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We discuss the following theorem.

Main Theorem (C., 2021)

If X is a power homogeneous compactum then |X | ≤ 2at(X)πχ(X).

A space X is homogeneous if for every x , y ∈ X there exists a homeomorphism
h : X → X such that h(x) = y .

A space X is power homogeneous if there exists a cardinal κ such that Xκ is
homogeneous.

A compactum is a compact, Hausdorff space.

The Hilbert Cube [0, 1]ω is homogeneous (Keller, 1931), thus [0, 1] is a power
homogeneous compactum that is not homogeneous.

(ω + 1)ω is also homogeneous (van Douwen?), thus ω + 1 is another example of
a power homogeneous compactum that is not homogeneous.

at(X) satisfies wt(X) ≤ at(X) ≤ t(X)
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Background

Theorem (Arhangel′skiı̆, 1970)

If X is a sequential homogeneous compactum then |X | ≤ c.

Arhangel′skiı̆ asked if “sequential” can be replaced with "countably tight”. R. de la Vega
answered this in the affirmative.

Theorem (de la Vega, 2006)

If X is a homogeneous compactum then |X | ≤ 2t(X).

de la Vega’s original proof involved the following critical theorem:

Theorem (Arhangel′skiı̆, 1978)

If X is a compactum and t(X) ≤ κ then there exists a non-empty closed set G ⊆ X and
a set H ∈ [X ]≤κ such that χ(G,X) ≤ κ and G ⊆ H.
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A short proof of de la Vega’s Theorem due to C. and Ridderbos appeared in 2011,
using a result of Pytkeev.

Theorem (Arhangel′skiı̆, van Mill, Ridderbos, 2007)

If X is a power homogeneous compactum, then |X | ≤ 2t(X).

Their proof involved the previous 1978 result of Arhangel′skiı̆and the following
technical result involving power homogeneity:

Theorem (AVR, 2007)

Let X be a power homogeneous Hausdorff space and suppose that πχ(X) ≤ κ for a
cardinal κ. Suppose there exists a nonempty Gκ-set G and a set H ∈ [X ]≤κ such that
G ⊆ H. Then there exists a cover G of X consisting of Gκ-sets such that for all G ∈ G

there exists HG ∈ [X ]≤κ such that G ⊆ HG.
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Weak tightness

Definition (C., 2018)

Let X be a space. The weak tightness wt(X) of X is defined as the least infinite
cardinal κ for which there is a cover C of X such that |C| ≤ 2κ and for all C ∈ C,
t(C) ≤ κ and X = cl2κC. We say that X is weakly countably tight if wt(X) = ω.

Definition

Given a cardinal κ, a space X , and A ⊆ X , the κ-closure of A is defined as
clκA =

⋃
B∈[A]≤κ B.

It is clear that wt(X) ≤ t(X).
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The weak tightness encodes the essential properties of tightness that prove sufficient
to replace t(X) with wt(X) in certain cardinal inequalities.

Theorem (C., 2018)

If X is Hausdorff then |X | ≤ 2L(X)wt(X)ψ(X).

Definition (Juhász, van Mill, 2018)

Given a cover C of X , a subset A ⊆ X is C-saturated if A ∩ C is dense in A for every
C ∈ C.

Proposition

Let X be a space, κ a cardinal such that wt(X) ≤ κ, and C be a cover of X witnessing
that wt(X) ≤ κ. If B is an increasing chain of κ+-many C-saturated subsets of X , then⋃

B =
⋃

B∈B

B.
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Theorem (Bella, C., 2019)

If X is a homogeneous compactum then w(X) ≤ 2wt(X).

Using this result and the fact that |X | ≤ d(X)πχ(X) for homogeneous Hausdorff
spaces, we have:

Theorem (Bella, C.)

If X is a homogeneous compactum then |X | ≤ 2wt(X)πχ(X).

This gives a general improvement of de la Vega’s Theorem, as πχ(X) ≤ t(X) for a
compactum X and wt(X) ≤ t(X) for any space.

Question (Bella, C., 2019)

If X is a power homogeneous compactum, is |X | ≤ 2wt(X)πχ(X)?
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Main Theorem

Theorem

If X is a power homogeneous compactum then |X | ≤ 2at(X)πχ(X).

Definition (C., 2021)

Let X be a space. The almost tightness at(X) of X is defined as the least infinite
cardinal κ for which there is a cover C of X such that |C| ≤ κ and for all C ∈ C,
t(C) ≤ κ and X = clκC. We say that X is almost countably tight if at(X) = ω.

Compare with the definition of weak tightness we saw earlier:

Definition

Let X be a space. The weak tightness wt(X) of X is defined as the least infinite
cardinal κ for which there is a cover C of X such that |C| ≤ 2κ and for all C ∈ C,
t(C) ≤ κ and X = cl2κC. We say that X is weakly countably tight if wt(X) = ω.

It is clear that wt(X) ≤ at(X) ≤ t(X).

There are compact examples for which at(X) < t(X), due to Spadaro and
Szeptycki.
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Proof Components

A Gc
κ-set is a set G for which there exists a family of open sets U such that |U| ≤ κ and

G =
⋂

U =
⋂

U∈U U.

Theorem

Let X be a power homogeneous Hausdorff space and suppose that πχ(X) ≤ κ for a
cardinal κ. Suppose there exists a nonempty Gc

κ-set G and a set H ∈ [X ]≤κ such that
G ⊆ H. Then there exists a cover G of X consisting of Gc

κ-sets such that for all G ∈ G

there exists HG ∈ [X ]≤κ such that G ⊆ HG.

If “H ∈ [X ]≤κ” and “HG ∈ [X ]≤κ” in the above could be replaced with “H ∈ [X ]≤2κ ”
and “HG ∈ [X ]≤2κ ”, respectively, then it could be shown that if X is a power
homogeneous compactum then |X | ≤ 2wt(X)πχ(X), answering the question of Bella and
C.
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Proposition

Let X be a space, at(X) = κ, and let C be a cover witnessing that at(X) = κ. Then for
all x ∈ X there exists T (x) ∈ [X ]≤κ such that x ∈ T (x) and T (x) is C-saturated.

Whenever at(X) = κ and x ∈ X , we fix T (x) as obtained in the above Proposition. If
A ⊆ X , then we set T (A) =

⋃
x∈A T (x).
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We introduce the notion of a T -free sequence for use with the invariant at(X).

Definition (C., 2021)

Let at(X) = κ. A set {xα : α < λ} is an T-free sequence if
T ({xβ : β < α}) ∩ {xβ : α ≤ β < λ} = ∅ for all α < λ.

Proposition

Let X be a space such that at(X) = κ. A compact subset K ⊆ X contains no T -free
sequence of length κ+.
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Theorem (C., 2021)

Let X be a Hausdorff space, κ = at(X), and K a nonempty compact subset of X . Then
there exists a nonempty closed set G ⊆ K and a set H ⊆ X such that |H| ≤ κ, G ⊆ H,
and χ(G,K ) ≤ κ. In addition, H is C-saturated in any cover C witnessing that
at(X) = κ.

This is an improvement over Arhangel′skiı̆’s 1978 result.

Theorem (Arhangel′skiı̆, 1978)

If X is a compactum and t(X) ≤ κ then there exists a non-empty closed set G ⊆ X and
a set H ∈ [X ]≤κ such that χ(G,X) ≤ κ and G ⊆ H.
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Two more components of the proof of the Main Theorem are needed.

Given a space X , X c
κ represents the Gc

κ-modification of X , the space formed on X
where the Gc

κ-sets form a basis.

Theorem (C., 2018)

For any space X and cardinal κ, L(X c
κ) ≤ 2L(X)wt(X)·κ.

Theorem (Ridderbos, 2006)

If X is a power homogeneous Hausdorff space then |X | ≤ d(X)πχ(X).
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After putting these components together, we can prove:

Theorem

If X is a power homogeneous compactum then |X | ≤ 2at(X)πχ(X).

Corollary (Juhász, van Mill, 2018 (homogeneous case), C., 2018)

Let X be a power homogeneous compactum and suppose there exists a countable
cover of X consisting of dense, countably tight subspaces. Then |X | ≤ c.

The main theorem has a generalization to the Hausdorff setting.

Theorem

Let X be a power homogeneous Hausdorff space. Then |X | ≤ 2L(X)at(X)πχ(X)pct(X).
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Further work

The following was introduced by Tkachenko in 1983:

Definition

The o-tightness of a space X does not exceed κ, or ot(X) ≤ κ, if for every family U of
open sets of X and for every point x ∈ X with x ∈

⋃
U there exists a subfamily V ⊆ U

such that |V| ≤ κ and x ∈
⋃

V.

It is clear that ot(X) ≤ t(X).

It can also be shown that ot(X) ≤ c(X).

What surprised me was this: ot(X) ≤ wt(X).

Thus, ot(X) ≤ wt(X) ≤ at(X) ≤ t(X).
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In light of previous results, we ask:

Question

If X is a homogeneous compactum, is |X | ≤ 2ot(X)πχ(X)?

If the answer to the above is ‘yes’, it would simultaneously
1 improve the result that |X | ≤ 2wt(X)πχ(X) for a homogeneous compactum X , as

ot(X) ≤ wt(X), and
2 generalize, in the compact case, the result that |X | ≤ 2c(X)πχ(X) for any

Hausdorff, homogeneous space (C., Ridderbos, 2008), as ot(X) ≤ c(X).
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Question (de la Vega)

If X is a homogeneous compactum, is |X | ≤ 2πχ(X)?

Question (Bella, C.)

If X is a power homogeneous compactum, is |X | ≤ 2wt(X)πχ(X)?

Question (Spadaro and Szeptycki)

Is there a (power) homogeneous compactum X such that at(X) < t(X)?
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N. Carlson, Power homogeneous compacta and variations on tightness, to
appear in Topology Appl.
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Thank you!

Any questions?

Any answers?
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