# A proof of the Tree Alternative Conjecture for the topological minor relation.

with P. Szeptycki (Toronto)

Department of Digital Technologies

University of Winchester

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Outline

#### Background.

- Operations on graphs.
- Graph/tree relations.
- WQOs.
- Tree Alternative Conjecture.
  - Generalised TAC.
  - A snippet of our proof.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

**1** Edge removal (\e):



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1 Edge removal (\e):



**2** Edge contraction (/e):





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ



For  $\mathcal{L} \subseteq \{ \langle e, /e, \langle v, /v \rangle \}$  then  $H \leq_{\mathcal{L}} G$  if H is obtained from G by a sequence of operations from  $\mathcal{L}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For  $\mathcal{L} \subseteq \{ \langle e, /e, \langle v, /v \rangle \}$  then  $H \leq_{\mathcal{L}} G$  if H is obtained from G by a sequence of operations from  $\mathcal{L}$ .

| Relation                             | $\setminus e$ | <i>/e</i> | $\setminus v$ | /v |
|--------------------------------------|---------------|-----------|---------------|----|
| subgraph/embeddable                  | •             |           | •             |    |
| induced subgraph/strongly embeddable |               |           | •             |    |
| topological minor                    | •             |           | •             | •  |
| induced topological minor            |               |           | •             | •  |
| graph minor                          | •             | •         | •             |    |
| induced graph minor                  |               | •         | •             |    |

## Graph Relations



## Graph Relations



**Topological Minor** 



## **Observation 1:** all trees are connected and thus the induced and regular versions of the above are equivalent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

**Observation 1:** all trees are connected and thus the induced and regular versions of the above are equivalent

**Observation 2:** since any deg-2 vertex dissolutions can be obtained via an edge contraction we have the following hierarchy

embedding  $\implies$  topological minor  $\implies$  graph minor

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

**Observation 1:** all trees are connected and thus the induced and regular versions of the above are equivalent

**Observation 2:** since any deg-2 vertex dissolutions can be obtained via an edge contraction we have the following hierarchy

embedding  $\implies$  topological minor  $\implies$  graph minor

**Observation 3:** the topological and graph minor relations are *well-quasi-orders* on trees.



A **quasi-order** (QO) on a set X is a reflexive and transitive relation  $\leq$  and it becomes a **well-quasi-order** (WQO) if all strictly descending chains and antichains are finite.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A **quasi-order** (QO) on a set X is a reflexive and transitive relation  $\leq$  and it becomes a **well-quasi-order** (WQO) if all strictly descending chains and antichains are finite.

#### Lemma

- For a qo  $(X, \leq)$  TFAE:
  - 1  $(X, \leq)$  is a WQO.
  - **2** For any sequence  $(x_n)$  in X there exists i < j with  $x_i \leq x_j$ .
  - 3 Any sequence (x<sub>n</sub>) in X contains a monotone increasing subsequence.

| Relation          | WQO on (finite) trees | WQO on (finite) graphs |
|-------------------|-----------------------|------------------------|
| embeddable        | (•) •                 | (•) •                  |
| topological minor | (•) •                 | (●) ●                  |
| graph minor       | (•) •                 | (•) •                  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Relation          | WQO on (finite) trees | WQO on (finite) graphs |
|-------------------|-----------------------|------------------------|
| embeddable        | (•) •                 | (●) ●                  |
| topological minor | (•) •                 | (●) ●                  |
| graph minor       | (•) •                 | (•) •                  |

 Nash-Williams proved the topological minor relation is a WQO on trees but the result can't be extended to all graphs. Consider the collection A<sub>n</sub> with:



<ロト <回ト < 注ト < 注ト

э

 However, Topological-minor-closed collections of graphs containing finitely many A<sub>n</sub>'s are wqo under topological minor (Ding, '96).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- However, Topological-minor-closed collections of graphs containing finitely many A<sub>n</sub>'s are wqo under topological minor (Ding, '96).
- The Graph Minor Theorem (Robertson and Seymour 84 '87) shows that finite graphs are WQO under the graph minor using the powerful concept of *forbidden minors*.

- However, Topological-minor-closed collections of graphs containing finitely many A<sub>n</sub>'s are wqo under topological minor (Ding, '96).
- The Graph Minor Theorem (Robertson and Seymour 84 '87) shows that finite graphs are WQO under the graph minor using the powerful concept of *forbidden minors*.
- It is false for infinite graphs (Thomas '88) but true if at least one graph is planar and finite (Thomas '89).

The **Tree Alternative Conjecture (TAC)** states that - up to isomorphism - the number of trees mutually embeddable with a given tree is either 1 or infinite.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The **Tree Alternative Conjecture (TAC)** states that - up to isomorphism - the number of trees mutually embeddable with a given tree is either 1 or infinite.

 Initially posed by Bonato and Tardif and solved by them for all rayless trees in 2006.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The **Tree Alternative Conjecture (TAC)** states that - up to isomorphism - the number of trees mutually embeddable with a given tree is either 1 or infinite.

 Initially posed by Bonato and Tardif and solved by them for all rayless trees in 2006.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solved for all rooted trees by Tyomkyn in 2008.

The **Tree Alternative Conjecture (TAC)** states that - up to isomorphism - the number of trees mutually embeddable with a given tree is either 1 or infinite.

- Initially posed by Bonato and Tardif and solved by them for all rayless trees in 2006.
- Solved for all rooted trees by Tyomkyn in 2008.
- Solved for *scattered trees* by Laflamme, Pouzet, and Sauer in 2017.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We can ask the same question of the topological minor ( $\sim^{\sharp}$ ) and graph minor relations ( $\sim^{*}$ ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We can ask the same question of the topological minor  $(\sim^{\sharp})$  and graph minor relations  $(\sim^{*})$ .

Theorem (B-Szeptycki, '22)

Up to isomorphism, the number of trees that are mutual topological/graph minors with a given tree is either 1 or infinite.

We can ask the same question of the topological minor  $(\sim^{\sharp})$  and graph minor relations  $(\sim^{*})$ .

Theorem (B-Szeptycki, '22)

Up to isomorphism, the number of trees that are mutual topological/graph minors with a given tree is either 1 or infinite.

The Theorem seems to be true for all graphs under either relation but this remains an open question.

#### Conjecture

Up to isomorphism, the number of graphs that are mutual (induced) topological/graph minors with a given tree is either 1 or infinite.



Finally, TAC can be asked of each relation relative to stronger ones:  $\cong \ge \sim \ge \sim^{\sharp} \ge \sim^{*}$ .

Finally, TAC can be asked of each relation relative to stronger ones:  $\cong \ge \sim \ge \sim^{\sharp} \ge \sim^{\ast}$ .

For instance, letting  $[T]_*$  denote the equivalence class of T under  $\sim^*$ , what are the possible sizes for  $[T]_*/\sim^{\sharp}$ ?

|          | $\cong$ | ~       | $\sim^{\sharp}$ | $\sim^*$ |
|----------|---------|---------|-----------------|----------|
| $\cong$  | -       | TAC (?) | •               | •        |
| ~        | -       | -       | •               | •        |
| ~#       | -       | -       | -               | ?        |
| $\sim^*$ | -       | -       | -               | -        |

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## TAC for the topological minor

Theorem (B-Szeptycki, '21)

For any locally finite tree  $T: |[T]_{\sharp}| \in \{1, 2^{\aleph_0}\}.$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Theorem (B-Szeptycki, '21)

For any locally finite tree  $T: |[T]_{\sharp}| \in \{1, 2^{\aleph_0}\}.$ 

The dichotomy occurs between *large* and *small* trees. A **small** trees is one where every ray is *eventually bare* and **large** if not small. A ray  $R = v_1 v_2 \dots$  is **eventually bare** if  $\exists k \in \mathbb{N}$  with  $\deg(v_n) = 2$  for all  $n \ge k$ .

#### Theorem (B-Szeptycki, '21)

For any locally finite tree  $T: |[T]_{\sharp}| \in \{1, 2^{\aleph_0}\}.$ 

The dichotomy occurs between *large* and *small* trees. A **small** trees is one where every ray is *eventually bare* and **large** if not small. A ray  $R = v_1v_2...$  is **eventually bare** if  $\exists k \in \mathbb{N}$  with  $\deg(v_n) = 2$  for all  $n \ge k$ .

#### Theorem (B-Szeptycki, '21)

For any locally finite tree T:  $|[T]_{\sharp}| = 1$  if T is small and  $2^{\aleph_0}$ , otherwise.

In fact (B-S '22)  $T \cong S \iff T \sim^* S$  for locally finite small trees (i.e., all 4 relations coincide for small locally finite trees).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



The neat dichotomy stopped with locally finite trees:



Figure: Left equivalence class  $\aleph_0$  and right equivalence class  $2^{\aleph_0}$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



The neat dichotomy stopped with locally finite trees:



Figure: Left equivalence class  $\aleph_0$  and right equivalence class  $2^{\aleph_0}$ .

#### Theorem (B-Szeptycki, '22)

For any large tree  $T: |[T]_{\sharp}| \ge 2^{\aleph_0}$ .

#### Theorem (B-Szeptycki, '22)

For any small tree T:  $|[T]_{\sharp}| = 1$  or  $\geq \aleph_0$ .

So, why are the equivalence classes of large trees so big?

So, why are the equivalence classes of large trees so big?

• Let (T, r) be locally finite and large and find a ray  $R = v_1 v_2 \dots$  that is not eventually bare.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So, why are the equivalence classes of large trees so big?

- Let (T, r) be locally finite and large and find a ray  $R = v_1 v_2 \dots$  that is not eventually bare.
- Consider the collection  $T_n$  of full subtrees of T rooted at  $v_n$ .

So, why are the equivalence classes of large trees so big?

- Let (T, r) be locally finite and large and find a ray  $R = v_1 v_2 \dots$  that is not eventually bare.
- Consider the collection  $T_n$  of full subtrees of T rooted at  $v_n$ .
- B/c { $T_n \mid n \in \mathbb{N}$ } is WQO we can find an increasing subsequence  $(r_k)$  of (n) with  $T_{r_i} \leq^{\sharp} T_{r_j}$  with  $i \leq j$  and WLOG,  $deg(r_k) \geq 3$ .



- For each  $f : \mathbb{N} \to \mathbb{N}$  let  $(T_f, r)$  denote the tree that results from the following subdivision of (T, r): for each  $n \in \mathbb{N}$  subdivide  $e_n$  into a bare path of length f(n).
- Let  $p_n$  denote the bare path of length f(n) that replaces  $e_n$  in (T, r) and  $R_f$  the modified ray R.



#### Lemma

For any pair 
$$f,g \in \mathbb{N}^{\mathbb{N}}$$
,  $(T_f,r) \equiv^{\sharp} (T_g,r)$ .

#### Proof.

All  $(T_f, r)$  are topologically equivalent to (T, r). Easy:  $(T_f, r) \ge^{\sharp} (T, r)$ . Hard:  $(T_f, r) \le^{\sharp} (T, r)$  - but again all  $b/c \sim^{\sharp}$  is a WQO of trees.

For each  $n \in \mathbb{N}$ :

$$I_n = \{ v \in v(T, r) \mid level(v) = level(r'_n) \}$$

and

 $L_n = \{p : p \text{ is a finite maximal bare path with initial vertex } \in I_n\}.$ 



■ For a path p to be in L<sub>n</sub> it must be that if v is the terminal vertex of p then deg(v) > 2.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Since  $deg(r_k) > 2$  for all k then  $L_n \neq \emptyset$  for all n.
- Since (*T*, *r*) is locally finite, it follows that *M<sub>n</sub>* = max{|*p*| : *p* ∈ *L<sub>n</sub>*} exists.

#### Lemma

## Let $f, g \in \mathbb{N}^{\mathbb{N}}$ so that $f(n), g(n) > M_n$ , for all $n \in \mathbb{N}$ . Then $(T_f, r) \cong (T_g, r)$ if, and only if, f = g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Lemma

Let  $f, g \in \mathbb{N}^{\mathbb{N}}$  so that  $f(n), g(n) > M_n$ , for all  $n \in \mathbb{N}$ . Then  $(T_f, r) \cong (T_g, r)$  if, and only if, f = g.

#### Proof.

Tricky but in a nutshell: any isomorphism witnessing  $(T_f, r) \cong (T_g, r)$  must map the ray  $R_g$  onto  $R_f$  - hence f = g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Lemma

Let  $f, g \in \mathbb{N}^{\mathbb{N}}$  so that  $f(n), g(n) > M_n$ , for all  $n \in \mathbb{N}$ . Then  $(T_f, r) \cong (T_g, r)$  if, and only if, f = g.

#### Proof.

Tricky but in a nutshell: any isomorphism witnessing  $(T_f, r) \cong (T_g, r)$  must map the ray  $R_g$  onto  $R_f$  - hence f = g. This is due to our choice of functions f, g with  $f(n), g(n) > M_n$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Lemma

Let  $f, g \in \mathbb{N}^{\mathbb{N}}$  so that  $f(n), g(n) > M_n$ , for all  $n \in \mathbb{N}$ . Then  $(T_f, r) \cong (T_g, r)$  if, and only if, f = g.

#### Proof.

Tricky but in a nutshell: any isomorphism witnessing  $(T_f, r) \cong (T_g, r)$  must map the ray  $R_g$  onto  $R_f$  - hence f = g. This is due to our choice of functions f, g with  $f(n), g(n) > M_n$ .

Since there are  $2^{\aleph_0} f, g \in \mathbb{N}^{\mathbb{N}}$  with  $f(n), g(n) > M_n$  the result follows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

## THANKS!

- Bruno, J. A family of  $\omega_1$  topological types of locally finite trees, Discrete Mathematics, v 340, pp. 794-795, 2017.
- Bruno, J. and Szeptycki, P. There are exactly ω<sub>1</sub> topological types of locally finite trees with countably many rays, Fundamenta Mathematicae 256, 243-259, 2022.
- Bruno, J. and Szeptycki, P. *TAC under the topological minor relation*, The Electronic Journal of Combinatorics 29(1). 2022.
- Bruno, J. and Szeptycki, P. A proof of the Tree Alternative Conjecture under the topological minor relation, submitted (2022).
- Bruno, J. and Szeptycki, P. *Graph relations and TAC*, in preparation (2022).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●