On the cardinality of a power homogeneous compactum

Nathan Carlson

California Lutheran University

Prague Symposia on General Topology

July 28, 2022

We discuss the following theorem.

Main Theorem (C., 2021)

If X is a power homogeneous compactum then $|X| \leq 2^{at(X)\pi\chi(X)}$.

- A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.
- A space X is *power homogeneous* if there exists a cardinal κ such that X^κ is homogeneous.
- A *compactum* is a compact, Hausdorff space.
- The Hilbert Cube [0, 1]^ω is homogeneous (Keller, 1931), thus [0, 1] is a power homogeneous compactum that is not homogeneous.
- $(\omega + 1)^{\omega}$ is also homogeneous (van Douwen?), thus $\omega + 1$ is another example of a power homogeneous compactum that is not homogeneous.
- at(X) satisfies $wt(X) \le at(X) \le t(X)$

Background

Theorem (Arhangel'skiĭ, 1970)

If X is a sequential homogeneous compactum then $|X| \leq c$.

Arhangel'skiĭ asked if "sequential" can be replaced with "countably tight". R. de la Vega answered this in the affirmative.

Theorem (de la Vega, 2006)

If X is a homogeneous compactum then $|X| \leq 2^{t(X)}$.

de la Vega's original proof involved the following critical theorem:

Theorem (Arhangel'skiĭ, 1978)

If X is a compactum and $t(X) \leq \kappa$ then there exists a non-empty closed set $G \subseteq X$ and a set $H \in [X]^{\leq \kappa}$ such that $\chi(G, X) \leq \kappa$ and $G \subseteq \overline{H}$.

A short proof of de la Vega's Theorem due to C. and Ridderbos appeared in 2011, using a result of Pytkeev.

Theorem (Arhangel'skiĭ, van Mill, Ridderbos, 2007)

If X is a power homogeneous compactum, then $|X| \leq 2^{t(X)}$.

Their proof involved the previous 1978 result of Arhangel'skiĭand the following technical result involving power homogeneity:

Theorem (AVR, 2007)

Let X be a power homogeneous Hausdorff space and suppose that $\pi\chi(X) \leq \kappa$ for a cardinal κ . Suppose there exists a nonempty G_{κ} -set G and a set $H \in [X]^{\leq \kappa}$ such that $G \subseteq \overline{H}$. Then there exists a cover \mathfrak{G} of X consisting of G^{κ} -sets such that for all $G \in \mathfrak{G}$ there exists $H_G \in [X]^{\leq \kappa}$ such that $G \subseteq \overline{H_G}$.

4 D K 4 B K 4 B K 4

Weak tightness

Definition (C., 2018)

Let X be a space. The *weak tightness wt*(X) of X is defined as the least infinite cardinal κ for which there is a cover \mathcal{C} of X such that $|\mathcal{C}| \leq 2^{\kappa}$ and for all $C \in \mathcal{C}$, $t(C) \leq \kappa$ and $X = c_{l_2 \kappa} C$. We say that X is *weakly countably tight* if $wt(X) = \omega$.

Definition

Given a cardinal κ , a space X, and $A \subseteq X$, the κ -closure of A is defined as $cl_{\kappa}A = \bigcup_{B \in [A] \leq \kappa} \overline{B}$.

It is clear that $wt(X) \leq t(X)$.

The weak tightness encodes the essential properties of tightness that prove sufficient to replace t(X) with wt(X) in certain cardinal inequalities.

Theorem (C., 2018)

If X is Hausdorff then $|X| \leq 2^{L(X)wt(X)\psi(X)}$.

Definition (Juhász, van Mill, 2018)

Given a cover \mathcal{C} of X, a subset $A \subseteq X$ is \mathcal{C} -saturated if $A \cap C$ is dense in A for every $C \in \mathcal{C}$.

Proposition

Let X be a space, κ a cardinal such that $wt(X) \leq \kappa$, and \mathcal{C} be a cover of X witnessing that $wt(X) \leq \kappa$. If \mathcal{B} is an increasing chain of κ^+ -many \mathcal{C} -saturated subsets of X, then

$$\overline{\bigcup \mathcal{B}} = \bigcup_{B \in \mathcal{B}} \overline{B}.$$

Theorem (Bella, C., 2019)

If X is a homogeneous compactum then $w(X) \leq 2^{wt(X)}$.

Using this result and the fact that $|X| \le d(X)^{\pi\chi(X)}$ for homogeneous Hausdorff spaces, we have:

Theorem (Bella, C.)

If X is a homogeneous compactum then $|X| \leq 2^{wt(X)\pi\chi(X)}$.

This gives a general improvement of de la Vega's Theorem, as $\pi\chi(X) \le t(X)$ for a compactum X and $wt(X) \le t(X)$ for any space.

Question (Bella, C., 2019)

If X is a power homogeneous compactum, is $|X| \leq 2^{wt(X)\pi\chi(X)}$?

Main Theorem

Theorem

If X is a power homogeneous compactum then $|X| \leq 2^{at(X)\pi\chi(X)}$.

Definition (C., 2021)

Let *X* be a space. The *almost tightness* at(X) of *X* is defined as the least infinite cardinal κ for which there is a cover \mathbb{C} of *X* such that $|\mathbb{C}| \leq \kappa$ and for all $C \in \mathbb{C}$, $t(C) \leq \kappa$ and $X = cl_{\kappa}C$. We say that *X* is *almost countably tight* if $at(X) = \omega$.

Compare with the definition of weak tightness we saw earlier:

Definition

Let X be a space. The *weak tightness wt*(X) of X is defined as the least infinite cardinal κ for which there is a cover \mathcal{C} of X such that $|\mathcal{C}| \leq 2^{\kappa}$ and for all $C \in \mathcal{C}$, $t(C) \leq \kappa$ and $X = cl_{2^{\kappa}}C$. We say that X is *weakly countably tight* if $wt(X) = \omega$.

- It is clear that $wt(X) \leq at(X) \leq t(X)$.
- There are compact examples for which at(X) < t(X), due to Spadaro and Szeptycki.

A G_{κ}^{c} -set is a set G for which there exists a family of open sets \mathfrak{U} such that $|\mathfrak{U}| \leq \kappa$ and $G = \bigcap \mathfrak{U} = \bigcap_{U \in \mathfrak{U}} \overline{U}$.

Theorem

Let X be a power homogeneous Hausdorff space and suppose that $\pi\chi(X) \leq \kappa$ for a cardinal κ . Suppose there exists a nonempty G_{κ}^c -set G and a set $H \in [X]^{\leq \kappa}$ such that $G \subseteq \overline{H}$. Then there exists a cover \mathfrak{G} of X consisting of G_{κ}^c -sets such that for all $G \in \mathfrak{G}$ there exists $H_G \in [X]^{\leq \kappa}$ such that $G \subseteq \overline{H_G}$.

If " $H \in [X]^{\leq \kappa}$ " and " $H_G \in [X]^{\leq \kappa}$ " in the above could be replaced with " $H \in [X]^{\leq 2^{\kappa}}$ " and " $H_G \in [X]^{\leq 2^{\kappa}}$ ", respectively, then it could be shown that if X is a power homogeneous compactum then $|X| \leq 2^{wt(X)\pi\chi(X)}$, answering the question of Bella and C.

A (10) A (10) A (10)

Proposition

Let X be a space, $at(X) = \kappa$, and let \mathcal{C} be a cover witnessing that $at(X) = \kappa$. Then for all $x \in X$ there exists $T(x) \in [X]^{\leq \kappa}$ such that $x \in T(x)$ and T(x) is \mathcal{C} -saturated.

Whenever $at(X) = \kappa$ and $x \in X$, we fix T(x) as obtained in the above Proposition. If $A \subseteq X$, then we set $T(A) = \bigcup_{x \in A} T(x)$.

We introduce the notion of a *T*-free sequence for use with the invariant at(X).

Definition (C., 2021)

Let $at(X) = \kappa$. A set $\{x_{\alpha} : \alpha < \lambda\}$ is an *T*-free sequence if $\overline{T(\{x_{\beta} : \beta < \alpha\})} \cap \overline{\{x_{\beta} : \alpha \leq \beta < \lambda\}} = \emptyset$ for all $\alpha < \lambda$.

Proposition

Let X be a space such that $at(X) = \kappa$. A compact subset $K \subseteq X$ contains no T-free sequence of length κ^+ .

Theorem (C., 2021)

Let X be a Hausdorff space, $\kappa = at(X)$, and K a nonempty compact subset of X. Then there exists a nonempty closed set $G \subseteq K$ and a set $H \subseteq X$ such that $|H| \le \kappa$, $G \subseteq \overline{H}$, and $\chi(G, K) \le \kappa$. In addition, H is \mathbb{C} -saturated in any cover \mathbb{C} witnessing that $at(X) = \kappa$.

This is an improvement over Arhangel'skii's 1978 result.

Theorem (Arhangel'skiĭ, 1978)

If X is a compactum and $t(X) \leq \kappa$ then there exists a non-empty closed set $G \subseteq X$ and a set $H \in [X]^{\leq \kappa}$ such that $\chi(G, X) \leq \kappa$ and $G \subseteq \overline{H}$.

Two more components of the proof of the Main Theorem are needed.

Given a space X, X_{κ}^{c} represents the G_{κ}^{c} -modification of X, the space formed on X where the G_{κ}^{c} -sets form a basis.

Theorem (C., 2018)

For any space X and cardinal κ , $L(X_{\kappa}^{c}) \leq 2^{L(X)wt(X) \cdot \kappa}$.

Theorem (Ridderbos, 2006)

If X is a power homogeneous Hausdorff space then $|X| \leq d(X)^{\pi\chi(X)}$.

イロト イ団ト イヨト イヨト

After putting these components together, we can prove:

Theorem

If X is a power homogeneous compactum then $|X| \leq 2^{at(X)\pi\chi(X)}$.

Corollary (Juhász, van Mill, 2018 (homogeneous case), C., 2018)

Let X be a power homogeneous compactum and suppose there exists a countable cover of X consisting of dense, countably tight subspaces. Then $|X| \leq c$.

The main theorem has a generalization to the Hausdorff setting.

Theorem

Let X be a power homogeneous Hausdorff space. Then $|X| \leq 2^{L(X)at(X)\pi\chi(X)pct(X)}$.

The following was introduced by Tkachenko in 1983:

Definition

The *o*-tightness of a space X does not exceed κ , or $ot(X) \leq \kappa$, if for every family \mathfrak{U} of open sets of X and for every point $x \in X$ with $x \in \overline{\bigcup \mathfrak{U}}$ there exists a subfamily $\mathcal{V} \subseteq \mathfrak{U}$ such that $|\mathcal{V}| \leq \kappa$ and $x \in \overline{\bigcup \mathcal{V}}$.

- It is clear that $ot(X) \leq t(X)$.
- It can also be shown that $ot(X) \leq c(X)$.
- What surprised me was this: $ot(X) \le wt(X)$.
- Thus, $ot(X) \leq wt(X) \leq at(X) \leq t(X)$.

A (10) A (10) A (10)

In light of previous results, we ask:

Question If X is a homogeneous compactum, is $|X| \le 2^{ot(X)\pi_X(X)}$?

If the answer to the above is 'yes', it would simultaneously

- improve the result that $|X| \le 2^{wt(X)\pi\chi(X)}$ for a homogeneous compactum *X*, as $ot(X) \le wt(X)$, and
- **2** generalize, in the compact case, the result that $|X| \le 2^{c(X)\pi\chi(X)}$ for any Hausdorff, homogeneous space (C., Ridderbos, 2008), as $ot(X) \le c(X)$.

Question (de la Vega)

If X is a homogeneous compactum, is $|X| \leq 2^{\pi \chi(X)}$?

Question (Bella, C.)

If X is a power homogeneous compactum, is $|X| \leq 2^{wt(X)\pi\chi(X)}$?

Question (Spadaro and Szeptycki)

Is there a (power) homogeneous compactum X such that at(X) < t(X)?

< ロ > < 同 > < 三 > < 三 > -

N. Carlson, *Power homogeneous compacta and variations on tightness*, to appear in Topology Appl.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Thank you!

Any questions?

Any answers?

イロト イヨト イヨト イヨト

Э.