambda}_s$ is injective for all $s \in S$) and $h_{\text{alg}}(\overline{\lambda}) = h_{\text{alg}}(\lambda)$;
- this reduction is functorial, i.e., if $S \stackrel{\wedge}{\frown} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective),

Reduction to the case of actions by injective maps

For a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{\rm alg}(\lambda) = h_{\rm alg}(\lambda^*)$).

Starting with a left S-action $S \stackrel{\lambda}{\frown} X$ on an Abelian group X, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of X with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, S-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left *S*-action $S \stackrel{\wedge}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

- $\overline{\lambda}$ acts on \overline{X} by injective endomorphisms (i.e., $\overline{\lambda}_s$ is injective for all $s \in S$) and $h_{\text{alg}}(\overline{\lambda}) = h_{\text{alg}}(\lambda)$;
- this reduction is functorial, i.e., if $S \stackrel{\wedge}{\frown} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective),
For a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{\rm alg}(\lambda) = h_{\rm alg}(\lambda^*)$).

Starting with a left S-action $S \stackrel{\lambda}{\frown} X$ on an Abelian group X, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of X with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, S-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left S-action $S \stackrel{\lambda}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

\$\overline{\lambda}\$ acts on \$\overline{X}\$ by injective endomorphisms (i.e., \$\overline{\lambda}_s\$ is injective for all \$s ∈ \$S\$) and \$h_{alg}(\$\overline{\lambda}\$) = \$h_{alg}(\$\lambda\$)\$;

9 this reduction is functorial, i.e., if $S \stackrel{\wedge}{\frown} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective),

For a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{\rm alg}(\lambda) = h_{\rm alg}(\lambda^*)$).

Starting with a left S-action $S \stackrel{\lambda}{\frown} X$ on an Abelian group X, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of X with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, S-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left S-action $S \stackrel{\lambda}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

• $\overline{\lambda}$ acts on \overline{X} by injective endomorphisms (i.e., $\overline{\lambda}_s$ is injective for all $s \in S$) and $h_{\text{alg}}(\overline{\lambda}) = h_{\text{alg}}(\lambda)$;

This reduction is functorial, i.e., if $S \stackrel{\sim}{\to} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective), π_X , π_X

For a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{\rm alg}(\lambda) = h_{\rm alg}(\lambda^*)$).

Starting with a left S-action $S \stackrel{\lambda}{\frown} X$ on an Abelian group X, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of X with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, S-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left S-action $S \stackrel{\lambda}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

- $\overline{\lambda}$ acts on \overline{X} by injective endomorphisms (i.e., $\overline{\lambda}_s$ is injective for all $s \in S$) and $h_{\text{alg}}(\overline{\lambda}) = h_{\text{alg}}(\lambda)$;
- **2** this reduction is functorial, i.e., if $S \stackrel{\wedge}{\frown} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective).

For a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct (again in 2 steps) its Ore localization $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy (i.e., $h_{\rm alg}(\lambda) = h_{\rm alg}(\lambda^*)$).

Starting with a left S-action $S \stackrel{\lambda}{\frown} X$ on an Abelian group X, define $\operatorname{Ker}(\lambda) := \{x \in X : \exists s \in S, \lambda_s(x) = 0\}$. This is a subgroup of X with $\lambda_s^{-1}(\operatorname{Ker}(\lambda)) = \operatorname{Ker}(\lambda)$, for all $s \in S$ (so, in particular, S-invariant). Let $\overline{X} := X/\operatorname{Ker}(\lambda)$ and $\pi_X : X \to \overline{X}$ be the

canonical projection. Define a new left S-action $S \stackrel{\lambda}{\frown} \overline{X}$ by letting $\overline{\lambda}_s(\pi(x)) = \pi(\lambda_s(x))$ for all $s \in S$ and $x \in X$. Then

- $\overline{\lambda}$ acts on \overline{X} by injective endomorphisms (i.e., $\overline{\lambda}_s$ is injective for all $s \in S$) and $h_{\text{alg}}(\overline{\lambda}) = h_{\text{alg}}(\lambda)$;
- Ithis reduction is functorial, i.e., if $S \stackrel{\lambda'}{\frown} X'$ is an action on an Abelian group X' and $\phi: X \to X'$ is an S-equivariant homomorphism, then there is a unique homomorphism $\bar{\phi}: \bar{X} \to \bar{X}'$ with $\pi_{X'} \circ \phi = \bar{\phi} \circ \pi_X$; and $\bar{\phi}$ is injective (resp., surjective), whenever ϕ is injective (resp., surjective).

Definition. With $S, X, \lambda, \overline{X}$ and $\overline{\lambda}$ as above consider the direct system of Abelian groups:

• $\mathfrak{X} := \{ (X_g, \varepsilon_{gs,g} : X_{gs} \to X_g) : g \in G, s \in S \}$, where $X_g := \overline{X}$ and $\varepsilon_{gs,g} := \overline{\lambda}_s : \overline{X} \to \overline{X}$, for all $s \in S$ and $g \in G$;

• with direct limit $X^* := \lim_{t \to \infty} \mathfrak{X}$ and the canonical morphism

 $\varepsilon_g : \bar{X} = X_g \to X^*$ is injective for all $g \in G$. In particular, identifying $X_g = \varepsilon_g(\bar{X})$, one has that $X^* = | I_{abc}, X_g$.

As in the case of colocalzation, there is a unique G-action $G \stackrel{\lambda^*}{\frown} X^*$, named Ore localization of $S \stackrel{\lambda}{\frown} X$, and $\varepsilon_1 \colon \overline{X} \to X^*$ is *S*-equivariant.

Lemma (The Ore localization is functorial)

The Ore localization $G \stackrel{\lambda^*}{\frown} X^*$ of $S \stackrel{\lambda}{\frown} X$ is functorial and the assignment $\phi \mapsto \phi^*$ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting, $h_{ m alg}(\lambda)=h_{ m alg}(ar\lambda)=h_{ m alg}(\lambda^*)$

Definition. With $S, X, \lambda, \overline{X}$ and $\overline{\lambda}$ as above consider the direct system of Abelian groups:

• $\mathfrak{X} := \{ (X_g, \varepsilon_{gs,g} : X_{gs} \to X_g) : g \in G, s \in S \}$, where $X_g := \overline{X}$ and $\varepsilon_{gs,g} := \overline{\lambda}_s : \overline{X} \to \overline{X}$, for all $s \in S$ and $g \in G$;

with direct limit X* := lim_G X and the canonical morphism
 ε_g: X̄ = X_g → X* is injective for all g ∈ G. In particular, identifying X_g = ε_g(X̄), one has that X* = U_{g∈G} X_g.
 s in the case of colocalzation, there is a unique G-action

 $G \stackrel{\sim}{\frown} X^*$, named Ore localization of $S \stackrel{\sim}{\frown} X$, and $\varepsilon_1 \colon \overline{X} \to X^*$ is *S*-equivariant.

Lemma (The Ore localization is functorial)

The Ore localization $G \stackrel{\lambda^*}{\frown} X^*$ of $S \stackrel{\lambda}{\frown} X$ is functorial and the assignment $\phi \mapsto \phi^*$ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting, $h_{ m alg}(\lambda)=h_{ m alg}(ar\lambda)=h_{ m alg}(\lambda^*)$

Definition. With $S, X, \lambda, \overline{X}$ and $\overline{\lambda}$ as above consider the direct system of Abelian groups:

- $\mathfrak{X} := \{ (X_g, \varepsilon_{gs,g} : X_{gs} \to X_g) : g \in G, s \in S \}$, where $X_g := \overline{X}$ and $\varepsilon_{gs,g} := \overline{\lambda}_s : \overline{X} \to \overline{X}$, for all $s \in S$ and $g \in G$;
- with direct limit $X^* := \varinjlim_{C} \mathfrak{X}$ and the canonical morphism
 - $\varepsilon_g : \bar{X} = X_g \to X^*$ is injective for all $g \in G$. In particular, identifying $X_g = \varepsilon_g(\bar{X})$, one has that $X^* = \bigcup_{g \in G} X_g$.

As in the case of colocalzation, there is a unique G-action $G \stackrel{\lambda^*}{\curvearrowright} X^*$, named Ore localization of $S \stackrel{\lambda}{\curvearrowright} X$, and $\varepsilon_1 \colon \overline{X} \to X^*$ is S-equivariant.

Lemma (The Ore localization is functorial)

The Ore localization $G \stackrel{\lambda^*}{\frown} X^*$ of $S \stackrel{\lambda}{\frown} X$ is functorial and the assignment $\phi \mapsto \phi^*$ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting, $h_{ m alg}(\lambda) = h_{ m alg}(ar{\lambda}) = h_{ m alg}(\lambda^*)$

Definition. With $S, X, \lambda, \overline{X}$ and $\overline{\lambda}$ as above consider the direct system of Abelian groups:

- $\mathfrak{X} := \{ (X_g, \varepsilon_{gs,g} : X_{gs} \to X_g) : g \in G, s \in S \}$, where $X_g := \overline{X}$ and $\varepsilon_{gs,g} := \overline{\lambda}_s : \overline{X} \to \overline{X}$, for all $s \in S$ and $g \in G$;
- with direct limit $X^* := \lim_{G \to G} \mathfrak{X}$ and the canonical morphism

 $\varepsilon_g \colon \bar{X} = X_g \to X^*$ is injective for all $g \in G$. In particular, identifying $X_g = \varepsilon_g(\bar{X})$, one has that $X^* = \bigcup_{g \in G} X_g$.

As in the case of colocalization, there is a unique *G*-action $G \stackrel{\lambda^*}{\frown} X^*$, named Ore localization of $S \stackrel{\lambda}{\frown} X$, and $\varepsilon_1 \colon \bar{X} \to X^*$ is *S*-equivariant.

_emma (The Ore localization is functorial)

The Ore localization $G \stackrel{\lambda^*}{\frown} X^*$ of $S \stackrel{\lambda}{\frown} X$ is functorial and the assignment $\phi \mapsto \phi^*$ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting, $h_{ m alg}(\lambda)=h_{ m alg}(ar\lambda)=h_{ m alg}(ar\lambda)$.

Definition. With $S, X, \lambda, \overline{X}$ and $\overline{\lambda}$ as above consider the direct system of Abelian groups:

- $\mathfrak{X} := \{ (X_g, \varepsilon_{gs,g} : X_{gs} \to X_g) : g \in G, s \in S \}$, where $X_g := \overline{X}$ and $\varepsilon_{gs,g} := \overline{\lambda}_s : \overline{X} \to \overline{X}$, for all $s \in S$ and $g \in G$;
- with direct limit $X^* := \varinjlim_G \mathfrak{X}$ and the canonical morphism

 $\varepsilon_g \colon \bar{X} = X_g \to X^*$ is injective for all $g \in G$. In particular, identifying $X_g = \varepsilon_g(\bar{X})$, one has that $X^* = \bigcup_{g \in G} X_g$.

As in the case of colocalization, there is a unique G-action $G \stackrel{\lambda^*}{\frown} X^*$, named Ore localization of $S \stackrel{\lambda}{\frown} X$, and $\varepsilon_1 \colon \bar{X} \to X^*$ is *S*-equivariant.

Lemma (The Ore localization is functorial)

The Ore localization $G \stackrel{\lambda^*}{\frown} X^*$ of $S \stackrel{\lambda}{\frown} X$ is functorial and the assignment $\phi \mapsto \phi^*$ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting, $h_{ m alg}(\lambda)=h_{ m alg}(ar\lambda)=h_{ m alg}(\lambda^*)$.

Definition. With $S, X, \lambda, \overline{X}$ and $\overline{\lambda}$ as above consider the direct system of Abelian groups:

- $\mathfrak{X} := \{ (X_g, \varepsilon_{gs,g} : X_{gs} \to X_g) : g \in G, s \in S \}$, where $X_g := \overline{X}$ and $\varepsilon_{gs,g} := \overline{\lambda}_s : \overline{X} \to \overline{X}$, for all $s \in S$ and $g \in G$;
- with direct limit $X^* := \varinjlim_G \mathfrak{X}$ and the canonical morphism

 $\varepsilon_g \colon \bar{X} = X_g \to X^*$ is injective for all $g \in G$. In particular, identifying $X_g = \varepsilon_g(\bar{X})$, one has that $X^* = \bigcup_{g \in G} X_g$.

As in the case of colocalization, there is a unique G-action $G \stackrel{\lambda^*}{\frown} X^*$, named Ore localization of $S \stackrel{\lambda}{\frown} X$, and $\varepsilon_1 \colon \bar{X} \to X^*$ is *S*-equivariant.

Lemma (The Ore localization is functorial)

The Ore localization $G \stackrel{\lambda^*}{\frown} X^*$ of $S \stackrel{\lambda}{\frown} X$ is functorial and the assignment $\phi \mapsto \phi^*$ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting,
$$h_{\mathrm{alg}}(\lambda) = h_{\mathrm{alg}}(\bar{\lambda}) = h_{\mathrm{alg}}(\lambda^*)$$
.

Dikran Dikranjan Udine University, Italy

Entropy of amenable monoid actions

First we need the following:

_emma

Given a left S-action $S \stackrel{\wedge}{\frown} X$ on a discrete Abelian group X, let $K := X^{\wedge} \stackrel{\rho:=\lambda^{\wedge}}{\frown} S$ be the right S-action induced by λ on the dual compact Abelian group $K := X^{\wedge}$.

• Ker $(\lambda)^{\perp} = E(\rho) \leq K$. Furthermore, $\overline{\lambda}^{\wedge}$ is conjugated to $\overline{\rho}$.

• Let $G \stackrel{\lambda^*}{\frown} X^*$ be the Ore localization of λ , $K := X^{\wedge} \stackrel{\rho := \lambda^{\wedge}}{\frown} S$ the right S-action induced by λ on the dual, and $K^* \stackrel{\rho^*}{\frown} G$ the Ore colocalization of ρ . Then, $K^* \stackrel{\rho^*}{\frown} G$ is conjugated to $K^* \stackrel{(\lambda^*)^{\wedge}}{\frown} S$

Item (2), roughly speaking, says that, the Ore (co-)localization and the dual "commute" up to conjugacy, i.e., (λ^{*}) is conjugated to $(\lambda^{})^{*}$).

First we need the following:

Lemma

Given a left S-action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, let $K := X^{\wedge} \stackrel{\rho := \lambda^{\wedge}}{\frown} S$ be the right S-action induced by λ on the dual compact Abelian group $K := X^{\wedge}$.

- $\operatorname{Ker}(\lambda)^{\perp} = E(\rho) \leq K$. Furthermore, $\overline{\lambda}^{\wedge}$ is conjugated to $\overline{\rho}$.
- Let $G \stackrel{\lambda^*}{\frown} X^*$ be the Ore localization of λ , $K := X^{\wedge} \stackrel{\rho:=\lambda^{\wedge}}{\frown} S$ the right S-action induced by λ on the dual, and $K^* \stackrel{\rho^*}{\frown} G$ the Ore colocalization of ρ . Then, $K^* \stackrel{\rho^*}{\frown} G$ is conjugated to $K^* \stackrel{(\lambda^*)^{\wedge}}{\frown} S$

Item (2), roughly speaking, says that, the Ore (co-)localization and the dual "commute" up to conjugacy, i.e., (λ^{*}) is conjugated to $(\lambda^{})^{*}$).

First we need the following:

Lemma

Given a left S-action $S \stackrel{\lambda}{\curvearrowright} X$ on a discrete Abelian group X, let $K := X^{\wedge} \stackrel{\rho := \lambda^{\wedge}}{\curvearrowleft} S$ be the right S-action induced by λ on the dual compact Abelian group $K := X^{\wedge}$.

- Ker $(\lambda)^{\perp} = E(\rho) \leq K$. Furthermore, $\overline{\lambda}^{\wedge}$ is conjugated to $\overline{\rho}$.
- Let $G \stackrel{\lambda^*}{\frown} X^*$ be the Ore localization of λ , $K := X^{\wedge} \stackrel{\rho:=\lambda^{\wedge}}{\frown} S$ the right S-action induced by λ on the dual, and $K^* \stackrel{\rho^*}{\frown} G$ the Ore colocalization of ρ . Then, $K^* \stackrel{\rho^*}{\frown} G$ is conjugated to $K^* \stackrel{(\lambda^*)^{\wedge}}{\frown} S$

Item (2), roughly speaking, says that, the Ore (co-)localization and the dual "commute" up to conjugacy, i.e., $(\lambda^{*\wedge} \text{ is conjugated to } (\lambda^{\wedge})^*)$.

First we need the following:

Lemma

Given a left S-action S ^λ X on a discrete Abelian group X, let
K := X^{∧ ρ:=λ[∧]} S be the right S-action induced by λ on the dual compact Abelian group K := X[∧].
Mer(λ)[⊥] = E(ρ) ≤ K. Furthermore, λ[∧] is conjugated to p.
Let G ^{λ*} X* be the Ore localization of λ, K := X^{∧ ρ:=λ[∧]} S the right S-action induced by λ on the dual, and K* ^{ρ*} G the Ore colocalization of ρ. Then, K* ^{ρ*} G is conjugated to K* ^{(λ*)[∧]} S

Item (2), roughly speaking, says that, the Ore (co-)localization and the dual "commute" up to conjugacy, i.e., $(\lambda^{*^{\wedge}} \text{ is conjugated to } (\lambda^{\wedge})^*)$.

First we need the following:

Lemma

Given a left S-action S ^λ X on a discrete Abelian group X, let
K := X^{∧ ρ:=λ[∧]} S be the right S-action induced by λ on the dual compact Abelian group K := X[∧].
Mer(λ)[⊥] = E(ρ) ≤ K. Furthermore, λ[∧] is conjugated to p.
Let G ^{λ*} X* be the Ore localization of λ, K := X^{∧ ρ:=λ[∧]} S the right S-action induced by λ on the dual, and K* ^{ρ*} G the Ore colocalization of ρ. Then, K* ^{ρ*} G is conjugated to K* ^{(λ*)[∧]} S

Item (2), roughly speaking, says that, the Ore (co-)localization and the dual "commute" up to conjugacy, i.e., $(\lambda^{*^{\wedge}} \text{ is conjugated to } (\lambda^{\wedge})^*)$.

Let $K \curvearrowright^{\rho} S$ be a a right *S*-action. We need to prove that $h_{top}(\rho) = h_{alg}(\lambda)$, with $\lambda := \rho^{\wedge}$ its dual action on $X = K^{\wedge}$. By the invariance of entropy w.r.t. Ore (co-)localization

 $h_{ ext{top}}(
ho) = h_{ ext{top}}(
ho^*)$ and $h_{ ext{alg}}(\lambda) = h_{ ext{alg}}(\lambda^*)$

By item (2) of the previous lemma, $(\lambda^*)^{\wedge} = ((\rho^{\wedge})^*)^{\wedge}$ is conjugated to $(\rho^{\wedge\wedge})^*$, which is obviously conjugated to ρ^* . Hence, $h_{\text{top}}(\rho^*) = h_{\text{top}}((\lambda^*)^{\wedge})$. By the Bridge Theorem for actions of amenable groups,

$$h_{\mathrm{top}}((\lambda^*)^\wedge) = h_{\mathrm{alg}}(\lambda^*).$$

Therefore, $h_{
m top}(
ho)=h_{
m alg}(\lambda).$

Let $K \stackrel{\rho}{\frown} S$ be a a right *S*-action. We need to prove that $h_{\text{top}}(\rho) = h_{\text{alg}}(\lambda)$, with $\lambda := \rho^{\wedge}$ its dual action on $X = K^{\wedge}$. By the invariance of entropy w.r.t. Ore (co-)localization

 $h_{ ext{top}}(
ho) = h_{ ext{top}}(
ho^*) \qquad ext{and} \qquad h_{ ext{alg}}(\lambda) = h_{ ext{alg}}(\lambda^*).$

By item (2) of the previous lemma, $(\lambda^*)^{\wedge} = ((\rho^{\wedge})^*)^{\wedge}$ is conjugated to $(\rho^{\wedge\wedge})^*$, which is obviously conjugated to ρ^* . Hence, $h_{\text{top}}(\rho^*) = h_{\text{top}}((\lambda^*)^{\wedge})$. By the Bridge Theorem for actions of amenable groups,

$$h_{\mathrm{top}}((\lambda^*)^\wedge) = h_{\mathrm{alg}}(\lambda^*).$$

Therefore, $h_{
m top}(
ho)=h_{
m alg}(\lambda).$

Let $K \stackrel{\rho}{\frown} S$ be a a right *S*-action. We need to prove that $h_{\text{top}}(\rho) = h_{\text{alg}}(\lambda)$, with $\lambda := \rho^{\wedge}$ its dual action on $X = K^{\wedge}$. By the invariance of entropy w.r.t. Ore (co-)localization

$$h_{ ext{top}}(
ho) = h_{ ext{top}}(
ho^*) \qquad ext{and} \qquad h_{ ext{alg}}(\lambda) = h_{ ext{alg}}(\lambda^*).$$

By item (2) of the previous lemma, $(\lambda^*)^{\wedge} = ((\rho^{\wedge})^*)^{\wedge}$ is conjugated to $(\rho^{\wedge\wedge})^*$, which is obviously conjugated to ρ^* . Hence, $h_{\text{top}}(\rho^*) = h_{\text{top}}((\lambda^*)^{\wedge})$. By the Bridge Theorem for actions of amenable groups,

$$h_{ ext{top}}((\lambda^*)^\wedge) = h_{ ext{alg}}(\lambda^*).$$

Therefore, $h_{ ext{top}}(
ho) = h_{ ext{alg}}(\lambda).$

Let $K \stackrel{\rho}{\frown} S$ be a a right *S*-action. We need to prove that $h_{\text{top}}(\rho) = h_{\text{alg}}(\lambda)$, with $\lambda := \rho^{\wedge}$ its dual action on $X = K^{\wedge}$. By the invariance of entropy w.r.t. Ore (co-)localization

$$h_{ ext{top}}(
ho) = h_{ ext{top}}(
ho^*)$$
 and $h_{ ext{alg}}(\lambda) = h_{ ext{alg}}(\lambda^*)$

By item (2) of the previous lemma, $(\lambda^*)^{\wedge} = ((\rho^{\wedge})^*)^{\wedge}$ is conjugated to $(\rho^{\wedge\wedge})^*$, which is obviously conjugated to ρ^* . Hence, $h_{\text{top}}(\rho^*) = h_{\text{top}}((\lambda^*)^{\wedge})$. By the Bridge Theorem for actions of amenable groups,

$$h_{ ext{top}}((\lambda^*)^\wedge) = h_{ ext{alg}}(\lambda^*).$$

Therefore, $h_{top}(\rho) = h_{alg}(\lambda)$.

Theorem (Addition Theorem for $h_{\rm top}$)

For a right linear action $K \stackrel{\rho}{\curvearrowleft} S$ on a compact group K and a ρ -invariant closed subgroup H of K the S-actions actions ρ_H and $\rho_{K/H}$ (induced by ρ on H and on the left cosets space K/H, respectively) satisfy

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

This was known for \mathbb{N} -actions as well as for actions of countable amenable groups on compact metrizable groups with H normal [Li]. **Proof.** First assume that S = G is a group. Consider the diagonal action $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ of G on $cov(H) \oplus cov(K/H)$, having as norm the sum of the respective norms. Since the norms of cov(H) and cov(K/H) (hence, of $cov(H) \oplus cov(K/H)$ as well) are sub-additive (so the s-entropy is a limit), one obtains

Theorem (Addition Theorem for h_{top})

For a right linear action $K \curvearrowright^{\rho} S$ on a compact group K and a ρ -invariant closed subgroup H of K the S-actions actions ρ_H and $\rho_{K/H}$ (induced by ρ on H and on the left cosets space K/H, respectively) satisfy

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

This was known for \mathbb{N} -actions as well as for actions of countable amenable groups on compact metrizable groups with H normal [Li]. **Proof.** First assume that S = G is a group. Consider the diagonal action $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ of G on $cov(H) \oplus cov(K/H)$, having as norm the sum of the respective norms. Since the norms of cov(H) and cov(K/H) (hence, of $cov(H) \oplus cov(K/H)$ as well) are sub-additive (so the \mathfrak{s} -entropy is a limit), one obtains

Theorem (Addition Theorem for $h_{ m top})$

For a right linear action $K \curvearrowright^{\rho} S$ on a compact group K and a ρ -invariant closed subgroup H of K the S-actions actions ρ_H and $\rho_{K/H}$ (induced by ρ on H and on the left cosets space K/H, respectively) satisfy

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

This was known for \mathbb{N} -actions as well as for actions of countable amenable groups on compact metrizable groups with H normal [Li].

Proof. First assume that S = G is a group. Consider the diagonal action $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ of G on $cov(H) \oplus cov(K/H)$, having as norm the sum of the respective norms. Since the norms of cov(H) and cov(K/H) (hence, of $cov(H) \oplus cov(K/H)$ as well) are sub-additive (so the \mathfrak{s} -entropy is a limit), one obtains

Theorem (Addition Theorem for $h_{ m top})$

For a right linear action $K \curvearrowright^{\rho} S$ on a compact group K and a ρ -invariant closed subgroup H of K the S-actions actions ρ_H and $\rho_{K/H}$ (induced by ρ on H and on the left cosets space K/H, respectively) satisfy

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

This was known for \mathbb{N} -actions as well as for actions of countable amenable groups on compact metrizable groups with H normal [Li]. **Proof.** First assume that S = G is a group. Consider the diagonal action $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ of G on $cov(H) \oplus cov(K/H)$, having as norm the sum of the respective norms. Since the norms of cov(H) and cov(K/H) (hence, of $cov(H) \oplus cov(K/H)$ as well) are sub-additive (so the \mathfrak{s} -entropy is a limit), one obtains $h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov}, \mathfrak{s}) = h((\rho_H)_{\rm cov}, \mathfrak{s}) + h((\rho_{K/H})_{\rm cov}, \mathfrak{s}).$ (*)

At this point one can use the following "splitting trick'

Proposition (the splitting trick)

The G-actions ρ_{cov} and $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ are as. equivalent.

This implies that the corresponding entropies coincide

$$h(\rho_{\rm cov},\mathfrak{s}) = h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov},\mathfrak{s}). \tag{**}$$

Since the quantities in (*) and (**) do not depend on \mathfrak{s} , these equalities, along with the definition of h_{top} give

$$h_{top}(\rho) = h(\rho_{cov}, \mathfrak{s}) = h((\rho_H)_{cov}, \mathfrak{s}) + h((\rho_{K/H})_{cov}, \mathfrak{s}) =$$

$$h_{ ext{top}}(
ho_H) + h_{ ext{top}}(
ho_{K/H})$$

as required.

This ends the proof in the case case S = G is a group

$$h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov}, \mathfrak{s}) = h((\rho_H)_{\rm cov}, \mathfrak{s}) + h((\rho_{K/H})_{\rm cov}, \mathfrak{s}).$$
(*)

At this point one can use the following "splitting trick"

Proposition (the splitting trick)

The G-actions ρ_{cov} and $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ are as. equivalent.

This implies that the corresponding entropies coincide

$$h(\rho_{\rm cov},\mathfrak{s}) = h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov},\mathfrak{s}). \tag{**}$$

Since the quantities in (*) and (**) do not depend on \mathfrak{s} , these equalities, along with the definition of $h_{\rm top}$ give

$$h_{top}(\rho) = h(\rho_{cov}, \mathfrak{s}) = h((\rho_H)_{cov}, \mathfrak{s}) + h((\rho_{K/H})_{cov}, \mathfrak{s}) =$$

$$h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H})$$

as required.

This ends the proof in the case case S = G is a group

$$h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov}, \mathfrak{s}) = h((\rho_H)_{\rm cov}, \mathfrak{s}) + h((\rho_{K/H})_{\rm cov}, \mathfrak{s}).$$
(*)

At this point one can use the following "splitting trick"

Proposition (the splitting trick)

The G-actions ρ_{cov} and $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ are as. equivalent.

This implies that the corresponding entropies coincide

$$h(\rho_{\rm cov},\mathfrak{s}) = h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov},\mathfrak{s}). \tag{**}$$

Since the quantities in (*) and (**) do not depend on \mathfrak{s} , these equalities, along with the definition of h_{top} give

 $h_{top}(\rho) = h(\rho_{cov}, \mathfrak{s}) = h((\rho_H)_{cov}, \mathfrak{s}) + h((\rho_{K/H})_{cov}, \mathfrak{s}) =$

$$h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H})$$

as required.

This ends the proof in the case case S = G is a group

$$h((\rho_H)_{\rm cov} \oplus (\rho_{K/H})_{\rm cov}, \mathfrak{s}) = h((\rho_H)_{\rm cov}, \mathfrak{s}) + h((\rho_{K/H})_{\rm cov}, \mathfrak{s}).$$
(*)

At this point one can use the following "splitting trick"

Proposition (the splitting trick)

The G-actions ρ_{cov} and $(\rho_H)_{cov} \oplus (\rho_{K/H})_{cov}$ are as. equivalent.

This implies that the corresponding entropies coincide

$$h(
ho_{\mathrm{cov}},\mathfrak{s})=h((
ho_{H})_{\mathrm{cov}}\oplus(
ho_{K/H})_{\mathrm{cov}},\mathfrak{s}).$$
 (**)

Since the quantities in (*) and (**) do not depend on \mathfrak{s} , these equalities, along with the definition of $h_{\rm top}$ give

$$egin{aligned} h_{ ext{top}}(
ho) &= h(
ho_{ ext{cov}},\mathfrak{s}) = h((
ho_H)_{ ext{cov}},\mathfrak{s}) + h((
ho_{K/H})_{ ext{cov}},\mathfrak{s}) = \ & h_{ ext{top}}(
ho_H) + h_{ ext{top}}(
ho_{K/H}) \end{aligned}$$

as required.

This ends the proof in the case case S = G is a group.

(Continuation of Proof, general case.)

Let $G = S^{-1}S$ be the group of left fractions of S. By the exactness of the Ore colocalization, we can identify H^* with a closed ρ -invariant subgroup of K^* (so that it makes sense to consider the space of left H^* -cosets K^*/H^*), and we can identify K^*/H^* with $(K/H)^*$. By the previous case

$$h_{\rm top}(\rho^*) = h_{\rm top}((\rho^*)_{H^*}) + h_{\rm top}((\rho^*)_{K^*/H^*}). \tag{(\dagger)}$$

In view of the above identifications,

 $h_{top}((\rho^*)_{H^*}) = h_{top}((\rho_H)^*)$ and $h_{top}((\rho^*)_{K^*/H^*}) = h_{top}((\rho_{K/H})^*).$ By the invariance of h_{top} under Ore colocalization,

$$h_{\mathrm{top}}(\rho^*) = h_{\mathrm{top}}(\rho), h_{\mathrm{top}}((\rho_H)^*) = h_{\mathrm{top}}(\rho_H)$$

and $h_{top}((
ho_{K/H})^*) = h_{top}(
ho_{K/H})$. Now (†) gives

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

(Continuation of Proof, general case.) Let $G = S^{-1}S$ be the group of left fractions of S.

By the exactness of the Ore colocalization, we can identify H^* with a closed ρ -invariant subgroup of K^* (so that it makes sense to consider the space of left H^* -cosets K^*/H^*), and we can identify K^*/H^* with $(K/H)^*$. By the previous case

$$h_{\rm top}(\rho^*) = h_{\rm top}((\rho^*)_{H^*}) + h_{\rm top}((\rho^*)_{K^*/H^*}). \tag{(\dagger)}$$

In view of the above identifications,

 $h_{top}((\rho^*)_{H^*}) = h_{top}((\rho_H)^*)$ and $h_{top}((\rho^*)_{K^*/H^*}) = h_{top}((\rho_{K/H})^*).$ By the invariance of h_{top} under Ore colocalization,

$$h_{\mathrm{top}}(\rho^*) = h_{\mathrm{top}}(\rho), h_{\mathrm{top}}((\rho_H)^*) = h_{\mathrm{top}}(\rho_H)$$

and $h_{top}((
ho_{K/H})^*) = h_{top}(
ho_{K/H})$. Now (†) gives

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

$$h_{\rm top}(\rho^*) = h_{\rm top}((\rho^*)_{H^*}) + h_{\rm top}((\rho^*)_{K^*/H^*}). \tag{\dagger}$$

In view of the above identifications,

 $h_{top}((\rho^*)_{H^*}) = h_{top}((\rho_H)^*)$ and $h_{top}((\rho^*)_{K^*/H^*}) = h_{top}((\rho_{K/H})^*).$ By the invariance of h_{top} under Ore colocalization,

$$h_{\mathrm{top}}(\rho^*) = h_{\mathrm{top}}(\rho), h_{\mathrm{top}}((\rho_H)^*) = h_{\mathrm{top}}(\rho_H)$$

and $h_{top}((
ho_{K/H})^*) = h_{top}(
ho_{K/H})$. Now (†) gives

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

$$h_{\rm top}(\rho^*) = h_{\rm top}((\rho^*)_{H^*}) + h_{\rm top}((\rho^*)_{K^*/H^*}). \tag{\dagger}$$

In view of the above identifications,

 $h_{\text{top}}((\rho^*)_{H^*}) = h_{\text{top}}((\rho_H)^*)$ and $h_{\text{top}}((\rho^*)_{K^*/H^*}) = h_{\text{top}}((\rho_{K/H})^*).$ By the invariance of h_{top} under Ore colocalization.

$$h_{\mathrm{top}}(\rho^*) = h_{\mathrm{top}}(\rho), h_{\mathrm{top}}((\rho_H)^*) = h_{\mathrm{top}}(\rho_H)$$

and $h_{ ext{top}}((
ho_{\mathcal{K}/\mathcal{H}})^*) = h_{ ext{top}}(
ho_{\mathcal{K}/\mathcal{H}})$. Now (†) gives

$$h_{\mathrm{top}}(
ho) = h_{\mathrm{top}}(
ho_H) + h_{\mathrm{top}}(
ho_{K/H}).$$

$$h_{\rm top}(\rho^*) = h_{\rm top}((\rho^*)_{H^*}) + h_{\rm top}((\rho^*)_{K^*/H^*}). \tag{\dagger}$$

In view of the above identifications,

 $h_{\text{top}}((\rho^*)_{H^*}) = h_{\text{top}}((\rho_H)^*)$ and $h_{\text{top}}((\rho^*)_{K^*/H^*}) = h_{\text{top}}((\rho_{K/H})^*).$ By the invariance of h_{top} under Ore colocalization.

$$h_{\text{top}}(\rho^*) = h_{\text{top}}(\rho), h_{\text{top}}((\rho_H)^*) = h_{\text{top}}(\rho_H)$$

and $h_{ ext{top}}((
ho_{\mathcal{K}/\mathcal{H}})^*) = h_{ ext{top}}(
ho_{\mathcal{K}/\mathcal{H}})$. Now (†) gives

$$h_{\mathrm{top}}(\rho) = h_{\mathrm{top}}(\rho_H) + h_{\mathrm{top}}(\rho_{K/H}).$$

$$h_{\rm top}(\rho^*) = h_{\rm top}((\rho^*)_{H^*}) + h_{\rm top}((\rho^*)_{K^*/H^*}). \tag{\dagger}$$

In view of the above identifications,

 $h_{top}((\rho^*)_{H^*}) = h_{top}((\rho_H)^*)$ and $h_{top}((\rho^*)_{K^*/H^*}) = h_{top}((\rho_{K/H})^*)$. By the invariance of h_{top} under Ore colocalization,

$$h_{ ext{top}}(
ho^*) = h_{ ext{top}}(
ho), h_{ ext{top}}((
ho_H)^*) = h_{ ext{top}}(
ho_H)$$

and $h_{top}((\rho_{K/H})^*) = h_{top}(\rho_{K/H})$. Now (†) gives

$$h_{ ext{top}}(
ho) = h_{ ext{top}}(
ho_H) + h_{ ext{top}}(
ho_{K/H}).$$

Addition Theorem for $h_{\rm alg}$

From the Addition Theorem for h_{top} and the Bridge Theorem, we deduce now an Addition Theorem for h_{alg} for left actions $S \stackrel{\lambda}{\curvearrowright} X$ of a cancellative amenable monoid S on a discrete Abelian group X:

Theorem (Addition Theorem for $h_{ m alg}$)

For a linear action $S \stackrel{\lambda}{\frown} X$ on an abelian group X and a λ -invariant closed subgroup Y of X the left S-actions actions λ_Y and $\lambda_{X/Y}$ (induced by λ on Y and the quotient X/Y, respectively) satisfy

$$h_{\mathrm{alg}}(\lambda) = h_{\mathrm{alg}}(\lambda_Y) + h_{\mathrm{alg}}(\lambda_{X/Y}).$$

So far direct proofs of this fact are known only under the hypotheses that either X is torsion (Fornasiero, Giordano Bruno, DD [2020]) or S is countable and locally monotileable (Fornasiero, Giordano Bruno, Salizzoni, DD [2022]).

Addition Theorem for $h_{\rm alg}$

From the Addition Theorem for h_{top} and the Bridge Theorem, we deduce now an Addition Theorem for h_{alg} for left actions $S \stackrel{\lambda}{\frown} X$ of a cancellative amenable monoid S on a discrete Abelian group X:

Theorem (**Addition Theorem for** $h_{ m alg}$)

For a linear action $S \stackrel{\wedge}{\frown} X$ on an abelian group X and a λ -invariant closed subgroup Y of X the left S-actions actions λ_Y and $\lambda_{X/Y}$ (induced by λ on Y and the quotient X/Y, respectively) satisfy

$$h_{\mathrm{alg}}(\lambda) = h_{\mathrm{alg}}(\lambda_Y) + h_{\mathrm{alg}}(\lambda_{X/Y}).$$

So far direct proofs of this fact are known only under the hypotheses that either X is torsion (Fornasiero, Giordano Bruno, DD [2020]) or S is countable and locally monotileable (Fornasiero, Giordano Bruno, Salizzoni, DD [2022]).

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Addition Theorem for $h_{\rm alg}$

From the Addition Theorem for h_{top} and the Bridge Theorem, we deduce now an Addition Theorem for h_{alg} for left actions $S \stackrel{\lambda}{\frown} X$ of a cancellative amenable monoid S on a discrete Abelian group X:

Theorem (Addition Theorem for $h_{ m alg}$)

For a linear action $S \stackrel{\lambda}{\frown} X$ on an abelian group X and a λ -invariant closed subgroup Y of X the left S-actions actions λ_Y and $\lambda_{X/Y}$ (induced by λ on Y and the quotient X/Y, respectively) satisfy

$$h_{\mathrm{alg}}(\lambda) = h_{\mathrm{alg}}(\lambda_Y) + h_{\mathrm{alg}}(\lambda_{X/Y}).$$

So far direct proofs of this fact are known only under the hypotheses that either X is torsion (Fornasiero, Giordano Bruno, DD [2020]) or S is countable and locally monotileable (Fornasiero, Giordano Bruno, Salizzoni, DD [2022]).

▲ 同 ▶ ▲ 国 ▶ ▲ 国
Addition Theorem for $h_{\rm alg}$

From the Addition Theorem for h_{top} and the Bridge Theorem, we deduce now an Addition Theorem for h_{alg} for left actions $S \stackrel{\lambda}{\frown} X$ of a cancellative amenable monoid S on a discrete Abelian group X:

Theorem (Addition Theorem for $h_{ m alg}$)

For a linear action $S \stackrel{\lambda}{\frown} X$ on an abelian group X and a λ -invariant closed subgroup Y of X the left S-actions actions λ_Y and $\lambda_{X/Y}$ (induced by λ on Y and the quotient X/Y, respectively) satisfy

$$h_{\mathrm{alg}}(\lambda) = h_{\mathrm{alg}}(\lambda_Y) + h_{\mathrm{alg}}(\lambda_{X/Y}).$$

So far direct proofs of this fact are known only under the hypotheses that either X is torsion (Fornasiero, Giordano Bruno, DD [2020]) or S is countable and locally monotileable (Fornasiero, Giordano Bruno, Salizzoni, DD [2022]).

Proof. Consider the compact Abelian group $K := X^{\wedge}$, its closed subgroup $H := Y^{\perp}$ and its quotient group $K/H \cong Y^{\wedge}$.

If $\rho := \lambda^{\wedge}$, then *H* is ρ -invariant and the action ρ_H induced by ρ on *H* by restriction is conjugated to $(\lambda_{X/Y})^{\wedge}$, while the right *S*-action $\rho_{K/H}$ induced by ρ on K/H is conjugated to $(\lambda_Y)^{\wedge}$. Therefore, one can now conclude via the following series of equalities:

$$egin{aligned} h_{ ext{alig}}(\lambda) &= h_{ ext{top}}(
ho) \ &= h_{ ext{top}}(
ho_H) + h_{ ext{top}}(
ho_{K/H}) \ &= h_{ ext{top}}(\lambda_{X/Y}^{\wedge}) + h_{ ext{top}}(\lambda_{Y}^{\wedge}) \ &= h_{ ext{alig}}(\lambda_Y) + h_{ ext{alig}}(\lambda_{X/Y}) \end{aligned}$$

by the Bridge Theorem; by the AT for *h*_{top}; by invariance under conjug.; by the Bridge Theorem.

 $h_{\text{alg}}(\lambda) = h_{\text{top}}(\rho)$ = $h_{\text{top}}(\rho_H) + h_{\text{top}}(\rho_{K/H})$ = $h_{\text{top}}(\lambda_{X/Y}^{\wedge}) + h_{\text{top}}(\lambda_{Y}^{\wedge})$ = $h_{\text{alg}}(\lambda_Y) + h_{\text{alg}}(\lambda_{X/Y})$

by the Bridge Theorem;

by the AT for *h*top; by invariance under conjug.; by the Bridge Theorem.

$$egin{alggle} h_{ ext{alg}}(\lambda) &= h_{ ext{top}}(
ho) \ &= h_{ ext{top}}(
ho_{H}) + h_{ ext{top}}(
ho_{K/H}) \ &= h_{ ext{top}}(\lambda_{X/Y}^{\wedge}) + h_{ ext{top}}(\lambda_{Y}^{\wedge}) \ &= h_{ ext{alg}}(\lambda_{Y}) + h_{ ext{alg}}(\lambda_{X/Y}) \end{aligned}$$

by the Bridge Theorem; by the AT for h_{top} ;

by invariance under conjug.; by the Bridge Theorem.

$$egin{alg} h_{ ext{alg}}(\lambda) &= h_{ ext{top}}(
ho) \ &= h_{ ext{top}}(
ho_H) + h_{ ext{top}}(
ho_{K/H}) \ &= h_{ ext{top}}(\lambda_{X/Y}^{\wedge}) + h_{ ext{top}}(\lambda_{Y}^{\wedge}) \ &= h_{ ext{alg}}(\lambda_{Y}) + h_{ ext{alg}}(\lambda_{X/Y}) \end{array}$$

by the Bridge Theorem; by the AT for h_{top} ; by invariance under conjug.; by the Bridge Theorem.

$$egin{alggle} h_{ ext{alg}}(\lambda) &= h_{ ext{top}}(
ho) \ &= h_{ ext{top}}(
ho_H) + h_{ ext{top}}(
ho_{K/H}) \ &= h_{ ext{top}}(\lambda_{X/Y}^{\wedge}) + h_{ ext{top}}(\lambda_{Y}^{\wedge}) \ &= h_{ ext{alg}}(\lambda_Y) + h_{ ext{alg}}(\lambda_{X/Y}) \end{aligned}$$

by the Bridge Theorem; by the AT for h_{top} ; by invariance under conjug.; by the Bridge Theorem.

The "Queen" of entropies of \mathbb{N} -actions

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions

æ

The "Queen" of entropies of \mathbb{N} -actions

э