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Local Operations on Graphs

1 Edge removal (\e):

We define 4 local operations:

1. \v: vertex removal:

v

2. \e: edge removal:

e

3. /v: deg-2 vertex dissolution:

v

4. /e: edge contraction

e

Let L ✓ {\v, \e, /v, /e}

H L G if H can be obtained from G after a sequence of operations in L
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Graph Relations

For L ⊆ {\e, /e, \v , /v } then H 6L G if H is obtained from G by
a sequence of operations from L.

Relation \e /e \v /v

subgraph/embeddable • •
induced subgraph/strongly embeddable •

topological minor • • •
induced topological minor • •

graph minor • • •
induced graph minor • •
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Graph Relations on Trees

Observation 1: all trees are connected and thus the induced and
regular versions of the above are equivalent

Observation 2: since any deg-2 vertex dissolutions can be
obtained via an edge contraction we have the following hierarchy

embedding =⇒ topological minor =⇒ graph minor

Observation 3: the topological and graph minor relations are
well-quasi-orders on trees.
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WQOs

A quasi-order (QO) on a set X is a reflexive and transitive
relation 6 and it becomes a well-quasi-order (WQO) if all strictly
descending chains and antichains are finite.

Lemma

For a qo (X ,6) TFAE:

1 (X ,6) is a WQO.

2 For any sequence (xn) in X there exists i < j with xi 6 xj .

3 Any sequence (xn) in X contains a monotone increasing
subsequence.
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WQOs on graphs

Relation WQO on (finite) trees WQO on (finite) graphs

embeddable (•) • (•) •
topological minor (•) • (•) •

graph minor (•) • (•) •

Nash-Williams proved the topological minor relation is a
WQO on trees but the result can’t be extended to all graphs.
Consider the collection An with:
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WQOs on graphs

However, Topological-minor-closed collections of graphs
containing finitely many An’s are wqo under topological minor
(Ding, ’96).

The Graph Minor Theorem (Robertson and Seymour 84 - ’87)
shows that finite graphs are WQO under the graph minor
using the powerful concept of forbidden minors.

It is false for infinite graphs (Thomas ’88) but true if at least
one graph is planar and finite (Thomas ’89).
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The Tree Alternative Conjecture

Trees T and S are mutually embeddable, T ∼ S , is they can be
embedded in each other.

The Tree Alternative Conjecture (TAC) states that - up to
isomorphism - the number of trees mutually embeddable with a
given tree is either 1 or infinite.

Initially posed by Bonato and Tardif and solved by them for all
rayless trees in 2006.

Solved for all rooted trees by Tyomkyn in 2008.

Solved for scattered trees by Laflamme, Pouzet, and Sauer in
2017.
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TAC for other relations

We can ask the same question of the topological minor (∼]) and
graph minor relations (∼∗).

Theorem (B-Szeptycki, ’22)

Up to isomorphism, the number of trees that are mutual
topological/graph minors with a given tree is either 1 or infinite.

The Theorem seems to be true for all graphs under either relation
but this remains an open question.

Conjecture

Up to isomorphism, the number of graphs that are mutual
(induced) topological/graph minors with a given tree is either 1 or
infinite.
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Relative TAC

Finally, TAC can be asked of each relation relative to stronger
ones: ∼= >∼ > ∼] > ∼∗.

For instance, letting [T ]∗ denote the equivalence class of T under
∼∗, what are the possible sizes for [T ]∗/ ∼]?

∼= ∼ ∼] ∼∗

∼= - TAC (?) • •
∼ - - • •
∼] - - - ?

∼∗ - - - -
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TAC for the topological minor

Theorem (B-Szeptycki, ’21)

For any locally finite tree T : |[T ]]| ∈ {1, 2ℵ0}.

The dichotomy occurrs between large and small trees. A small
trees is one where every ray is eventually bare and large if not
small. A ray R = v1v2 . . . is eventually bare if ∃k ∈ N with
deg(vn) = 2 for all n > k.

Theorem (B-Szeptycki, ’21)

For any locally finite tree T : |[T ]]| = 1 if T is small and 2ℵ0 ,
otherwise.

In fact (B-S ’22) T ∼= S ⇐⇒ T ∼∗ S for locally finite small trees
(i.e., all 4 relations coincide for small locally finite trees).
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TAC for tm

The neat dichotomy stopped with locally finite trees:

. . . . . .

Figure: Left equivalence class ℵ0 and right equivalence class 2ℵ0 .
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Large Trees and WQO

So, why are the equivalence classes of large trees so big?

Let (T , r) be locally finite and large and find a ray
R = v1v2 . . . that is not eventually bare.
Consider the collection Tn of full subtrees of T rooted at vn.
B/c {Tn | n ∈ N} is WQO we can find an increasing
subsequence (rk) of (n) with Tri 6

] Trj with i 6 j and
WLOG, deg(rk) > 3.

r

. . .

r ′1

e1r1

. . .

r ′k

ekrk

. . .
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Large Trees and WQO

For each f : N→ N let (Tf , r) denote the tree that results
from the following subdivision of (T , r): for each n ∈ N
subdivide en into a bare path of length f (n).

Let pn denote the bare path of length f (n) that replaces en in
(T , r) and Rf the modified ray R.

r
. . .

r ′1,f

. . .
p1

r1,f

. . .

r ′k,f

. . .

pk
rk,f

. . .



Large Trees and WQO

Lemma

For any pair f , g ∈ NN, (Tf , r) ≡] (Tg , r).

Proof.

All (Tf , r) are topologically equivalent to (T , r).
Easy: (Tf , r) >] (T , r).
Hard: (Tf , r) 6] (T , r) - but again all b/c ∼] is a WQO of
trees.



Large Trees and WQO

For each n ∈ N:

ln = {v ∈ v(T , r) | level(v) = level(r ′n)}

and

Ln = {p : p is a finite maximal bare path with initial vertex ∈ ln}.

r
. . .

r ′1

e1r1

. . .

r ′k

ekrk

. . .



Large Trees and WQO

For a path p to be in Ln it must be that if v is the terminal
vertex of p then deg(v) > 2.

Since deg(rk) > 2 for all k then Ln 6= ∅ for all n.

Since (T , r) is locally finite, it follows that
Mn = max{|p| : p ∈ Ln} exists.



Large Trees and WQO

Lemma

Let f , g ∈ NN so that f (n), g(n) > Mn, for all n ∈ N. Then
(Tf , r) ∼= (Tg , r) if, and only if, f = g .

Proof.

Tricky but in a nutshell: any isomorphism witnessing
(Tf , r) ∼= (Tg , r) must map the ray Rg onto Rf - hence f = g .This
is due to our choice of functions f , g with f (n), g(n) > Mn.

Since there are 2ℵ0 f , g ∈ NN with f (n), g(n) > Mn the result
follows.
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