Generalized Ważewski Dendrites As Projective Fraïssé Limits



TOPOSYM 2022

Alessandro Codenotti WWU Münster

Joint work with Aleksandra Kwiatkowska

# Projective Fraïssé Limits

A class  $\mathcal{F}$  of finite topological *L*-structures and epimorphisms is called a **projective Fraïssé class** if:

- it contains only countably many structures up to isomorphism,
- its epimorphisms are closed under composition and contain the identity,
- for all  $A, B \in \mathcal{F}$  there is  $C \in \mathcal{F}$  with epimorphisms  $C \to A$  and  $C \to B$ ,
- for all diagrams of the form  $A \xrightarrow{f} B \xleftarrow{g} C$  in  $\mathcal{F}$  there exists  $D \in \mathcal{F}$  with epimorphisms  $h_1: D \to B$  and  $h_2: D \to C$  such that  $f \circ h_1 = g \circ h_2$ .

## Projective Fraïssé Limits

A class  $\mathcal{F}$  of finite topological *L*-structures and epimorphisms is called a **projective Fraïssé class** if:

- it contains only countably many structures up to isomorphism,
- its epimorphisms are closed under composition and contain the identity,
- for all  $A, B \in \mathcal{F}$  there is  $C \in \mathcal{F}$  with epimorphisms  $C \to A$  and  $C \to B$ ,
- for all diagrams of the form  $A \xrightarrow{f} B \xleftarrow{g} C$  in  $\mathcal{F}$  there exists  $D \in \mathcal{F}$  with epimorphisms  $h_1: D \to B$  and  $h_2: D \to C$  such that  $f \circ h_1 = g \circ h_2$ .

#### Theorem (Irwin – Solecki, 2006; Panagiotopoulos – Solecki, 2018)

If  $\mathcal{F}$  is a projective Fraïssé class, then there exists a unique  $\mathbb{F} \in \mathcal{F}^{\omega}$ , called its **projective Fraïssé limit**, such that:

- For all  $A \in \mathcal{F}$  there exists an epimorphism  $\mathbb{F} \to A$ ,
- If f: F → A and g: B → A are epimorphisms with A, B ∈ F, then there exists an epimorphism h: F → B such that g ∘ h = f.

## Generalized Ważewski Dendrites

A **dendrite** is a continuum (compact, connected and metrizable topological space) which is uniquely arcwise connected and locally connected.

If X is a dendrite and  $x \in X$  we say that x is an **endpoint** if  $X \setminus \{x\}$  is connected, x is a **regular point** if  $X \setminus \{x\}$  has two connected components and x is a **ramification point** if  $X \setminus \{x\}$  has at least three connected components. In the latter case the **order** of x, denoted by  $\operatorname{ord}(x)$  is the (possibly countably infinite) number of connected components of  $X \setminus \{x\}$ .

## Generalized Ważewski Dendrites

A **dendrite** is a continuum (compact, connected and metrizable topological space) which is uniquely arcwise connected and locally connected.

If X is a dendrite and  $x \in X$  we say that x is an **endpoint** if  $X \setminus \{x\}$  is connected, x is a **regular point** if  $X \setminus \{x\}$  has two connected components and x is a **ramification point** if  $X \setminus \{x\}$  has at least three connected components. In the latter case the **order** of x, denoted by  $\operatorname{ord}(x)$  is the (possibly countably infinite) number of connected components of  $X \setminus \{x\}$ .

### Theorem (Charatonik – Dilks, 1994)

Given  $P \subseteq \{3, 4, ..., \omega\}$  there is a unique dendrite, called the generalized Ważewski dendrite  $W_P$ , such that

- if  $x \in W_P$  is a ramification point, then  $ord(x) \in P$ ,
- for every p ∈ P, the set of ramification points of order p is arcwise dense in W<sub>P</sub>.

# Topological Graphs and Monotone Maps

A **topological graph** is a compact, zero-dimensional metrizable space X equipped with a closed relation  $E \subseteq X^2$  which is symmetric and reflexive. If additionally E is transitive, X is called a **prespace** and |X| = X/E is called its **topological realization**.

A topological graph X is **disconnected** if it is possible to write  $X = A \sqcup B$  with A, B clopen and such that there are no edges between A and B. It is **connected** if it is not disconnected.

A continuous surjection  $f: B \to A$  between topological graphs is called **monotone** if  $f^{-1}(C)$  is connected in *B* whenever  $C \subseteq A$  is connected.

We have the following results:

#### Theorem (Charatonik – Roe, 2021)

Let  $\mathcal{F}$  be a projective Fraïssé class of trees with monotone epimorphisms, if its projective Fraïssé limit is a prespace, then it has a dendrite as topological realization.

#### Theorem (Charatonik – Roe, 2021)

The class of finite trees with monotone maps is a projective Fraïssé class. Its projective Fraïssé limit is a prespace whose topological realization is the Ważewski dendrite  $W_3$ .

### Coherence

A monotone map  $f: B \to A$  between finite trees is called **weakly coherent** at a ramification point  $a \in A$  if there exists a **witness**  $b \in B$  such that the connected components of  $A \setminus \{a\}$  can be enumerated as  $\{A_1, \ldots, A_n\}$  and those of  $B \setminus \{b\}$  as  $\{B_1, \ldots, B_m\}$  with  $m \ge n$  and  $f^{-1}(A_i) \subseteq B_i$  for every  $1 \le i \le n$ .

### Coherence

A monotone map  $f: B \to A$  between finite trees is called **weakly coherent** at a ramification point  $a \in A$  if there exists a **witness**  $b \in B$  such that the connected components of  $A \setminus \{a\}$  can be enumerated as  $\{A_1, \ldots, A_n\}$  and those of  $B \setminus \{b\}$  as  $\{B_1, \ldots, B_m\}$  with  $m \ge n$  and  $f^{-1}(A_i) \subseteq B_i$  for every  $1 \le i \le n$ . If m = n, then f is called **coherent** at a.

The map f is called (weakly) coherent if it is (weakly) coherent at every ramification point of A.

### Coherence

A monotone map  $f: B \to A$  between finite trees is called **weakly coherent** at a ramification point  $a \in A$  if there exists a **witness**  $b \in B$  such that the connected components of  $A \setminus \{a\}$  can be enumerated as  $\{A_1, \ldots, A_n\}$  and those of  $B \setminus \{b\}$  as  $\{B_1, \ldots, B_m\}$  with  $m \ge n$  and  $f^{-1}(A_i) \subseteq B_i$  for every  $1 \le i \le n$ . If m = n, then f is called **coherent** at a.

The map f is called (weakly) coherent if it is (weakly) coherent at every ramification point of A.

Fix  $\mathcal{F}$  a projective Fraïssé family of trees with monotone maps. Let  $\langle F_i \mid i < \omega \rangle$  with maps  $f_i^j \colon F_j \to F_i$  for  $j \ge i$  be a projective Fraïssé sequence for  $\mathcal{F}$ . Its projective Fraïssé limit  $\mathbb{F}$  can be identified with a subspace of  $\prod F_i$ . A point  $x = (x_i)_{i < \omega} \in \mathbb{F}$  is called (weakly) coherent if there exists  $N \in \mathbb{N}$  such that for all i > N,  $x_{i+1}$  witnesses the (weak) coherence of  $f_i^{i+1}$  at  $x_i$ .

### Theorem (C. – Kwiatkowska, 2022)

Let  $\mathcal{F}$  be a projective Fraïssé family of finite trees with coherent maps and suppose that its projective Fraïssé limit  $\mathbb{F}$  is a prespace. Then the topological realization  $\pi \colon \mathbb{F} \to |\mathbb{F}|$  is a bijection between ramification points of  $|\mathbb{F}|$  and weakly coherent points of  $\mathbb{F}$ .

### Theorem (C. – Kwiatkowska, 2022)

Let  $\mathcal{F}$  be a projective Fraïssé family of finite trees with coherent maps and suppose that its projective Fraïssé limit  $\mathbb{F}$  is a prespace. Then the topological realization  $\pi \colon \mathbb{F} \to |\mathbb{F}|$  is a bijection between ramification points of  $|\mathbb{F}|$  and weakly coherent points of  $\mathbb{F}$ .

#### Remark

To prove that  $x \in \mathbb{F}$  is weakly coherent implies that  $\pi(x)$  is a ramification point it's enough for the morphisms in  $\mathcal{F}$  to be monotone. To prove the reverse implication they must be coherent.

### Theorem (C. – Kwiatkowska, 2022)

Let  $\mathcal{F}$  be a projective Fraïssé family of finite trees with coherent maps and suppose that its projective Fraïssé limit  $\mathbb{F}$  is a prespace. Then the topological realization  $\pi \colon \mathbb{F} \to |\mathbb{F}|$  is a bijection between ramification points of  $|\mathbb{F}|$  and weakly coherent points of  $\mathbb{F}$ .

#### Remark

To prove that  $x \in \mathbb{F}$  is weakly coherent implies that  $\pi(x)$  is a ramification point it's enough for the morphisms in  $\mathcal{F}$  to be monotone. To prove the reverse implication they must be coherent.

If  $x = (x_i)_{i < \omega} \in \mathbb{F}$  is weakly coherent either  $\operatorname{ord}(x_i)$  stabilizes to some finite value n, in which case x is a coherent point and  $\operatorname{ord}(\pi(x)) = n$ , or  $\operatorname{ord}(x_i) \to \infty$ , in which case  $\operatorname{ord}(\pi(x)) = \omega$ .

# Construction of the Projective Fraïssé Families

Fix  $P \subseteq \{3, 4, ..., \omega\}$ . We introduce two families of finite topological graphs, depending on whether  $\omega \in P$  or not.

# Construction of the Projective Fraïssé Families

Fix  $P \subseteq \{3, 4, ..., \omega\}$ . We introduce two families of finite topological graphs, depending on whether  $\omega \in P$  or not.

**Case 1:**  $\omega \notin P$ . Let  $\mathcal{G}_P$  be the family of finite trees with no vertices of order two, and such that every vertex is either an endpoint or has order in P. A map  $f: B \to A$  is an epimorphism in  $\mathcal{G}_P$  iff it is coherent.

# Construction of the Projective Fraïssé Families

Fix  $P \subseteq \{3, 4, ..., \omega\}$ . We introduce two families of finite topological graphs, depending on whether  $\omega \in P$  or not.

**Case 1:**  $\omega \notin P$ . Let  $\mathcal{G}_P$  be the family of finite trees with no vertices of order two, and such that every vertex is either an endpoint or has order in P. A map  $f: B \to A$  is an epimorphism in  $\mathcal{G}_P$  iff it is coherent.

#### Theorem (C. – Kwiatkowska, 2022)

The family  $\mathcal{G}_P$  is a projective Fraïssé family. Its projective Fraïssé limit is a prespace whose topological realization is the generalized Ważewski dendrite  $W_P$ .

**Case 2:**  $\omega \in P$ . Let  $\mathcal{F}_P$  be the family of finite trees with no vertices of order two. A map  $f : B \to A$  between trees in  $\mathcal{F}_P$  is an epimorphism in  $\mathcal{F}_P$  iff

- it is monotone,
- for all  $a \in A$  with  $ord(a) \in P$ , f is coherent at a,
- for all  $a \in A$  with  $ord(a) \notin P$ , f is weakly coherent at a, and  $ord b \notin P$ , where  $b \in B$  is the witness for the weak coherence of f at a.

**Case 2:**  $\omega \in P$ . Let  $\mathcal{F}_P$  be the family of finite trees with no vertices of order two. A map  $f : B \to A$  between trees in  $\mathcal{F}_P$  is an epimorphism in  $\mathcal{F}_P$  iff

- it is monotone,
- for all  $a \in A$  with  $ord(a) \in P$ , f is coherent at a,
- for all a ∈ A with ord(a) ∉ P, f is weakly coherent at a, and ord b ∉ P, where b ∈ B is the witness for the weak coherence of f at a.

#### Theorem (C. – Kwiatkowska, 2022)

The family  $\mathcal{F}_P$  is a projective Fraïssé family whose projective Fraïssé limit  $\mathbb{F}_P$  is a prespace. If P is coinfinite then  $|\mathbb{F}| \cong W_P$ , otherwise  $|\mathbb{F}_P| \cong W_{P'}$ , where  $P' = P \setminus \{\omega\} \cup \max\{a \notin P \mid \forall n > a \ (n \in P)\}.$ 

## Removing the Coinfiniteness Assumption

Let  $P \subseteq \{3, 4, ..., \omega\}$  and consider the language  $L_P = \{R\} \cup \{U_p \mid p \in P\}$ , where every  $U_p$  is a unary predicate. We construct  $\mathcal{F}_P$  as follows:

 a structure in *F<sub>P</sub>* is a finite tree with at least one ramification point and every ramification point x is labelled with exactly one U<sub>p</sub> such that ord(x) ≤ p and endpoints are not labelled;

### Removing the Coinfiniteness Assumption

Let  $P \subseteq \{3, 4, ..., \omega\}$  and consider the language  $L_P = \{R\} \cup \{U_p \mid p \in P\}$ , where every  $U_p$  is a unary predicate. We construct  $\mathcal{F}_P$  as follows:

- a structure in *F<sub>P</sub>* is a finite tree with at least one ramification point and every ramification point x is labelled with exactly one U<sub>p</sub> such that ord(x) ≤ p and endpoints are not labelled;
- an epimorphism  $f: B \to A$  in  $\mathcal{F}_P$  is given by a pair of maps  $p(f): B \to A$  and  $e(f): \operatorname{End}(A) \to \operatorname{End}(B)$  such that
  - p(f): B → A is weakly coherent and if U<sub>p</sub>(a) holds for a ramification point a ∈ A, then U<sub>p</sub>(b) holds for the witness of the coherence of p(f) at a;
  - ▶ e(f) is an injection on endpoints such that  $p(f) \circ e(f) = Id_{End(A)}$ .

The limit is now a pair  $(\mathbb{F}_P, E)$ :  $\mathbb{F}_P$  is a topological graph obtained as the inverse limit of the projection part, while  $E \subseteq \text{End}(\mathbb{F}_P)$  is a countable dense subset obtained as the direct limit of the embedding part.

#### Theorem (C. – Kwiatkowska, 2022)

For all  $P \subseteq \{3, 4, \dots, \omega\}$ ,  $\mathbb{F}_P$  is a prespace and  $|\mathbb{F}_P| \cong W_P$ .

The limit is now a pair  $(\mathbb{F}_P, E)$ :  $\mathbb{F}_P$  is a topological graph obtained as the inverse limit of the projection part, while  $E \subseteq \text{End}(\mathbb{F}_P)$  is a countable dense subset obtained as the direct limit of the embedding part.

Theorem (C. – Kwiatkowska, 2022)

For all  $P \subseteq \{3, 4, \dots, \omega\}$ ,  $\mathbb{F}_P$  is a prespace and  $|\mathbb{F}_P| \cong W_P$ .

Since projective Fraïssé limits are unique up to homeomorphism we recover the following countable dense homogeneity result.

#### Theorem (Charatonik – Dilks, 1994)

Let  $E, F \subseteq \text{End}(W_P)$  be two countable dense subsets. Then there exists  $h \in \text{Homeo}(W_P)$  such that h(E) = F.

# Bibliography

- [CD94] Włodzimierz J. Charatonik and Anne Dilks. "On self-homeomorphic spaces". In: *Topology and its Applications* 55.3 (1994), pp. 215–238.
- [CR21] Włodzimierz J. Charatonik and Robert P. Roe. Projective Fraïssé Limits of Trees. 2021. URL: https://web.mst.edu/~rroe/Fraisse.pdf.
- [IS06] Trevor Irwin and Sławomir Solecki. "Projective Fraïssé Limits and the Pseudo-Arc". In: Transactions of the American Mathematical Society 358.7 (2006), pp. 3077–3096.
- [Kub14] Wiesław Kubiś. "Fraïssé sequences: category-theoretic approach to universal homogeneous structures". In: Annals of Pure and Applied Logic 165.11 (2014), pp. 1755–1811.
- [PS18] Aristotelis Panagiotopoulos and Sławomir Solecki. "A combinatorial model for the Menger curve". In: Journal of Topology and Analysis (2018), pp. 1–27.