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The entropy was invented by Rudolf Clausius in Physiscs in 1865
• Information Theory – Claude Shannon in 1948
• Ergodic Theory – Kolmogorov and Sinai in 1958
• Topological Dynamics – Adler, Konheim, McAndrew in 1965
• Algebraical Dynamics – Weiss and Peters in 1976.
In each setting the entropy h(T ) of a transformation T : X → X is
a non-negative real number or ∞ measuring the randomness or
disorder attributed to T .
- for a topological space (X , τ), T is continuous; produces
topological entropy htop(T ).
- for an abelian group (X ,+), T is a homomorphism; produces
algebraic entropy halg (T ).
In both cases we have a self-map T : X → X that defines a left

action N λy X of the monoid (N,+) on X in the standard way
λ(n) = T n. Later the definition of entropy was extended to actions

S
λyX of amenable monoidsS on compact space X or a discrete

group X (definitions follow).
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M. Weiss proved in 1975 that an endomorphism f : K → K of a
totally disconnected compact Abelian group K satisfies
htop(f )=halg(f ∧), where f ∧ :K∧→K∧ is the Pontryagin dual of f .

Let us call Bridge Theorem this remarkable equality.

Peters 1979 verified the Bridge Theorem for automorphisms of
metrizable compact Abelian groups (Z-actions). Giordano Bruno
and DD [2010], verified the Bridge Theorem for all continuous
endomorphisms of arbitrary compact Abelian groups (N-actions).

This talk is dedicated to the Bridge Theorem and its applications.

Theorem (Bridge Theorem)

If S is a cancellative right amenable monoid, K a compact Abelian

group and K
ρ
x S a right S-action, then htop(ρ) = halg(ρ∧).

Proved by H.Li [2012] for S a countable amenable group and K
compact metrizable and some sofic group action by Liang [2019].
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Amenability and the left Ore condition

A right Følner net for a monoid S is a net {Fi}i∈I in

Pfin(S) = [S ]<ω \ {∅} such that limi∈I
|Fi s\Fi |
|Fi | = 0 for every s ∈ S .

We say that a cancellative monoid S is right amenable if it admits
a right Følner net. (Amenability can be defined using finitely
additive right invariant measures.)

Example

(N,+) is amenable, witnessed by the Følner sequence
Fn = {0, 1, . . . , n − 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements
s, t ∈ S , the intersection Ss ∩ St 6= ∅ is not trivial.
Clearly, S is left Ore iff (S ,≤) is directed, with the partial preorder
defined by s ≤ s ′ iff s ′ = ts for some t ∈ S .
A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S−1S that we call
group of left fractions of S , then G is amenable.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Amenability and the left Ore condition

A right Følner net for a monoid S is a net {Fi}i∈I in

Pfin(S) = [S ]<ω \ {∅} such that limi∈I
|Fi s\Fi |
|Fi | = 0 for every s ∈ S .

We say that a cancellative monoid S is right amenable if it admits
a right Følner net. (Amenability can be defined using finitely
additive right invariant measures.)

Example

(N,+) is amenable, witnessed by the Følner sequence
Fn = {0, 1, . . . , n − 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements
s, t ∈ S , the intersection Ss ∩ St 6= ∅ is not trivial.
Clearly, S is left Ore iff (S ,≤) is directed, with the partial preorder
defined by s ≤ s ′ iff s ′ = ts for some t ∈ S .
A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S−1S that we call
group of left fractions of S , then G is amenable.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Amenability and the left Ore condition

A right Følner net for a monoid S is a net {Fi}i∈I in

Pfin(S) = [S ]<ω \ {∅} such that limi∈I
|Fi s\Fi |
|Fi | = 0 for every s ∈ S .

We say that a cancellative monoid S is right amenable if it admits
a right Følner net. (Amenability can be defined using finitely
additive right invariant measures.)

Example

(N,+) is amenable, witnessed by the Følner sequence
Fn = {0, 1, . . . , n − 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements
s, t ∈ S , the intersection Ss ∩ St 6= ∅ is not trivial.
Clearly, S is left Ore iff (S ,≤) is directed, with the partial preorder
defined by s ≤ s ′ iff s ′ = ts for some t ∈ S .
A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S−1S that we call
group of left fractions of S , then G is amenable.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Amenability and the left Ore condition

A right Følner net for a monoid S is a net {Fi}i∈I in

Pfin(S) = [S ]<ω \ {∅} such that limi∈I
|Fi s\Fi |
|Fi | = 0 for every s ∈ S .

We say that a cancellative monoid S is right amenable if it admits
a right Følner net. (Amenability can be defined using finitely
additive right invariant measures.)

Example

(N,+) is amenable, witnessed by the Følner sequence
Fn = {0, 1, . . . , n − 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements
s, t ∈ S , the intersection Ss ∩ St 6= ∅ is not trivial.
Clearly, S is left Ore iff (S ,≤) is directed, with the partial preorder
defined by s ≤ s ′ iff s ′ = ts for some t ∈ S .
A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S−1S that we call
group of left fractions of S , then G is amenable.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Amenability and the left Ore condition

A right Følner net for a monoid S is a net {Fi}i∈I in

Pfin(S) = [S ]<ω \ {∅} such that limi∈I
|Fi s\Fi |
|Fi | = 0 for every s ∈ S .

We say that a cancellative monoid S is right amenable if it admits
a right Følner net. (Amenability can be defined using finitely
additive right invariant measures.)

Example

(N,+) is amenable, witnessed by the Følner sequence
Fn = {0, 1, . . . , n − 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements
s, t ∈ S , the intersection Ss ∩ St 6= ∅ is not trivial.
Clearly, S is left Ore iff (S ,≤) is directed, with the partial preorder
defined by s ≤ s ′ iff s ′ = ts for some t ∈ S .
A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S−1S that we call
group of left fractions of S , then G is amenable.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Amenability and the left Ore condition

A right Følner net for a monoid S is a net {Fi}i∈I in

Pfin(S) = [S ]<ω \ {∅} such that limi∈I
|Fi s\Fi |
|Fi | = 0 for every s ∈ S .

We say that a cancellative monoid S is right amenable if it admits
a right Følner net. (Amenability can be defined using finitely
additive right invariant measures.)

Example

(N,+) is amenable, witnessed by the Følner sequence
Fn = {0, 1, . . . , n − 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements
s, t ∈ S , the intersection Ss ∩ St 6= ∅ is not trivial.
Clearly, S is left Ore iff (S ,≤) is directed, with the partial preorder
defined by s ≤ s ′ iff s ′ = ts for some t ∈ S .
A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S−1S that we call
group of left fractions of S , then G is amenable.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



The category M of normed monoids

An objects of M is a normed monoid, i.e., a pair (M, v) where
(M,+) is a commutative monoid and v : M → R≥0 is a function.

A morphism φ : (M1, v1)→ (M2, v2) in M is a contracting monoid
homomorphism φ : M1 → M2 (i.e., v2(φ(m)) ≤ v1(m) for all
m ∈ M1). So, φ is an isomorphism in M if it is a monoid
isomorphism and v2(φ(m)) = v1(m) for all m ∈ M1.

The norm v of normed monoid (M, v) is said to be:

– monotone provided v(x) ≤ v(x + y), for all x , y ∈ M;

– sub-additive provided v(x + y) ≤ v(x) + v(y), for all x ,
y ∈ M.

The entropies halg and htop are based on the following normed
monoids (other entropies can be obtained using other normed
monoids).
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Example (1)

Let X be a discrete Abelian group and F(X ) be the family of all
finite symmetric subsets of X containing 0. The pair (F(X ),+) is
a commutative monoid (as F1 + F2 = F2 + F1 for F1,F2 ∈ F(X )),
with norm defined by vF(F ) = log |F |, for all F ∈ F(X ). The norm
vF is both monotone and sub-additive.

Example (2)

(1) Let K be a compact space and cov(K ) the family of its open
covers. For U ,V∈cov(K ) let U ∨ V={U ∩ V : U∈U ,V ∈V}.
Then (cov(K ),∨) is a commutative monoid with a monotone
and sub-additive norm given by vcov(U) = logN(U) for all for
all U ∈ cov(K ), where N(U)=min{|V| : cov(K ) 3 V ⊆ U}.

(2) Let K be a compact group, µ its Haar measure K and U(K )
be the family of all symmetric compact neighborhoods of 0 in
K . Then the pair (U(K ),∩) is a commutative monoid, with
norm vU defined by vU(U) = − logµ(U), for each U ∈ U(K ).
Clearly, vU is monotone, but not subadditive in general.
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Actions and trajectories in M

Let G be a fixed infinite cancellative right amenable monoid and
M = ((M,+), v) a normed monoid. A G -action G

αy M on M is a
monoid homomorphism α : G → End(M) (where End(M) is the
monoid of all endomorphisms of normed monoids M → M). For
x ∈M and F ={f1, . . . , fk}⊆G , define the F -trajectory of x by

TF (α, x) = αf1(x) + . . .+ αfk (x).

Two left G -actions G
α1y M1 and G

α1y M1 on the normed monoids
(M1, v1) and (M2, v2) are conjugated if there exists a
G -equivariant isomorphism of normed monoids f : M1 → M2, that
is, f ◦ (α1)g = (α2)g ◦ f for all g ∈ G .

One can introduce two weaker than conjugation notions of
“equivalence” between actions on normed monoids:
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Definition

For G -actions G
α1y M1 and G

α2y M2, where Mi = (Mi , vi ) ∈M
for i = 1, 2. we say that:
1. α2 dominates α1 if, for each x ∈ M1, there exists y ∈ M2 such
that, v1(TF (α1, x)) ≤ v2(TF (α2, y)) for all F ∈ Pfin(G ),

2. α2 asymptotically dominates α1 if, for every right Følner net
s = {Fi}i∈I for S and for every x ∈ M1, there exist a sequence
{yn}n∈N in M2 and functions fn : R≥0 → R≥0, n ∈ N, such that:

– {fn}n∈N converges uniformly to id : R≥0 → R≥0 on every
bounded interval [0,C ],

– there exists j ∈ I such that, for all i ≥ j in I and all n ∈ N,

v1(TFi
(α1, x))

|Fi |
≤ fn

(
v2(TFi

(α2, yn))

|Fi |

)
.

3. α1 is equivalent (resp., asymptotically equivalent) to α2 if these
two actions dominate (resp., asymptotically dominate) each other.

conjugated → equivalent → asymptotically equivalent
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The normed monoid entropy

Definition

Let M = (M, v) be a normed monoid with v monotone, G
αy M a

left G -action. Then for a right Følner net s = {Fi}i∈I of G the
s-entropy of α at m ∈ M is

H(α, s,m) = lim
i∈I

v(TFi
(α,m))

|Fi |
.

The s-entropy of α is h(λ, s) = supm∈M H(λ, s,m).

If v is also sub-additive, then H(α, s,m) is a limit, independent on
the choice of s (which measures the growth of TFi

(α,m)).

On the normed monoids in Examples (1) and (2), one has the

following G -actions induced by a left G -action G
λy X and by a

right G -action K
ρ
x G , respectively on a discrete Abelian group X

and on a compact space K .
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Example (topological entropy)

Let K be a compact space and K
ρ
x G a right G -action.

Define the left G -actions:

(1) G
ρcovy cov(K ), by (ρcov)g (U) = ρ−1

g (U), for every g ∈ G ;

(2) G
ρUy U(K ), by (ρU)g (U) = ρ−1

g (U), for every g ∈ G .

For any F ∈ Pfin(G ), U ∈ cov(K ) and U ∈ U(K ),

TF (ρcov,U)=
∨
g∈F

ρ−1
g (U) and TF (ρU,U)=

⋂
g∈F

ρ−1
g (U)

In particular, for any right Følner net s for G ,
H(ρcov, s,U) = Htop(ρ,U) and h(ρ, s) = htop(ρ) is the topological
entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, h(ρU, s)
coincides with Bowen’s entropy hBowen with respect to s.
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Example (algebraic entropy)

Let X be a discrete Abelian group and G
λy X a left G -action.

The left G -action G
λFy F(X ) is defined by (λF)g (F ) = λg (F ) for

g ∈ G ,F ∈ Pfin(G ). Then for any F ∈ Pfin(G ) and E ∈ F(X ),

TF (λF,E ) =
∑
g∈F

λg (E ),

is the λF-trajectory of L with respect to F .
The limit Halg(λ,E ) := H(λF, s,E ) (for some right Følner net s for
G ) is the algebraic entropy of λ w.r.t. E and halg(λ) := h(λF, s) –
the algebraic entropy of λ, as defined by Fornasiero, Giordano
Bruno, DD [2019] (for N-actions halg was introduced by Giordano
Bruno, DD [2010], for Z-actions it coincides with Peters’ entropy
halg although his definition cannot be extended to N-actions).
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Invariance of the entropy under asymptotic equivalence

The following lemma plays a key role in the proof of the Bridge
Theorem:

Lemma

Let M1 = (M1, v1) and M2 = (M2, v2) be two normed monoids,

and G
α1y M1, G

α2y M2 left G -actions. If α1 and α2 are
asymptotically equivalent, then h(α1, s) = h(α2, s) for every right
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Adding ”salt” from harmonic analysis

For an infinite LCA group Γ let U(Γ) be the family of symmetric
compact neighborhoods of 0∈Γ and µ be a fixed Haar measure.
Our main interest is in the case when Γ = X is discrete (so µ is the
counting measure) and when Γ = K is compact (when there is a
unique Haar measure such that µ(K ) = 1.

L1(Γ) – the space of absolutely integrable functions φ : Γ→ C
(those having ||φ||1 =

∫
x∈Γ |φ(x)|δµ(x) <∞), identifying those

that coincide almost everywhere, so that ||− ||1 is a norm on L1(Γ).
P(Γ) – the set of continuous and positive-definite functions on Γ
(φ : Γ→ C, is positive-definite if

∑n
i ,j=1 cicjφ(xi − xj) ∈ R≥0, for

all n ∈ N>0, x1, . . . , xn ∈ Γ and c1, . . . , cn ∈ C).

If φ, ψ ∈ L1(Γ) then
∫
y∈Γ |φ(y)ψ(x − y)|δµ(y) <∞ for almost all

x ∈ Γ, so the convolution

(φ ∗ ψ)(x) =

∫
y∈Γ

φ(y)ψ(x − y)δµ(y)

is defined almost everywhere and φ ∗ ψ ∈ L1(Γ).
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Algebraic Peters normed monoids

Let M(Γ) = {φ ∈ L1(Γ) ∩P(Γ) : φ(Γ) ⊆ R≥0} \ {0}
for any LCA group Γ.

For the discrete Abelian group X , the algebraic Peters monoid is
Malg(X ) := (M(X ), ∗, χ{0}). Define walg : Malg(X )→ R≥0, by

walg(φ) = log(||φ||1/φ(0)) for φ ∈M(X ).

This makes sense since ||φ||1 =
∑

x∈X φ(x) ≥ φ(0) 6= 0.

Lemma

In the above notation:

(1) (Malg(X ),walg) is a commutative normed monoid;

(2) the norm walg : Malg(X )→ R≥0 is monotone.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Algebraic Peters normed monoids

Let M(Γ) = {φ ∈ L1(Γ) ∩P(Γ) : φ(Γ) ⊆ R≥0} \ {0}
for any LCA group Γ.

For the discrete Abelian group X , the algebraic Peters monoid is
Malg(X ) := (M(X ), ∗, χ{0}). Define walg : Malg(X )→ R≥0, by

walg(φ) = log(||φ||1/φ(0)) for φ ∈M(X ).

This makes sense since ||φ||1 =
∑

x∈X φ(x) ≥ φ(0) 6= 0.

Lemma

In the above notation:

(1) (Malg(X ),walg) is a commutative normed monoid;

(2) the norm walg : Malg(X )→ R≥0 is monotone.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Algebraic Peters normed monoids

Let M(Γ) = {φ ∈ L1(Γ) ∩P(Γ) : φ(Γ) ⊆ R≥0} \ {0}
for any LCA group Γ.

For the discrete Abelian group X , the algebraic Peters monoid is
Malg(X ) := (M(X ), ∗, χ{0}). Define walg : Malg(X )→ R≥0, by

walg(φ) = log(||φ||1/φ(0)) for φ ∈M(X ).

This makes sense since ||φ||1 =
∑

x∈X φ(x) ≥ φ(0) 6= 0.

Lemma

In the above notation:

(1) (Malg(X ),walg) is a commutative normed monoid;

(2) the norm walg : Malg(X )→ R≥0 is monotone.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Algebraic Peters normed monoids

Let M(Γ) = {φ ∈ L1(Γ) ∩P(Γ) : φ(Γ) ⊆ R≥0} \ {0}
for any LCA group Γ.

For the discrete Abelian group X , the algebraic Peters monoid is
Malg(X ) := (M(X ), ∗, χ{0}). Define walg : Malg(X )→ R≥0, by

walg(φ) = log(||φ||1/φ(0)) for φ ∈M(X ).

This makes sense since ||φ||1 =
∑

x∈X φ(x) ≥ φ(0) 6= 0.

Lemma

In the above notation:

(1) (Malg(X ),walg) is a commutative normed monoid;

(2) the norm walg : Malg(X )→ R≥0 is monotone.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Topological Peters normed monoids

Dually, for a compact Abelian group K , the topological Peters
monoid is Mtop(K ) = (M(K ), ·, χK ). Define the norm

wtop : Malg(X )→ R≥0,

by walg(φ) = log(φ(0)/||φ||1) for φ ∈M(K ). This definition is
correct since φ(0) ≥ ||φ||1 > 0 (being φ(0) ≥ φ(x) for every
x ∈ K ).

Lemma

In the above notation:

(1) (Mtop(K ),wtop) is a commutative normed monoid.

(2) the norm wtop is monotone.

Next we see that these two normed moinoids are isomorphic when
K = X∧.
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For a LCA group Γ the Fourier transform φ̂ : Γ̂→ C of φ ∈ L1(Γ) is
defined by

φ̂(γ) = (φ ∗ γ)(0) =

∫
y∈Γ

φ(y)γ(−y)δµ(y) =

∫
y∈Γ

φ(y)γ(y)δµ(y),

for γ ∈ Γ∧.

Theorem

If X is a discrete abelian group and K = X∧, then the Fourier
transform

(̂−) : Malg(X )→Mtop(K ), φ 7→ φ̂

is an isomorphism of normed monoids. Hence, χ̂{0} = χK ,

φ̂ ∗ ψ = φ̂ · ψ̂ and walg(φ) = wtop(φ̂), for all φ, ψ ∈Malg(X ).
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In the sequel G is an amenable group. For a right linear action

K
ρ
x G on a compact abelian group K the left action

G
ρtopy Mtop(K ), defined by (ρtop)g (φ) = φ◦ρg (φ ∈Mtop(X ),

g ∈ G ), is an action by isomorphisms of normed monoids.

Similarly, for a discrete abelian group X and left linear action

G
λy X the action

G
λalgy Malg(X ), such that (λalg)g (φ) = φ ◦ λ−1

g ,

for all φ ∈Malg(X ) and g ∈ G , is well-defined.

Proposition (Justin Peters’ equality)

For a left linear action G
λy X on a discrete abelian group X ,

K = X∧ and the dual action K
ρ=λ∧

x G the G -actions

G
λalgy Malg(X ) and G

ρtopy Mtop(K ) are conjugated via the
isomorphism of normed monoids induced by the Fourier transform

(̂−) : Malg(X )→Mtop(K ), φ 7→ φ̂. Hence, h(λalg, s) = h(ρtop, s)
for every Følner net s for G .
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G -action

G
λy X , K = X∧ and K

ρ
x G , with ρ = λ∧.

Proposition

(a) G
λFy F(X ) and G

λalgy Malg(X ) are asymptotically equivalent.

(b) G
ρUy U(K ) and G

ρtopy Mtop(K ) are asymptotically equivalent.

Hence, h(λF, s) = h(λalg, s) and h(ρU, s) = h(ρtop, s) for every
Følner net s for G .

Bridge Theorem. halg(λ) = htop(λ∧).

Proof. As h(ρU, s)
∗
=h(ρcov, s) for every Følner net s for G ,

combining with the above (black) equalities one can conclude that

halg(λ)=h(λF, s) =h(λalg, s)
J.P.
= h(ρtop, s) =h(ρU, s)

∗
=h(ρcov, s)=htop(ρ).
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Reduction to actions on compact spaces by surjective maps

For a right action K
ρ
x S of a cancellative right amenable monoid S on a

compact Hausdorff space K , we build (in 2 steps) its Ore colocalization

K∗
ρ∗

x G , where K∗ is a compact Hausdorff space and G is the group of
left fractions of S . This construction preserves the topological entropy
and linearity.

The surjective core of K
ρ
x S is the closed S-invariant subspace

K̄ = E (ρ) :=
⋂

t∈S ρt(K )
εK
↪→ K of K .

The restriction ρ̄s := ρs �K̄ : K̄ → K̄ is surjective for all s ∈ S .

Theorem (reduction to actions by surjective maps)

1. htop(ρ̄) = htop(ρ) for the restricted action K̄
ρ̄
x S .

2. this reduction is functorial, i.e., if K ′
ρ′

x S is an action on a compact
Hausdorff space K ′ and φ : K → K ′ is an S-equivariant continuous map,
then φ(K̄ ) ⊆ K̄ ′ and the continuous S-equivariant map
φ̄ = φ �K̄ : K̄ → K̄ ′ is injective (resp., surjective), whenever φ is is
injective (resp., surjective).
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A by-product towards measure entropy

According to the well-known Halmos’ paradigm, a continuous
endomorphism f : K → K of a compact group is
measure-preserving with respect to the Haar measure of K if and
only if f is surjective.

Therefore, when applied to a right linear action K
ρ
x S on a

compact group K , the above theorem allows us to pass from ρ to

the S-action E (ρ) = K̄
ρ̄
x S by surjective continuous

endomorphisms, hence measure-preserving maps.

In particular, one can also discuss the measure entropy of such an
action; it is known that when S = G is a countable amenable
group and K is a compact metrizable group, then the topological
and the measure entropy coincide.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



A by-product towards measure entropy

According to the well-known Halmos’ paradigm, a continuous
endomorphism f : K → K of a compact group is
measure-preserving with respect to the Haar measure of K if and
only if f is surjective.

Therefore, when applied to a right linear action K
ρ
x S on a

compact group K , the above theorem allows us to pass from ρ to

the S-action E (ρ) = K̄
ρ̄
x S by surjective continuous

endomorphisms, hence measure-preserving maps.

In particular, one can also discuss the measure entropy of such an
action; it is known that when S = G is a countable amenable
group and K is a compact metrizable group, then the topological
and the measure entropy coincide.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



A by-product towards measure entropy

According to the well-known Halmos’ paradigm, a continuous
endomorphism f : K → K of a compact group is
measure-preserving with respect to the Haar measure of K if and
only if f is surjective.

Therefore, when applied to a right linear action K
ρ
x S on a

compact group K , the above theorem allows us to pass from ρ to

the S-action E (ρ) = K̄
ρ̄
x S by surjective continuous

endomorphisms, hence measure-preserving maps.

In particular, one can also discuss the measure entropy of such an
action; it is known that when S = G is a countable amenable
group and K is a compact metrizable group, then the topological
and the measure entropy coincide.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



A by-product towards measure entropy

According to the well-known Halmos’ paradigm, a continuous
endomorphism f : K → K of a compact group is
measure-preserving with respect to the Haar measure of K if and
only if f is surjective.

Therefore, when applied to a right linear action K
ρ
x S on a

compact group K , the above theorem allows us to pass from ρ to

the S-action E (ρ) = K̄
ρ̄
x S by surjective continuous

endomorphisms, hence measure-preserving maps.

In particular, one can also discuss the measure entropy of such an
action; it is known that when S = G is a countable amenable
group and K is a compact metrizable group, then the topological
and the measure entropy coincide.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



The Ore colocalization K ∗
ρ∗

x G of K
ρ
x G

For the inverse system K = {(Kg , ρ̄s : Kg → Kgs) : g ∈ G , s ∈ S},
where Kg = K̄ for all g ∈ G , let K ∗ := lim←−K. The canonical map

πg = πKg : K ∗ → Kg is surjective for all g ∈ G .
For g ∈ G let ρ∗g : K ∗ → K ∗ be the unique possible continuous
map such that the following diagram commutes for all h ∈ G :

Kgh = K̄
idK̄ //

OO
πgh

K̄ = KhOO

πh

K ∗
ρ∗g

// K ∗.

This defines a right G -action K ∗
ρ∗

x G , named (left) Ore

colocalization of K
ρ
x S .

The next lemma collects some properties of the Ore colocalization.
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Lemma

(1) π1 : K ∗ → K̄ is (surjective and) S-equivariant, when K ∗ is
endowed with the restriction (ρ∗)�S of the action ρ∗ to S ≤ G ;

(2) the Ore colocalization is functorial,i.e., if K ′
ρ′

x S is an action
on a compact Hausdorff space K ′ and φ : K → K ′ is an
S-equivariant continuous map, then there is a unique
continuous map φ∗ : K ∗ → (K ′)∗ such that, for every g ∈ G ,
the following diagram commutes

K ∗
φ∗ //

ε′K◦π
K
g

��

(K ′)∗

ε′K◦π
K ′
g

��
K

φ
// K ′.

Furthermore, φ∗ is G -equivariant and if φ is injective (resp.,
surjective) then so is φ∗.
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Theorem (Invariance under Ore colocalization)

Let K
ρ
x S be a right S-action by continuous self-maps on a

compact Hausdorff space K . Then htop(ρ) = htop(ρ̄) = htop(ρ∗).

Lemma (exactness of the Ore colocalization of linear actions)

Let K
ρ
x S be a linear S-action on a compact group K , H ≤ K be

a closed S-invariant subgroup and let H
ρHx S and K/H

ρK/H
x S be

the S-actions induced by ρ on H and on the left coset space K/H,
respectively. If ι : H → K is the inclusion and π : K → K/H the
projection, then:

(1) the action H∗
(ρH)∗

x G is conjugated to the action

ι∗(H∗)
(ρ∗)ι∗(H∗)

x G ;

(2) π∗ : K ∗ → (K/H)∗ is a surjective, G -equivariant, continuous

and open map; moreover, the action (K/H)∗
(ρK/H)∗

x G is

conjugated to the action K ∗/H∗
(ρ∗)K∗/H∗

x G induced by ρ∗

on the space of left H∗-cosets.
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Reduction to the case of actions by injective maps

For a left linear action S
λy X on a discrete Abelian group X , we

construct (again in 2 steps) its Ore localization G
λ∗y X ∗, which is linear

and preserves the algebraic entropy (i.e., halg(λ) = halg(λ∗)).

Starting with a left S-action S
λy X on an Abelian group X , define

Ker(λ) := {x ∈ X : ∃s ∈ S , λs(x) = 0}. This is a subgroup of X
with λ−1

s (Ker(λ)) = Ker(λ), for all s ∈ S (so, in particular,
S-invariant). Let X̄ := X/Ker(λ) and πX : X → X̄ be the

canonical projection. Define a new left S-action S
λ̄y X̄ by letting

λ̄s(π(x)) = π(λs(x)) for all s ∈ S and x ∈ X . Then
(1) λ̄ acts on X̄ by injective endomorphisms (i.e., λ̄s is injective

for all s ∈ S) and halg(λ̄) = halg(λ);

(2) this reduction is functorial, i.e., if S
λ′y X ′ is an action on an

Abelian group X ′ and φ : X → X ′ is an S-equivariant
homomorphism, then there is a unique homomorphism
φ̄ : X̄ → X̄ ′ with πX ′ ◦ φ = φ̄ ◦ πX ; and φ̄ is injective (resp.,
surjective), whenever φ is injective (resp., surjective).
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The Ore localization G
λ∗y X ∗ of S

λy X

Definition. With S ,X , λ, X̄ and λ̄ as above consider the direct
system of Abelian groups:

X := {(Xg , εgs,g : Xgs → Xg ) : g ∈ G , s ∈ S}, where Xg := X̄
and εgs,g := λ̄s : X̄ → X̄ , for all s ∈ S and g ∈ G ;
with direct limit X ∗ := lim−→G

X and the canonical morphism

εg : X̄ = Xg → X ∗ is injective for all g ∈ G . In particular,
identifying Xg = εg (X̄ ), one has that X ∗ =

⋃
g∈G Xg .

As in the case of colocalzation, there is a unique G -action

G
λ∗y X ∗, named Ore localization of S

λy X , and ε1 : X̄ → X ∗ is
S-equivariant.

Lemma (The Ore localization is functorial)

The Ore localization G
λ∗y X ∗ of S

λy X is functorial and the
assignment φ 7→ φ∗ preserves injectivity and surjectivity.

Theorem (Invariance under Ore localization)

In the above setting, halg(λ) = halg(λ̄) = halg(λ∗).
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Proof of the Bridge Theorem
First we need the following:

Lemma

Given a left S-action S
λy X on a discrete Abelian group X , let

K := X∧
ρ:=λ∧

x S be the right S-action induced by λ on the dual
compact Abelian group K := X∧.

(1) Ker(λ)⊥ = E (ρ) ≤ K . Furthermore, λ̄∧ is conjugated to ρ̄.

(2) Let G
λ∗y X ∗ be the Ore localization of λ, K := X∧

ρ:=λ∧

x S

the right S-action induced by λ on the dual, and K ∗
ρ∗

x G the

Ore colocalization of ρ. Then, K ∗
ρ∗

x G is conjugated to

K ∗
(λ∗)∧

x S

Item (2), roughly speaking, says that, the Ore (co-)localization and
the dual “commute” up to conjugacy, i.e., (λ∗∧ is conjugated to
(λ∧)∗).
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Proof of the Bridge Theorem.

Let K
ρ
x S be a a right S-action. We need to prove that

htop(ρ) = halg(λ), with λ := ρ∧ its dual action on X = K∧.
By the invariance of entropy w.r.t. Ore (co-)localization

htop(ρ) = htop(ρ∗) and halg(λ) = halg(λ∗).

By item (2) of the previous lemma, (λ∗)∧ = ((ρ∧)∗)∧ is
conjugated to (ρ∧∧)∗, which is obviously conjugated to ρ∗. Hence,
htop(ρ∗) = htop((λ∗)∧). By the Bridge Theorem for actions of
amenable groups,

htop((λ∗)∧) = halg(λ∗).

Therefore, htop(ρ) = halg(λ).

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Proof of the Bridge Theorem.

Let K
ρ
x S be a a right S-action. We need to prove that

htop(ρ) = halg(λ), with λ := ρ∧ its dual action on X = K∧.
By the invariance of entropy w.r.t. Ore (co-)localization

htop(ρ) = htop(ρ∗) and halg(λ) = halg(λ∗).

By item (2) of the previous lemma, (λ∗)∧ = ((ρ∧)∗)∧ is
conjugated to (ρ∧∧)∗, which is obviously conjugated to ρ∗. Hence,
htop(ρ∗) = htop((λ∗)∧). By the Bridge Theorem for actions of
amenable groups,

htop((λ∗)∧) = halg(λ∗).

Therefore, htop(ρ) = halg(λ).

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Proof of the Bridge Theorem.

Let K
ρ
x S be a a right S-action. We need to prove that

htop(ρ) = halg(λ), with λ := ρ∧ its dual action on X = K∧.
By the invariance of entropy w.r.t. Ore (co-)localization

htop(ρ) = htop(ρ∗) and halg(λ) = halg(λ∗).

By item (2) of the previous lemma, (λ∗)∧ = ((ρ∧)∗)∧ is
conjugated to (ρ∧∧)∗, which is obviously conjugated to ρ∗. Hence,
htop(ρ∗) = htop((λ∗)∧). By the Bridge Theorem for actions of
amenable groups,

htop((λ∗)∧) = halg(λ∗).

Therefore, htop(ρ) = halg(λ).

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Proof of the Bridge Theorem.

Let K
ρ
x S be a a right S-action. We need to prove that

htop(ρ) = halg(λ), with λ := ρ∧ its dual action on X = K∧.
By the invariance of entropy w.r.t. Ore (co-)localization

htop(ρ) = htop(ρ∗) and halg(λ) = halg(λ∗).

By item (2) of the previous lemma, (λ∗)∧ = ((ρ∧)∗)∧ is
conjugated to (ρ∧∧)∗, which is obviously conjugated to ρ∗. Hence,
htop(ρ∗) = htop((λ∗)∧). By the Bridge Theorem for actions of
amenable groups,

htop((λ∗)∧) = halg(λ∗).

Therefore, htop(ρ) = halg(λ).

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Applications: Proof of the Addition Theorems for htop and halg

Theorem (Addition Theorem for htop)

For a right linear action K
ρ
x S on a compact group K and a

ρ-invariant closed subgroup H of K the S-actions actions ρH and
ρK/H (induced by ρ on H and on the left cosets space K/H,
respectively) satisfy

htop(ρ) = htop(ρH) + htop(ρK/H).

This was known for N-actions as well as for actions of countable
amenable groups on compact metrizable groups with H normal [Li].

Proof. First assume that S = G is a group. Consider the diagonal
action (ρH)cov ⊕ (ρK/H)cov of G on cov(H)⊕ cov(K/H), having
as norm the sum of the respective norms. Since the norms of
cov(H) and cov(K/H) (hence, of cov(H)⊕ cov(K/H) as well) are
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h((ρH)cov ⊕ (ρK/H)cov, s) = h((ρH)cov, s) + h((ρK/H)cov, s). (*)

At this point one can use the following “splitting trick”

Proposition (the splitting trick)

The G -actions ρcov and (ρH)cov ⊕ (ρK/H)cov are as. equivalent.

This implies that the corresponding entropies coincide

h(ρcov, s) = h((ρH)cov ⊕ (ρK/H)cov, s). (∗∗)

Since the quantities in (*) and (**) do not depend on s, these
equalities, along with the definition of htop give

htop(ρ) = h(ρcov, s) = h((ρH)cov, s) + h((ρK/H)cov, s) =

htop(ρH) + htop(ρK/H)

as required.

This ends the proof in the case case S = G is a group.
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(Continuation of Proof, general case.)
Let G = S−1S be the group of left fractions of S .
By the exactness of the Ore colocalization, we can identify H∗ with
a closed ρ-invariant subgroup of K ∗ (so that it makes sense to
consider the space of left H∗-cosets K ∗/H∗), and we can identify
K ∗/H∗ with (K/H)∗. By the previous case

htop(ρ∗) = htop((ρ∗)H∗) + htop((ρ∗)K∗/H∗). (†)

In view of the above identifications,

htop((ρ∗)H∗)=htop((ρH)∗) and htop((ρ∗)K∗/H∗) = htop((ρK/H)∗).

By the invariance of htop under Ore colocalization,

htop(ρ∗) = htop(ρ), htop((ρH)∗) = htop(ρH)

and htop((ρK/H)∗) = htop(ρK/H). Now (†) gives

htop(ρ) = htop(ρH)+htop(ρK/H). �
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Addition Theorem for halg

From the Addition Theorem for htop and the Bridge Theorem, we

deduce now an Addition Theorem for halg for left actions S
λy X of

a cancellative amenable monoid S on a discrete Abelian group X :

Theorem (Addition Theorem for halg)

For a linear action S
λy X on an abelian group X and a λ-invariant

closed subgroup Y of X the left S-actions actions λY and λX/Y
(induced by λ on Y and the quotient X/Y , respectively) satisfy

halg(λ) = halg(λY ) + halg(λX/Y ).

So far direct proofs of this fact are known only under the
hypotheses that either X is torsion (Fornasiero, Giordano Bruno,
DD [2020]) or S is countable and locally monotileable (Fornasiero,
Giordano Bruno, Salizzoni, DD [2022]).
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Proof. Consider the compact Abelian group K := X∧, its closed
subgroup H := Y⊥ and its quotient group K/H ∼= Y ∧.
If ρ := λ∧, then H is ρ-invariant and the action ρH induced by ρ
on H by restriction is conjugated to (λX/Y )∧, while the right

S-action ρK/H induced by ρ on K/H is conjugated to (λY )∧.
Therefore, one can now conclude via the following series of
equalities:

halg(λ) = htop(ρ) by the Bridge Theorem;

= htop(ρH) + htop(ρK/H) by the AT for htop;

= htop(λX/Y
∧ ) + htop(λY

∧) by invariance under conjug.;

= halg(λY ) + halg(λX/Y ) by the Bridge Theorem.
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The “Queen” of entropies of N-actions
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