Characterization of (semi-)Eberlein compacta using retractional skeletons

C. Correa, M. Cúth, J. Somaglia

Toposym, 2022

C. Correa, M. Cúth, J. Somaglia Characterization of (semi-)Eberlein compacta using retractional skeletons

C. Correa, M. Cúth, J. Somaglia: Characterization of (semi-)Eberlein compacta using retractional skeletons, Studia Math., 263 (2) (2022), 159—198.

Eberlein compacta and their superclasses

Characterizetion of (semi-)Eberlein compacta

homeomorphic to a subset of (X, w) for some Banach space X

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^{I}, \tau_{p})$.

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^I, \tau_p)$. (where $x \in \Sigma(I)$ iff $|\{i \in I : x(i) \neq 0\}| \le \omega$).

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^I, \tau_p)$. (where $x \in \Sigma(I)$ iff $|\{i \in I : x(i) \neq 0\}| \le \omega$).

If *K* is Corson, it is also **Valdivia**, that is, there is $h : K \to [-1, 1]^{I}$ homeomorphic embedding such that $D = h^{-1}(\Sigma(I))$ is dense in *K*.

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^I, \tau_p)$. (where $x \in \Sigma(I)$ iff $|\{i \in I : x(i) \neq 0\}| \le \omega$).

If *K* is Corson, it is also **Valdivia**, that is, there is $h : K \to [-1, 1]^{I}$ homeomorphic embedding such that $D = h^{-1}(\Sigma(I))$ is dense in *K*.

Examples of Valdivia compacta: $(B_{X^{**}}, w^*)$ whenever X is a C*-algebra,

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^I, \tau_p)$. (where $x \in \Sigma(I)$ iff $|\{i \in I : x(i) \neq 0\}| \le \omega$).

If *K* is Corson, it is also **Valdivia**, that is, there is $h : K \to [-1, 1]^{I}$ homeomorphic embedding such that $D = h^{-1}(\Sigma(I))$ is dense in *K*.

Examples of Valdivia compacta: $(B_{X^{**}}, w^*)$ whenever X is a C^{*}-algebra, products of Eberlein compacta (e.g. $[-1, 1]^l$ or $\{0, 1\}^l$),

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^I, \tau_p)$. (where $x \in \Sigma(I)$ iff $|\{i \in I : x(i) \neq 0\}| \le \omega$).

If *K* is Corson, it is also **Valdivia**, that is, there is $h: K \to [-1, 1]^{I}$ homeomorphic embedding such that $D = h^{-1}(\Sigma(I))$ is dense in *K*.

Examples of Valdivia compacta: $(B_{X^{**}}, w^*)$ whenever X is a C*-algebra, products of Eberlein compacta (e.g. $[-1, 1]^l$ or $\{0, 1\}^l$), totally disconnected compact groups,

- homeomorphic to a subset of (X, w) for some Banach space X
- \Leftrightarrow homeomorphic to a subset of $(c_0(I) \cap [-1, 1]^I, \tau_p)$

If *K* is Eberlein, it is also **Corson**, that is, homeomorphic to a subset of $(\Sigma(I) \cap [-1, 1]^I, \tau_p)$. (where $x \in \Sigma(I)$ iff $|\{i \in I : x(i) \neq 0\}| \le \omega$).

If *K* is Corson, it is also **Valdivia**, that is, there is $h : K \to [-1, 1]^{I}$ homeomorphic embedding such that $D = h^{-1}(\Sigma(I))$ is dense in *K*.

Examples of Valdivia compacta: $(B_{X^{**}}, w^*)$ whenever X is a C^* -algebra, products of Eberlein compacta (e.g. $[-1, 1]^I$ or $\{0, 1\}^I$), totally disconnected compact groups, the space of ordinals $[0, \omega_1]$, ...

Example: products of Eberlein compacta (e.g. $[-1, 1]^{l}$ or $\{0, 1\}^{l}$)

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

• Eberlein \implies Corson \implies Valdivia

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia

Example: products of Eberlein compacta (e.g. $[-1, 1]^{\prime}$ or $\{0, 1\}^{\prime}$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia
- Eberlein \implies Corson+semi-Eberlein \implies Valdivia

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia
- Eberlein \implies Corson+semi-Eberlein \implies Valdivia

But

• Valdivia \Rightarrow Corson or semi-Eberlein (e.g. $[0, \omega_1]$)

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia
- Eberlein \implies Corson+semi-Eberlein \implies Valdivia

But

- Valdivia \Rightarrow Corson or semi-Eberlein (e.g. $[0, \omega_1]$)
- semi-Eberlein + Corson ⇒ Eberlein

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia
- Eberlein \implies Corson+semi-Eberlein \implies Valdivia

But

- Valdivia \Rightarrow Corson or semi-Eberlein (e.g. $[0, \omega_1]$)
- semi-Eberlein + Corson ⇒ Eberlein
- semi-Eberlein \Rightarrow Corson (e.g. 2^{*l*})

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia
- Eberlein \implies Corson+semi-Eberlein \implies Valdivia

But

- Valdivia \Rightarrow Corson or semi-Eberlein (e.g. $[0, \omega_1]$)
- semi-Eberlein + Corson ⇒ Eberlein
- semi-Eberlein \Rightarrow Corson (e.g. 2^{*l*})
- Corson ⇒ semi-Eberlein

Example: products of Eberlein compacta (e.g. [-1, 1]' or $\{0, 1\}'$)

We have

- Eberlein \Longrightarrow Corson \Longrightarrow Valdivia
- Eberlein \Longrightarrow semi-Eberlein \Longrightarrow Valdivia
- Eberlein \implies Corson+semi-Eberlein \implies Valdivia

But

- Valdivia \Rightarrow Corson or semi-Eberlein (e.g. $[0, \omega_1]$)
- semi-Eberlein + Corson ⇒ Eberlein
- semi-Eberlein \Rightarrow Corson (e.g. 2^{\prime})
- Corson ⇒ semi-Eberlein

One of the main outcomes of our paper: class "semi-Eberlein + Corson" is stable under continous images.

If *K* is Valdivia, then there is a chain of retractions $r_{\alpha} : K \to K$, $\alpha \leq w(K)$ such that

• each $r_{\alpha}[K]$ is Valdivia of weight $\leq |\alpha|$

If *K* is Valdivia, then there is a chain of retractions $r_{\alpha} : K \to K$, $\alpha \leq w(K)$ such that

- each $r_{\alpha}[K]$ is Valdivia of weight $\leq |\alpha|$
- *P*_α : *f* → *f* ∘ *r*_α is projection onto a space isometric to C(*r*_α[*K*])

If *K* is Valdivia, then there is a chain of retractions $r_{\alpha} : K \to K$, $\alpha \leq w(K)$ such that

- each $r_{\alpha}[K]$ is Valdivia of weight $\leq |\alpha|$
- *P*_α : *f* → *f* ∘ *r*_α is projection onto a space isometric to C(*r*_α[*K*])
- $(P_{\alpha})_{\alpha \leq \kappa}$ is P.R.I.

If *K* is Valdivia, then there is a chain of retractions $r_{\alpha} : K \to K$, $\alpha \leq w(K)$ such that

- each $r_{\alpha}[K]$ is Valdivia of weight $\leq |\alpha|$
- *P*_α : *f* → *f* ∘ *r*_α is projection onto a space isometric to C(*r*_α[*K*])
- (*P*_α)_{α≤κ} is P.R.I. (a system of projections with strong-enough properties to imply e.g. LUR renorming or existence of M-basis)

If *K* is Valdivia, then there is a chain of retractions $r_{\alpha} : K \to K$, $\alpha \leq w(K)$ such that

- each $r_{\alpha}[K]$ is Valdivia of weight $\leq |\alpha|$
- *P*_α : *f* → *f* ∘ *r*_α is projection onto a space isometric to C(*r*_α[*K*])
- (*P*_α)_{α≤κ} is P.R.I. (a system of projections with strong-enough properties to imply e.g. LUR renorming or existence of M-basis)

Summary: the crucial property of Valdivia compacta for functional analysis is the existence of "good-enough" system of retractions.

- Let $K \subset [-1, 1]^{l}$ be such that $K \cap \Sigma(l)$ is dense. Pick $A \in [l]^{\omega}$. Then
 - inductively we construct M(A) ∈ [I]^ω with A ⊂ M(A) such that x|_{M(A)} ∈ K for every x ∈ K

Let $K \subset [-1, 1]^{I}$ be such that $K \cap \Sigma(I)$ is dense. Pick $A \in [I]^{\omega}$. Then

- inductively we construct M(A) ∈ [I]^ω with A ⊂ M(A) such that x|_{M(A)} ∈ K for every x ∈ K
- key part: thus, r_{M(A)} : x → x|_{M(A)} is continuous retraction onto metrizable space.

For uncountable $B \subset I$ we put $M(B) := \bigcup_{A \in [B]^{\omega}} M(A)$ and $r_{M(B)}(x) := \lim_{A \in [B]^{\omega}} r_{M(A)}(x)$. Then $r_{M(B)}$ sastisfies

Let $K \subset [-1, 1]^{l}$ be such that $K \cap \Sigma(l)$ is dense. Pick $A \in [l]^{\omega}$. Then

- inductively we construct M(A) ∈ [I]^ω with A ⊂ M(A) such that x|_{M(A)} ∈ K for every x ∈ K
- key part: thus, r_{M(A)} : x → x|_{M(A)} is continuous retraction onto metrizable space.

For uncountable $B \subset I$ we put $M(B) := \bigcup_{A \in [B]^{\omega}} M(A)$ and

 $r_{\mathcal{M}(B)}(x) := \lim_{A \in [B]^{\omega}} r_{\mathcal{M}(A)}(x)$. Then $r_{\mathcal{M}(B)}$ sastisfies

• $r_{M(B)}[K]$ is Valdivia and its weight is less or equal to |B|.

Recall: $K \subset [-1, 1]^{I}$ is such that $K \cap \Sigma(I)$ is dense. There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

• $r_{M(A)}: x \mapsto x|_{M(A)}, x \in K$ defines a continuous retraction on K

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- $r_{M(A)}: x \mapsto x|_{M(A)}, x \in K$ defines a continuous retraction on K
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- *r*_{M(A)} : *x* → *x*|_{M(A)}, *x* ∈ *K* defines a continuous retraction on *K*
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_s)_{s \in \Gamma}$ is a *retractional skeleton* on *K* if r_s are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

• $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- *r*_{M(A)} : *x* → *x*|_{M(A)}, *x* ∈ *K* defines a continuous retraction on *K*
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_s)_{s \in \Gamma}$ is a *retractional skeleton* on *K* if r_s are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

- $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,
- if $s \leq t$ then $r_s = r_t \circ r_s = r_s \circ r_t$,

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- $r_{M(A)}: x \mapsto x|_{M(A)}, x \in K$ defines a continuous retraction on K
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_{\mathfrak{s}})_{\mathfrak{s}\in\Gamma}$ is a *retractional skeleton* on *K* if $r_{\mathfrak{s}}$ are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

• $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,

• if
$$s \leq t$$
 then $r_s = r_t \circ r_s = r_s \circ r_t$,

• $(s_n)_{n \in \omega}$ in Γ increasing and $x \in K$, then we have $r_{\sup_{n \in \omega} s_n}(x) = \lim_{n \to \infty} r_{s_n}(x)$, for every $x \in K$,

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- *r*_{M(A)} : *x* → *x*|_{M(A)}, *x* ∈ *K* defines a continuous retraction on *K*
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_{\mathfrak{s}})_{\mathfrak{s}\in\Gamma}$ is a *retractional skeleton* on *K* if $r_{\mathfrak{s}}$ are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

• $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,

• if
$$s \leq t$$
 then $r_s = r_t \circ r_s = r_s \circ r_t$,

- $(s_n)_{n \in \omega}$ in Γ increasing and $x \in K$, then we have $r_{\sup_{n \in \omega} s_n}(x) = \lim_{n \to \infty} r_{s_n}(x)$, for every $x \in K$,
- for every $x \in K$, $x = \lim_{s \in \Gamma} r_s(x)$.

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- *r*_{M(A)} : *x* → *x*|_{M(A)}, *x* ∈ *K* defines a continuous retraction on *K*
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_{\mathfrak{s}})_{\mathfrak{s}\in\Gamma}$ is a *retractional skeleton* on *K* if $r_{\mathfrak{s}}$ are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

- $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,
- if $s \leq t$ then $r_s = r_t \circ r_s = r_s \circ r_t$,
- $(s_n)_{n \in \omega}$ in Γ increasing and $x \in K$, then we have $r_{\sup_{n \in \omega} s_n}(x) = \lim_{n \to \infty} r_{s_n}(x)$, for every $x \in K$,
- for every $x \in K$, $x = \lim_{s \in \Gamma} r_s(x)$.

 \mathfrak{s} is *commutative* if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- *r*_{M(A)} : *x* → *x*|_{M(A)}, *x* ∈ *K* defines a continuous retraction on *K*
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_{\mathfrak{s}})_{\mathfrak{s}\in\Gamma}$ is a *retractional skeleton* on *K* if $r_{\mathfrak{s}}$ are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

- $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,
- if $s \leq t$ then $r_s = r_t \circ r_s = r_s \circ r_t$,
- $(s_n)_{n \in \omega}$ in Γ increasing and $x \in K$, then we have $r_{\sup_{n \in \omega} s_n}(x) = \lim_{n \to \infty} r_{s_n}(x)$, for every $x \in K$,
- for every $x \in K$, $x = \lim_{s \in \Gamma} r_s(x)$.

s is commutative if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$. Set induced by s: $D(s) := \bigcup_{s \in \Gamma} r_s[K]$.

There is a mapping $[I]^{\omega} \ni A \to M(A) \in [I]^{\omega}$ with $A \subset M(A)$ such that

- *r*_{M(A)} : *x* → *x*|_{M(A)}, *x* ∈ *K* defines a continuous retraction on *K*
- the mapping A → M(A) is increasing and ω-monotone
 (that is, M(∪_{n∈ℕ} A_n) = ∪_{n∈ℕ} M(A_n) whenever A₁ ⊂ A₂ ⊂ ...)

Definition: $\mathfrak{s} = (r_{\mathfrak{s}})_{\mathfrak{s}\in\Gamma}$ is a *retractional skeleton* on *K* if $r_{\mathfrak{s}}$ are retractions indexed by up-directed, σ -complete partially ordered set Γ , such that:

- $r_s[K]$ is a metrizable compact space for each $s \in \Gamma$,
- if $s \leq t$ then $r_s = r_t \circ r_s = r_s \circ r_t$,
- $(s_n)_{n \in \omega}$ in Γ increasing and $x \in K$, then we have $r_{\sup_{n \in \omega} s_n}(x) = \lim_{n \to \infty} r_{s_n}(x)$, for every $x \in K$,

• for every $x \in K$, $x = \lim_{s \in \Gamma} r_s(x)$.

s is commutative if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$. Set induced by s: $D(s) := \bigcup_{s \in \Gamma} r_s[K]$. s is full if D(s) = K. **Theorem (Kubis, Michalewski, 2006):** K is Valdivia iff there exists a commutative retractional skeleton on K.

Theorem (Kubis, Michalewski, 2006): K is Valdivia iff there exists a commutative retractional skeleton on K. **Theorem (Bandlow, 1991 or maybe Kubis, 2009):** K is Corson iff there exists a full retractional skeleton on K.

```
Let K \subset c_0(I) \cap [-1, 1]^I.
```

 $r_A: x \mapsto x|_{M(A)}, \quad A \in [I]^{\leq \omega}$

Let $A_n \nearrow A$ be a sequence from $[I]^{\leq \omega}$. Pick $x \in K$. Then

$$r_A: x \mapsto x|_{M(A)}, \quad A \in [I]^{\leq \omega}$$

Let $A_n \nearrow A$ be a sequence from $[I]^{\leq \omega}$. Pick $x \in K$. Then

$$|r_{A_n}x(i)-r_Ax(i)| = \begin{cases} 0 & i \in M(A_n) \cup I \setminus M(A) \\ |x(i)| & i \in M(A) \setminus M(A_n). \end{cases}$$

$$r_A: x \mapsto x|_{M(A)}, \quad A \in [I]^{\leq \omega}$$

Let $A_n \nearrow A$ be a sequence from $[I]^{\leq \omega}$. Pick $x \in K$. Then

$$|r_{A_n}x(i)-r_Ax(i)|=\begin{cases} 0 & i\in M(A_n)\cup I\setminus M(A)\\ |x(i)| & i\in M(A)\setminus M(A_n). \end{cases}$$

Since $x \in c_0(I)$, for every $\varepsilon > 0$ there is $F \subset I$ finite with $|x(i)| < \varepsilon$, $i \notin F$.

$$r_A: x \mapsto x|_{M(A)}, \quad A \in [I]^{\leq \omega}$$

Let $A_n \nearrow A$ be a sequence from $[I]^{\leq \omega}$. Pick $x \in K$. Then

$$|r_{A_n}x(i)-r_Ax(i)|=\begin{cases} 0 & i\in M(A_n)\cup I\setminus M(A)\\ |x(i)| & i\in M(A)\setminus M(A_n). \end{cases}$$

Since $x \in c_0(I)$, for every $\varepsilon > 0$ there is $F \subset I$ finite with $|x(i)| < \varepsilon$, $i \notin F$. Then $|r_{A_n}x(i) - r_Ax(i)| < \varepsilon$ whenever $F \cap M(A) \subset M(A_n)$.

$$r_A: x \mapsto x|_{M(A)}, \quad A \in [I]^{\leq \omega}$$

Let $A_n \nearrow A$ be a sequence from $[I]^{\leq \omega}$. Pick $x \in K$. Then

$$|r_{A_n}x(i)-r_Ax(i)|=\begin{cases} 0 & i\in M(A_n)\cup I\setminus M(A)\\ |x(i)| & i\in M(A)\setminus M(A_n). \end{cases}$$

Since $x \in c_0(I)$, for every $\varepsilon > 0$ there is $F \subset I$ finite with $|x(i)| < \varepsilon$, $i \notin F$. Then $|r_{A_n}x(i) - r_Ax(i)| < \varepsilon$ whenever $F \cap M(A) \subset M(A_n)$.

Summary: For every $x \in K$ we obtain $\lim_{n\to\infty} \sup_{i\in I} |r_{A_n}x(i) - r_Ax(i)| = 0$.

$$r_A: x \mapsto x|_{M(A)}, \quad A \in [I]^{\leq \omega}$$

Let $A_n \nearrow A$ be a sequence from $[I]^{\leq \omega}$. Pick $x \in K$. Then

$$|r_{A_n}x(i)-r_Ax(i)|=\begin{cases} 0 & i\in M(A_n)\cup I\setminus M(A)\\ |x(i)| & i\in M(A)\setminus M(A_n). \end{cases}$$

Since $x \in c_0(I)$, for every $\varepsilon > 0$ there is $F \subset I$ finite with $|x(i)| < \varepsilon$, $i \notin F$. Then $|r_{A_n}x(i) - r_Ax(i)| < \varepsilon$ whenever $F \cap M(A) \subset M(A_n)$.

Summary: For every $x \in K$ we obtain $\lim_{n\to\infty} \sup_{i\in I} |r_{A_n}x(i) - r_Ax(i)| = 0$.

Definition: Given $\mathcal{A} \subset \mathcal{C}(K)$ we say a retractional skeleton $(r_s)_{s \in \Gamma}$ is \mathcal{A} -shrinking if for every $x \in K$ and every increasing sequence (s_n) in Γ we have

$$\lim_{n\to\infty}\sup_{f\in\mathcal{A}}\left|f(r_{s_n}x)-f(r_sx)\right|=0.$$

Theorem

Let K be a compact space. Then the following conditions are equivalent:

- K is Eberlein.
- There exist a bounded set A ⊂ C(K) separating the points of K and a retractional skeleton s = (r_s)_{s∈Γ} on K such that s is A-shrinking.

Theorem

Let K be a compact space. Then the following conditions are equivalent:

- K is Eberlein.
- There exist a bounded set A ⊂ C(K) separating the points of K and a retractional skeleton s = (r_s)_{s∈Γ} on K such that s is A-shrinking.

Fabián, Montesinos, 2018 (reformulation): A compact space K is Eberlein if there exists a retractional skeleton (r_s) on K and $A \subset C(K)$ bounded and linearly dense such that for every $\mu \in C(K)^*$ and every increasing sequence (s_n) in Γ we have

$$\limsup_{n\to\infty}\sup_{f\in\mathcal{A}}\left|\mu(f\circ r_{s_n})-\mu(f\circ r_s)\right|=0.$$

Analogy for semi-Eberlein compacta gives the following.

Theorem

Let K be a compact space. Then the following conditions are equivalent:

- K is semi-Eberlein.
- There exist D ⊂ K dense, a bounded set A ⊂ C(K) separating the points of K and a retractional skeleton s = (r_s)_{s∈Γ} on K with D ⊂ D(s) such that
 - s is A-shrinking with respect to D,
 - $\lim_{s \in \Gamma'} r_s(x) \in D$ for every $x \in D$ and every up-directed subset $\Gamma' \subset \Gamma$

Recall: *K* is Eberlein iff there is $A \subset C(K)$ bdd separating points of *K* and a retractional skeleton (*r*_s) on *K* such that

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

We have

$$\varphi^*\mathcal{C}(L) = \{f \circ \varphi \colon f \in \mathcal{C}(L)\} \subset \mathcal{C}(K).$$

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

We have

$$\varphi^*\mathcal{C}(L) = \{f \circ \varphi \colon f \in \mathcal{C}(L)\} \subset \mathcal{C}(K).$$

Pick a retractional skeleton $\mathfrak{s} = (r_M)_{M \in \mathcal{M}}$ on K which is \mathcal{A} -shrinking.

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

We have

$$\varphi^*\mathcal{C}(L) = \{f \circ \varphi \colon f \in \mathcal{C}(L)\} \subset \mathcal{C}(K).$$

Pick a retractional skeleton $\mathfrak{s} = (r_M)_{M \in \mathcal{M}}$ on *K* which is *A*-shrinking.

• *skeleton in L:* there exists a retractional skeleton $(R_M)_{M \in \mathcal{M}}$ on *L* with $R_M \circ \varphi = \varphi \circ r_M, M \in \mathcal{M}$

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

We have

$$\varphi^*\mathcal{C}(L) = \{f \circ \varphi \colon f \in \mathcal{C}(L)\} \subset \mathcal{C}(K).$$

Pick a retractional skeleton $\mathfrak{s} = (r_M)_{M \in \mathcal{M}}$ on *K* which is *A*-shrinking.

• *skeleton in L:* there exists a retractional skeleton $(R_M)_{M \in \mathcal{M}}$ on *L* with $R_M \circ \varphi = \varphi \circ r_M$, $M \in \mathcal{M}$ Thus, properties of (r_M) should be naturally inherited by (R_M) .

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

We have

$$\varphi^*\mathcal{C}(L) = \{f \circ \varphi \colon f \in \mathcal{C}(L)\} \subset \mathcal{C}(K).$$

Pick a retractional skeleton $\mathfrak{s} = (r_M)_{M \in \mathcal{M}}$ on *K* which is *A*-shrinking.

- *skeleton in L:* there exists a retractional skeleton $(R_M)_{M \in \mathcal{M}}$ on *L* with $R_M \circ \varphi = \varphi \circ r_M, M \in \mathcal{M}$ Thus, properties of (r_M) should be naturally inherited by (R_M) .
- the set A in C(L): what is the set A which would work for φ^{*}C(L)?

$$\lim_{n} \sup_{f\in\mathcal{A}} |(f\circ r_{s_n})(x) - (f\circ r_s)(x)| = 0.$$

Pick *K* Eberlein and $\varphi : K \to L$ a continuous surjection. Can we prove that *L* is Eberlein using this condition?

We have

$$\varphi^*\mathcal{C}(L) = \{f \circ \varphi \colon f \in \mathcal{C}(L)\} \subset \mathcal{C}(K).$$

Pick a retractional skeleton $\mathfrak{s} = (r_M)_{M \in \mathcal{M}}$ on *K* which is *A*-shrinking.

- *skeleton in L:* there exists a retractional skeleton $(R_M)_{M \in \mathcal{M}}$ on *L* with $R_M \circ \varphi = \varphi \circ r_M$, $M \in \mathcal{M}$ Thus, properties of (r_M) should be naturally inherited by (R_M) .
- the set A in C(L): what is the set A which would work for φ*C(L)? (it should separate points of L, but we might have A ∩ φ*C(L) = Ø)

• WLOG $1 \in A$, then alg(A) is dense in C(K).

WLOG 1 ∈ A, then alg(A) is dense in C(K). Replace A by a sequence alg(A) + ¹/_mB_{C(K)}, m ∈ N - this should cover C(K) and so the intersection with C(L) will be nonempty.

- WLOG $1 \in A$, then alg(A) is dense in C(K). Replace A by a sequence $alg(A) + \frac{1}{m}B_{C(K)}$, $m \in \mathbb{N}$ this should cover C(K) and so the intersection with C(L) will be nonempty.
- More concretely

$$\mathcal{A}_{n} := \left\{ \sum_{i=1}^{k} a_{i} \prod_{j=1}^{n} f_{i,j} \colon f_{i,j} \in \mathcal{A}, \ k \in \mathbb{N}, \sum_{i=1}^{k} |a_{i}| \leq n \right\}$$
$$\mathcal{A}_{n,m} := (\mathcal{A}_{n} + \frac{1}{2m} \mathcal{B}_{\mathcal{C}(\mathcal{K})}) \cap \mathcal{B}_{\varphi^{*}\mathcal{C}(\mathcal{L})}, \quad \mathcal{B}_{n,m} := (\varphi^{*})^{-1}(\mathcal{A}_{n,m})$$
then $\mathcal{B}_{\mathcal{C}(\mathcal{L})} = \bigcup_{n,m} \mathcal{B}_{n,m}$ for every $m \in \mathbb{N}$

• WLOG $1 \in A$, then alg(A) is dense in C(K). Replace A by a sequence $alg(A) + \frac{1}{m}B_{C(K)}$, $m \in \mathbb{N}$ - this should cover C(K) and so the intersection with C(L) will be nonempty.

More concretely

$$\mathcal{A}_n := \left\{ \sum_{i=1}^k a_i \prod_{j=1}^n f_{i,j} \colon f_{i,j} \in \mathcal{A}, \ k \in \mathbb{N}, \sum_{i=1}^k |a_i| \le n \right\}$$

 $\mathcal{A}_{n,m} := (\mathcal{A}_n + \frac{1}{2m} \mathcal{B}_{\mathcal{C}(K)}) \cap \mathcal{B}_{\varphi^* \mathcal{C}(L)}, \quad \mathcal{B}_{n,m} := (\varphi^*)^{-1} (\mathcal{A}_{n,m})$

then $B_{\mathcal{C}(L)} = \bigcup_{n,m} \mathcal{B}_{n,m}$ for every $m \in \mathbb{N}$ and the properties of $\mathcal{A}_{n,m}$ related to the skeleton (r_M) should be transferred to the properties of $\mathcal{B}_{n,m}$ related to the skeleton (R_M) on L.

Theorem

Let K be a compact space. Then the following conditions are equivalent:

- K is Eberlein.
- There exist a countable family A of subsets of B_{C(K)} and a retractional skeleton s = (r_s)_{s∈Γ} on K such that
 - For every $A \in A$ there exists $\varepsilon_A > 0$ such that \mathfrak{s} is (A, ε_A) -shrinking, and
 - for every $\varepsilon > 0$ we have $B_{\mathcal{C}(K)} = \bigcup \{A \in \mathcal{A} : \varepsilon_A < \varepsilon \}.$

(Note: a skeleton is (A, ε) -shrinking is for every $s_n \nearrow s$ and $x \in K$ we have $\limsup_{n \in A} |(f \circ r_{s_n})(x) - (f \circ r_s)(x)| \le \varepsilon$)

Theorem

Let K be a compact space. Then the following conditions are equivalent:

- K is Eberlein.
- There exist a countable family A of subsets of B_{C(K)} and a retractional skeleton s = (r_s)_{s∈Γ} on K such that
 - For every $A \in A$ there exists $\varepsilon_A > 0$ such that \mathfrak{s} is (A, ε_A) -shrinking, and
 - for every $\varepsilon > 0$ we have $B_{\mathcal{C}(K)} = \bigcup \{A \in \mathcal{A} : \varepsilon_A < \varepsilon \}$.

(Note: a skeleton is (A, ε) -shrinking is for every $s_n \nearrow s$ and $x \in K$ we have $\limsup_{n \in A} |(f \circ r_{s_n})(x) - (f \circ r_s)(x)| \le \varepsilon$)

Theorem

Let K be a compact space. Then the following conditions are equivalent:

- K is semi-Eberlein.
- There exist a dense set D ⊂ K, a countable family A of subsets of B_{C(K)} and a retractional skeleton s = (r_s)_{s∈Γ} on K with D ⊂ D(s) such that
 - For every A ∈ A there exists ε_A > 0 such that s is (A, ε_A)-shrinking with respect to D,
 - for every $\varepsilon > 0$ we have $B_{\mathcal{C}(K)} = \bigcup \{A \in \mathcal{A} : \varepsilon_A < \varepsilon\}$, and
 - $\lim_{s \in \Gamma'} r_s(x) \in D$, for every $x \in D$ and every up-directed subset Γ' of Γ .

Theorem

Let *K* be a compact space and $D \subset K$ be a dense subset such that there exists a homeomorphic embedding $h : K \to [-1,1]^J$ such that $h[D] = c_0(J) \cap h[K]$. Let us suppose that $\varphi : K \to L$ is a continuous surjection and $\varphi[D]$ is subset of the set induced by a retractional skeleton on *L*. Then there is a homeomorphic embedding $H : L \to [-1,1]^J$ with $H[\varphi[D]] \subset c_0(J)$. In particular, *L* is semi-Eberlein.

Theorem

Let *K* be a compact space and $D \subset K$ be a dense subset such that there exists a homeomorphic embedding $h : K \to [-1,1]^J$ such that $h[D] = c_0(J) \cap h[K]$. Let us suppose that $\varphi : K \to L$ is a continuous surjection and $\varphi[D]$ is subset of the set induced by a retractional skeleton on *L*. Then there is a homeomorphic embedding $H : L \to [-1,1]^J$ with $H[\varphi[D]] \subset c_0(J)$. In particular, *L* is semi-Eberlein.

When the assumption is satisfied: *K* compact, $D \subset K$ dense, homeomorphic embedding $h : K \to [-1, 1]^J$ such that $h[D] = c_0(J) \cap h[K], \varphi : K \to L$ continuous surjection. Then

(1) $S := h^{-1}(\Sigma(J))$ is unique set induced by r-skeleton with $D \subset S$

Theorem

Let *K* be a compact space and $D \subset K$ be a dense subset such that there exists a homeomorphic embedding $h : K \to [-1,1]^J$ such that $h[D] = c_0(J) \cap h[K]$. Let us suppose that $\varphi : K \to L$ is a continuous surjection and $\varphi[D]$ is subset of the set induced by a retractional skeleton on *L*. Then there is a homeomorphic embedding $H : L \to [-1,1]^J$ with $H[\varphi[D]] \subset c_0(J)$. In particular, *L* is semi-Eberlein.

When the assumption is satisfied: *K* compact, $D \subset K$ dense, homeomorphic embedding $h : K \to [-1, 1]^J$ such that $h[D] = c_0(J) \cap h[K], \varphi : K \to L$ continuous surjection. Then

- (1) $S := h^{-1}(\Sigma(J))$ is unique set induced by r-skeleton with $D \subset S$
- (2) $\varphi(S)$ induced by r-skeleton on *L* iff $\varphi^* \mathcal{C}(L)$ is $\tau_{\rho}(S)$ -closed in $\mathcal{C}(K)$.

Theorem

Let *K* be a compact space and $D \subset K$ be a dense subset such that there exists a homeomorphic embedding $h : K \to [-1,1]^J$ such that $h[D] = c_0(J) \cap h[K]$. Let us suppose that $\varphi : K \to L$ is a continuous surjection and $\varphi[D]$ is subset of the set induced by a retractional skeleton on *L*. Then there is a homeomorphic embedding $H : L \to [-1,1]^J$ with $H[\varphi[D]] \subset c_0(J)$. In particular, *L* is semi-Eberlein.

When the assumption is satisfied: *K* compact, $D \subset K$ dense, homeomorphic embedding $h : K \to [-1, 1]^J$ such that $h[D] = c_0(J) \cap h[K], \varphi : K \to L$ continuous surjection. Then

- (1) $S := h^{-1}(\Sigma(J))$ is unique set induced by r-skeleton with $D \subset S$
- (2) φ(S) induced by r-skeleton on L iff φ^{*}C(L) is τ_p(S)-closed in C(K). Then, by the Theorem above, L is semi-Eberlein.

The strategy as mentioned above gives the following application:

Theorem

Let *K* be a compact space and $D \subset K$ be a dense subset such that there exists a homeomorphic embedding $h : K \to [-1,1]^J$ such that $h[D] = c_0(J) \cap h[K]$. Let us suppose that $\varphi : K \to L$ is a continuous surjection and $\varphi[D]$ is subset of the set induced by a retractional skeleton on *L*. Then there is a homeomorphic embedding $H : L \to [-1,1]^J$ with $H[\varphi[D]] \subset c_0(J)$. In particular, *L* is semi-Eberlein.

When the assumption is satisfied: *K* compact, $D \subset K$ dense, homeomorphic embedding $h : K \to [-1, 1]^J$ such that $h[D] = c_0(J) \cap h[K], \varphi : K \to L$ continuous surjection. Then

- (1) $S := h^{-1}(\Sigma(J))$ is unique set induced by r-skeleton with $D \subset S$
- (2) φ(S) induced by r-skeleton on L iff φ*C(L) is τ_p(S)-closed in C(K). Then, by the Theorem above, L is semi-Eberlein.
- (3) If {(x, y) ∈ S × S: φ(x) = φ(y)} is dense in {(x, y) ∈ K × K: φ(x) = φ(y)}, then condition (2) above is satisfied (Kalenda, 2000)

Summary: *K* compact, $h: K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_0(I)) \subset K$ dense, $\varphi: K \to L$ continuous sujection.

Summary: *K* compact, $h : K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_0(I)) \subset K$ dense, $\varphi : K \to L$ continuous sujection. Put $S := h^{-1}(\Sigma(J))$. If

$$\overline{\{(x,y)\in \mathcal{S}\times\mathcal{S}\colon \varphi(x)=\varphi(y)\}}\supset\{(x,y)\in \mathcal{K}\times\mathcal{K}\colon \varphi(x)=\varphi(y)\}$$

then $\varphi(D) \subset L$ is dense and it embeds into $c_0(J)$ for some J.

Summary: *K* compact, $h: K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_{0}(I)) \subset K$ dense, $\varphi: K \to L$ continuous sujection. Put $S := h^{-1}(\Sigma(J))$. If

$$\overline{\{(x,y)\in \mathcal{S}\times\mathcal{S}\colon \varphi(x)=\varphi(y)\}}\supset\{(x,y)\in \mathcal{K}\times\mathcal{K}\colon \varphi(x)=\varphi(y)\}$$

then $\varphi(D) \subset L$ is dense and it embeds into $c_0(J)$ for some *J*. In particular, *L* is semi-Eberlein.

Summary: *K* compact, $h : K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_0(I)) \subset K$ dense, $\varphi : K \to L$ continuous sujection. Put $S := h^{-1}(\Sigma(J))$. If

$$\overline{\{(x,y)\in S\times S\colon \varphi(x)=\varphi(y)\}}\supset \{(x,y)\in K\times K\colon \varphi(x)=\varphi(y)\}$$

then $\varphi(D) \subset L$ is dense and it embeds into $c_0(J)$ for some *J*. In particular, *L* is semi-Eberlein.

Application 1: Obviously, if S = K (which is iff K is Corson), then the condition above is satisfied.

Summary: *K* compact, $h: K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_0(I)) \subset K$ dense, $\varphi: K \to L$ continuous sujection. Put $S := h^{-1}(\Sigma(J))$. If

$$\overline{\{(x,y)\in S\times S\colon \varphi(x)=\varphi(y)\}}\supset \{(x,y)\in K\times K\colon \varphi(x)=\varphi(y)\}$$

then $\varphi(D) \subset L$ is dense and it embeds into $c_0(J)$ for some *J*. In particular, *L* is semi-Eberlein.

Application 1: Obviously, if S = K (which is iff K is Corson), then the condition above is satisfied. Thus, continuous image of Eberlein is Eberlein and continuous image of semi-Eberlein+Corson is semi-Eberlein+Corson.

Summary: *K* compact, $h: K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_0(I)) \subset K$ dense, $\varphi: K \to L$ continuous sujection. Put $S := h^{-1}(\Sigma(J))$. If

$$\overline{\{(x,y)\in S\times S\colon \varphi(x)=\varphi(y)\}}\supset \{(x,y)\in K\times K\colon \varphi(x)=\varphi(y)\}$$

then $\varphi(D) \subset L$ is dense and it embeds into $c_0(J)$ for some *J*. In particular, *L* is semi-Eberlein.

Application 1: Obviously, if S = K (which is iff K is Corson), then the condition above is satisfied. Thus, continuous image of Eberlein is Eberlein and continuous image of semi-Eberlein+Corson is semi-Eberlein+Corson.

Application 2: If G_{δ} points are dense in *L* (or in *K*) and φ is open, then the condition above is satisfied as well (Kalenda, 2000).

Summary: *K* compact, $h: K \to [-1, 1]^{I}$ embedding, $D := h^{-1}(c_0(I)) \subset K$ dense, $\varphi: K \to L$ continuous sujection. Put $S := h^{-1}(\Sigma(J))$. If

$$\overline{\{(x,y)\in S\times S\colon \varphi(x)=\varphi(y)\}}\supset \{(x,y)\in K\times K\colon \varphi(x)=\varphi(y)\}$$

then $\varphi(D) \subset L$ is dense and it embeds into $c_0(J)$ for some *J*. In particular, *L* is semi-Eberlein.

Application 1: Obviously, if S = K (which is iff K is Corson), then the condition above is satisfied. Thus, continuous image of Eberlein is Eberlein and continuous image of semi-Eberlein+Corson is semi-Eberlein+Corson.

Application 2: If G_{δ} points are dense in *L* (or in *K*) and φ is open, then the condition above is satisfied as well (Kalenda, 2000). Thus, continuous open image of semi-Eberlein which has dense many G_{δ} points is semi-Eberlein (answers a Question posed by Kubis and Leiderman).

• characterize other subclasses of Valdivia using r-skeletons

- characterize other subclasses of Valdivia using r-skeletons
- investigate Banach spaces for which B_{X*} is semi-Eberlein (or semi-Eberlein+Corson)

- characterize other subclasses of Valdivia using r-skeletons
- investigate Banach spaces for which B_{X*} is semi-Eberlein (or semi-Eberlein+Corson)
- is the class of semi-Eberlein compacta preserved by continuous retractions?

- characterize other subclasses of Valdivia using r-skeletons
- investigate Banach spaces for which B_{X*} is semi-Eberlein (or semi-Eberlein+Corson)
- is the class of semi-Eberlein compacta preserved by continuous retractions?

THANK YOU FOR YOUR ATTENTION!