Will Brian

University of North Carolina at Charlotte

TOPOSYM July 27, 2022

Will Brian Partitioning the real line into Borel sets

It is easy to see that \mathbb{R} can be partitioned into n Borel sets for any finite n > 0 . . .

イロン イヨン イヨン イヨン

It is easy to see that \mathbb{R} can be partitioned into n Borel sets for any finite n > 0 . . .

or into \aleph_0 Borel sets . . .

It is easy to see that \mathbb{R} can be partitioned into n Borel sets for any finite n > 0 . . .

or into \aleph_0 Borel sets . . .

or into c Borel sets (for example, just partition it into singletons).

It is easy to see that \mathbb{R} can be partitioned into n Borel sets for any finite n > 0 . . .

or into \aleph_0 Borel sets . . .

or into c Borel sets (for example, just partition it into singletons).

Though it is not quite as easy to see, there is also a partition of \mathbb{R} into \aleph_1 Borel sets (regardless of whether $\mathfrak{c} = \aleph_1$)

(D) (A) (A) (A) (A)

It is easy to see that \mathbb{R} can be partitioned into n Borel sets for any finite n > 0 . . .

or into \aleph_0 Borel sets . . .

or into c Borel sets (for example, just partition it into singletons).

Though it is not quite as easy to see, there is also a partition of \mathbb{R} into \aleph_1 Borel sets (regardless of whether $\mathfrak{c} = \aleph_1$):

Theorem (Hausdorff, 1936)

There is a partition of \mathbb{R} into \aleph_1 nonempty $F_{\sigma\delta}$ sets.

(D) (A) (A) (A) (A)

A few results on partition spectra Limitations on the Borel spectrum

What about sets of lower complexity?

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity?

イロト イヨト イヨト イヨト

æ

Is it possible to partition $\mathbb R$ into \aleph_1 sets of even lower complexity?

Theorem (Fremlin and Shelah, 1979)

The following are equivalent:

- There is a partition of \mathbb{R} into \aleph_1 nonempty G_{δ} sets.
- **2** There is a partition of \mathbb{R} into \aleph_1 nonempty $G_{\delta\sigma}$ sets.
- **3** \mathbb{R} can be covered with \aleph_1 meager sets, i.e., $\operatorname{cov}(\mathcal{M}) = \aleph_1$.

Is it possible to partition $\mathbb R$ into \aleph_1 sets of even lower complexity?

Theorem (Fremlin and Shelah, 1979)

The following are equivalent:

- There is a partition of \mathbb{R} into \aleph_1 nonempty G_{δ} sets.
- **2** There is a partition of \mathbb{R} into \aleph_1 nonempty $G_{\delta\sigma}$ sets.
- **3** \mathbb{R} can be covered with \aleph_1 meager sets, i.e., $\operatorname{cov}(\mathcal{M}) = \aleph_1$.

Proof that $(3) \Rightarrow (1)$.

Is it possible to partition $\mathbb R$ into \aleph_1 sets of even lower complexity?

Theorem (Fremlin and Shelah, 1979)

The following are equivalent:

- There is a partition of \mathbb{R} into \aleph_1 nonempty G_{δ} sets.
- **2** There is a partition of \mathbb{R} into \aleph_1 nonempty $G_{\delta\sigma}$ sets.
- **3** \mathbb{R} can be covered with \aleph_1 meager sets, i.e., $\operatorname{cov}(\mathcal{M}) = \aleph_1$.

Proof that $(3) \Rightarrow (1)$.

Suppose $\{F_{\alpha}: \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets.

Is it possible to partition $\mathbb R$ into \aleph_1 sets of even lower complexity?

Theorem (Fremlin and Shelah, 1979)

The following are equivalent:

- There is a partition of \mathbb{R} into \aleph_1 nonempty G_{δ} sets.
- **2** There is a partition of \mathbb{R} into \aleph_1 nonempty $G_{\delta\sigma}$ sets.
- **3** \mathbb{R} can be covered with \aleph_1 meager sets, i.e., $\operatorname{cov}(\mathcal{M}) = \aleph_1$.

Proof that $(3) \Rightarrow (1)$.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$.

Is it possible to partition $\mathbb R$ into \aleph_1 sets of even lower complexity?

Theorem (Fremlin and Shelah, 1979)

The following are equivalent:

- There is a partition of \mathbb{R} into \aleph_1 nonempty G_{δ} sets.
- **2** There is a partition of \mathbb{R} into \aleph_1 nonempty $G_{\delta\sigma}$ sets.
- **3** \mathbb{R} can be covered with \aleph_1 meager sets, i.e., $\operatorname{cov}(\mathcal{M}) = \aleph_1$.

Proof that $(3) \Rightarrow (1)$.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$. Then $\{G_{\alpha} : \alpha < \omega_1\} \setminus \{\emptyset\}$ is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta}$ sets.

A few results on partition spectra Limitations on the Borel spectrum

What about sets of even lower complexity?

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity?

イロト イヨト イヨト イヨト

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity? CH implies there is a partition of \mathbb{R} into \aleph_1 closed sets (singletons).

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity? CH implies there is a partition of \mathbb{R} into \aleph_1 closed sets (singletons).

Theorem (Sierpiński, 1918)

Any partition of \mathbb{R} into ≥ 2 closed sets has size at least $cov(\mathcal{M})$.

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity? CH implies there is a partition of \mathbb{R} into \aleph_1 closed sets (singletons).

Theorem (Sierpiński, 1918)

Any partition of \mathbb{R} into ≥ 2 closed sets has size at least $cov(\mathcal{M})$.

Theorem (Stern, 1977)

It is consistent with the failure of CH that \mathbb{R} can be partitioned into \aleph_1 closed sets.

(D) (A) (A) (A) (A)

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity? CH implies there is a partition of \mathbb{R} into \aleph_1 closed sets (singletons).

Theorem (Sierpiński, 1918)

Any partition of \mathbb{R} into ≥ 2 closed sets has size at least $cov(\mathcal{M})$.

Theorem (Stern, 1977)

It is consistent with the failure of CH that \mathbb{R} can be partitioned into \aleph_1 closed sets.

Theorem (Miller, 1980)

There is a partition of \mathbb{R} into \aleph_1 closed sets if and only if there is a partition into \aleph_1 F_{σ} sets.

イロン イロン イヨン イヨ

Is it possible to partition \mathbb{R} into \aleph_1 sets of even lower complexity? CH implies there is a partition of \mathbb{R} into \aleph_1 closed sets (singletons).

Theorem (Sierpiński, 1918)

Any partition of \mathbb{R} into ≥ 2 closed sets has size at least $cov(\mathcal{M})$.

Theorem (Stern, 1977)

It is consistent with the failure of CH that \mathbb{R} can be partitioned into \aleph_1 closed sets.

Theorem (Miller, 1980)

There is a partition of \mathbb{R} into \aleph_1 closed sets if and only if there is a partition into \aleph_1 F_{σ} sets. Furthermore, the existence of such a partition is not implied by $cov(\mathcal{M}) = \aleph_1$.

The starting point for me

To summarize what we've seen so far, all of the following implications hold in ZFC, and none of them reverses:

The Continuum Hypothesis

 \Rightarrow (There is a partition of \mathbb{R} into \aleph_1 closed / F_σ sets

>
$$\int$$
 There is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta} \ / \ G_{\delta\sigma}$ sets

 $\Rightarrow \left(\text{ There is a partition of } \mathbb{R} \text{ into } \aleph_1 F_{\sigma\delta} \text{ sets} \right)$

and furthermore, this last assertion is a theorem of ZFC.

The starting point for me

To summarize what we've seen so far, all of the following implications hold in ZFC, and none of them reverses:

The Continuum Hypothesis

 \Rightarrow (There is a partition of \mathbb{R} into \aleph_1 closed / F_σ sets

For There is a partition of
$$\mathbb{R}$$
 into $\aleph_1 \ G_{\delta} \ / \ G_{\delta\sigma}$ sets

 $\Rightarrow \left(\text{ There is a partition of } \mathbb{R} \text{ into } \aleph_1 F_{\sigma\delta} \text{ sets} \right)$

and furthermore, this last assertion is a theorem of ZFC.

Question:

What about partitions of \mathbb{R} into more than \aleph_1 Borel sets?

A few results on partition spectra Limitations on the Borel spectrum

What's different about bigger κ ?

Recall from earlier the easy part of the Fremlin-Shelah theorem: If $cov(\mathcal{M}) = \aleph_1$, there is a partition of \mathbb{R} into \aleph_1 G_{δ} sets.

Recall from earlier the easy part of the Fremlin-Shelah theorem: If $cov(\mathcal{M}) = \aleph_1$, there is a partition of \mathbb{R} into \aleph_1 G_{δ} sets.

Proof.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$. Then $\{G_{\alpha} : \alpha < \omega_1\} \setminus \{\emptyset\}$ is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta}$ sets.

Recall from earlier the easy part of the Fremlin-Shelah theorem: If $cov(\mathcal{M}) = \aleph_1$, there is a partition of \mathbb{R} into \aleph_1 G_{δ} sets.

Proof.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$. Then $\{G_{\alpha} : \alpha < \omega_1\} \setminus \{\emptyset\}$ is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta}$ sets.

This proof simply doesn't work for $\kappa > \aleph_1$.

Recall from earlier the easy part of the Fremlin-Shelah theorem: If $cov(\mathcal{M}) = \aleph_1$, there is a partition of \mathbb{R} into \aleph_1 G_{δ} sets.

Proof.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$. Then $\{G_{\alpha} : \alpha < \omega_1\} \setminus \{\emptyset\}$ is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta}$ sets.

This proof simply doesn't work for $\kappa > \aleph_1$.

Open question:

Does $cov(\mathcal{M}) = \kappa$ imply there is a partition of \mathbb{R} into κ G_{δ} sets?

Recall from earlier the easy part of the Fremlin-Shelah theorem: If $cov(\mathcal{M}) = \aleph_1$, there is a partition of \mathbb{R} into \aleph_1 G_{δ} sets.

Proof.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$. Then $\{G_{\alpha} : \alpha < \omega_1\} \setminus \{\emptyset\}$ is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta}$ sets.

This proof simply doesn't work for $\kappa > \aleph_1$.

Open question:

Does $cov(\mathcal{M}) = \kappa$ imply there is a partition of \mathbb{R} into κ G_{δ} sets?

Also, Hausdorff's result does not extend to cardinals $> \aleph_1$.

Recall from earlier the easy part of the Fremlin-Shelah theorem: If $cov(\mathcal{M}) = \aleph_1$, there is a partition of \mathbb{R} into \aleph_1 G_{δ} sets.

Proof.

Suppose $\{F_{\alpha} : \alpha < \omega_1\}$ enumerates a covering of \mathbb{R} with \aleph_1 closed nowhere dense sets. For each α , let $G_{\alpha} = F_{\alpha} \setminus \bigcup_{\xi < \alpha} F_{\xi}$. Then $\{G_{\alpha} : \alpha < \omega_1\} \setminus \{\emptyset\}$ is a partition of \mathbb{R} into $\aleph_1 \ G_{\delta}$ sets.

This proof simply doesn't work for $\kappa > \aleph_1$.

Open question:

Does $cov(\mathcal{M}) = \kappa$ imply there is a partition of \mathbb{R} into κ G_{δ} sets?

Also, Hausdorff's result does not extend to cardinals $> \aleph_1$.

Theorem (Miller, 1989)

Consistently, $\mathfrak{c}>\aleph_2$ and $\mathbb R$ cannot be partitioned into \aleph_2 Borel sets.

Question:

For what uncountable cardinals κ is there a partition of \mathbb{R} into precisely κ Borel sets? What does the set of all such κ look like? What about G_{δ} sets or closed sets, or other pointclasses of sets?

Question:

For what uncountable cardinals κ is there a partition of \mathbb{R} into precisely κ Borel sets? What does the set of all such κ look like? What about G_{δ} sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

 $\mathfrak{sp}(\Gamma) = \{\kappa > \aleph_0 : \text{ there is a partition of } \mathbb{R} \text{ into } \kappa \text{ sets in } \Gamma\}.$

Question:

For what uncountable cardinals κ is there a partition of \mathbb{R} into precisely κ Borel sets? What does the set of all such κ look like? What about G_{δ} sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

 $\mathfrak{sp}(\Gamma) \,=\, \{\kappa > \aleph_0 : \text{ there is a partition of } \mathbb{R} \text{ into } \kappa \text{ sets in } \Gamma \}.$

Proposition

For many "reasonable" pointclasses Γ (e.g., closed, Borel), $\mathfrak{sp}(\Gamma) = \{\kappa > \aleph_0 : \text{ there is a partition of } X \text{ into } \kappa \text{ sets in } \Gamma\}$ for any uncountable Polish space X.

Question:

For what uncountable cardinals κ is there a partition of \mathbb{R} into precisely κ Borel sets? What does the set of all such κ look like? What about G_{δ} sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

 $\mathfrak{sp}(\Gamma) \,=\, \{\kappa > \aleph_0: \text{ there is a partition of } \mathbb{R} \text{ into } \kappa \text{ sets in } \Gamma\}.$

Proposition

For many "reasonable" pointclasses Γ (e.g., closed, Borel), $\mathfrak{sp}(\Gamma) = \{\kappa > \aleph_0 : \text{ there is a partition of } X \text{ into } \kappa \text{ sets in } \Gamma\}$ for any uncountable Polish space X.

We know that $\aleph_1, \mathfrak{c} \in \mathfrak{sp}(Borel)$, and it is consistent with $\neg CH$ to have $\aleph_2 \notin \mathfrak{sp}(Borel)$. Can anything else be said?

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

イロン イヨン イヨン イヨン

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

• $\min(C)$ is regular,

イロン イヨン イヨン イヨン

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

- \circ min(C) is regular,
- $\circ |C| < \min(C),$

イロン イヨン イヨン イヨン

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

- \circ min(C) is regular,
- $\circ |C| < \min(C),$
- C has a maximum with $cf(max(C)) > \omega$,

イロト イヨト イヨト イヨト

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

- \circ min(C) is regular,
- $\circ |C| < \min(C),$
- C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

- \circ min(C) is regular,
- $\circ |C| < \min(C),$
- C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and
- if λ is singular and $\lambda \in C$, then $\lambda^+ \in C$.

The main theorem

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

- min(C) is regular,
- $\circ |C| < \min(C),$
- C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and
- if λ is singular and $\lambda \in C$, then $\lambda^+ \in C$.

Assuming GCH holds up to max(C), there is a ccc forcing extension in which $C = \mathfrak{sp}(\text{closed})$, and furthermore, if $\min(C) < \mu \notin C$, then $\mu \notin \mathfrak{sp}(\text{Borel})$.

(D) (A) (A) (A) (A)

The main theorem

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

- min(C) is regular,
- $\circ |C| < \min(C),$
- C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and
- if λ is singular and $\lambda \in C$, then $\lambda^+ \in C$.

Assuming GCH holds up to max(C), there is a ccc forcing extension in which $C = \mathfrak{sp}(closed)$, and furthermore, if $min(C) < \mu \notin C$, then $\mu \notin \mathfrak{sp}(Borel)$.

The proof utilizes an "isomorphism-of-names" argument in order to exclude cardinals $\mu \notin C$ from $\mathfrak{sp}(Borel)$.

Corollary

Given any $A \subseteq \omega \setminus \{0\}$, there is a forcing extension in which $\mathfrak{sp}(\operatorname{closed}) = \{\aleph_n : n \in A\} \cup \{\aleph_\omega, \aleph_{\omega+1}\}.$

イロト イヨト イヨト イヨト

Corollary

Given any $A \subseteq \omega \setminus \{0\}$, there is a forcing extension in which $\mathfrak{sp}(\operatorname{closed}) = \{\aleph_n : n \in A\} \cup \{\aleph_\omega, \aleph_{\omega+1}\}.$

Corollary

Let C be a countable set of uncountable cardinals such that

- $\aleph_1 \in C$ and C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and
- if λ is singular and $\lambda \in C$, then $\lambda^+ \in C$.

Corollary

Given any $A \subseteq \omega \setminus \{0\}$, there is a forcing extension in which $\mathfrak{sp}(\operatorname{closed}) = \{\aleph_n : n \in A\} \cup \{\aleph_\omega, \aleph_{\omega+1}\}.$

Corollary

Let C be a countable set of uncountable cardinals such that

- $\aleph_1 \in C$ and C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and
- if λ is singular and $\lambda \in C$, then $\lambda^+ \in C$.

Assuming GCH holds up to max(C), there is a ccc forcing extension in which $C = \mathfrak{sp}(Borel)$.

Corollary

Given any $A \subseteq \omega \setminus \{0\}$, there is a forcing extension in which $\mathfrak{sp}(\operatorname{closed}) = \{\aleph_n : n \in A\} \cup \{\aleph_\omega, \aleph_{\omega+1}\}.$

Corollary

Let C be a countable set of uncountable cardinals such that

- $\aleph_1 \in C$ and C has a maximum with $cf(max(C)) > \omega$,
- C is closed under singular limits, and
- if λ is singular and $\lambda \in C$, then $\lambda^+ \in C$.

Assuming GCH holds up to max(C), there is a ccc forcing extension in which $C = \mathfrak{sp}(Borel)$.

Thus, given any $A \subseteq \omega \setminus \{0\}$, there is a forcing extension in which $\mathfrak{sp}(Borel) = \{\aleph_n : n \in A\} \cup \{\aleph_1, \aleph_\omega, \aleph_{\omega+1}\}.$

A few results on partition spectra Limitations on the Borel spectrum

The structure of $\mathfrak{sp}(Borel)$

This theorem/corollary can be used to produce models in which $\mathfrak{sp}(Borel)$ has the following features:

(4月) (4日) (4日)

The structure of $\mathfrak{sp}(Borel)$

This theorem/corollary can be used to produce models in which $\mathfrak{sp}(Borel)$ has the following features:

- sp(Borel) is countable,
- 2 $\min(\mathfrak{sp}(Borel)) = \aleph_1$,
- $\mathfrak{sp}(Borel)$ has a maximum with uncountable cofinality,
- ${ \mathfrak{sp}}(\operatorname{Borel})$ is closed under singular limits, and
- **5** if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$.

(1日) (1日) (日)

The structure of $\mathfrak{sp}(Borel)$

This theorem/corollary can be used to produce models in which $\mathfrak{sp}(Borel)$ has the following features:

- sp(Borel) is countable,
- 2 $\min(\mathfrak{sp}(Borel)) = \aleph_1$,
- $\mathfrak{sp}(\mathrm{Borel})$ has a maximum with uncountable cofinality,
- ${ \mathfrak{sp}}(\operatorname{Borel})$ is closed under singular limits, and
- **5** if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$.

Question

Which of these items represent essential features of $\mathfrak{sp}(Borel)$, and which just represent limitations of the techniques used to prove the theorems on the previous slides?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A few results on partition spectra Limitations on the Borel spectrum

$\mathfrak{sp}(Borel)$ need not be countable

● \$\$p(Borel) is countable

イロン イヨン イヨン イヨン

$\mathfrak{sp}(Borel)$ need not be countable

The first item on our list simply represents a limitation of our proof technique:

Theorem (B. & Miller, 2015)

For any cardinal $\kappa \geq c$ with uncountable cofinality, there is a ccc forcing extension in which $\mathfrak{sp}(Borel) = [\aleph_1, \kappa]$.

$\mathfrak{sp}(Borel)$ need not be countable

The first item on our list simply represents a limitation of our proof technique:

Theorem (B. & Miller, 2015)

For any cardinal $\kappa \geq c$ with uncountable cofinality, there is a ccc forcing extension in which $\mathfrak{sp}(Borel) = [\aleph_1, \kappa]$.

2 $\min(\mathfrak{sp}(Borel)) = \aleph_1$

 $\mathfrak{sp}(Borel)$ has a maximum with uncountable cofinality

・ロト ・日ト ・ヨト ・ヨト

$\mathfrak{sp}(Borel)$ need not be countable

The first item on our list simply represents a limitation of our proof technique:

Theorem (B. & Miller, 2015)

For any cardinal $\kappa \geq c$ with uncountable cofinality, there is a ccc forcing extension in which $\mathfrak{sp}(Borel) = [\aleph_1, \kappa]$.

2 $\min(\mathfrak{sp}(Borel)) = \aleph_1$

(3) $\mathfrak{sp}(Borel)$ has a maximum with uncountable cofinality The second and third items on our list are necessary features of $\mathfrak{sp}(Borel)$, because $\aleph_1 \in \mathfrak{sp}(Borel)$ by Hausdorff's theorem, and $\mathfrak{c} = \max(\mathfrak{sp}(Borel))$ has uncountable cofinality.

\$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$

イロン イヨン イヨン イヨン

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

Proof.

Suppose λ is a limit of cardinals $\langle \mu_{\alpha} : \alpha < \kappa \rangle$ in $\mathfrak{sp}(Borel)$, with $\kappa = cf(\lambda) < \lambda$.

イロト イヨト イヨト イヨト

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

Proof.

Suppose λ is a limit of cardinals $\langle \mu_{\alpha} : \alpha < \kappa \rangle$ in $\mathfrak{sp}(Borel)$, with $\kappa = cf(\lambda) < \lambda$. Pick $\mu_{\gamma} \ge \kappa$, and fix a partition \mathcal{P} of ω^{ω} into μ_{γ} Borel sets.

イロト イヨト イヨト イヨト

э

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

Proof.

Suppose λ is a limit of cardinals $\langle \mu_{\alpha} : \alpha < \kappa \rangle$ in $\mathfrak{sp}(Borel)$, with $\kappa = cf(\lambda) < \lambda$. Pick $\mu_{\gamma} \ge \kappa$, and fix a partition \mathcal{P} of ω^{ω} into μ_{γ} Borel sets. Without loss of generality, assume all members of this partition are uncountable.

イロト イヨト イヨト イヨト

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

Proof.

Suppose λ is a limit of cardinals $\langle \mu_{\alpha} : \alpha < \kappa \rangle$ in $\mathfrak{sp}(Borel)$, with $\kappa = cf(\lambda) < \lambda$. Pick $\mu_{\gamma} \ge \kappa$, and fix a partition \mathcal{P} of ω^{ω} into μ_{γ} Borel sets. Without loss of generality, assume all members of this partition are uncountable.

Fix κ sets $\langle B_{\alpha} : \alpha < \kappa \rangle$ in this partition.

イロト イヨト イヨト イヨト

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

Proof.

Suppose λ is a limit of cardinals $\langle \mu_{\alpha} : \alpha < \kappa \rangle$ in $\mathfrak{sp}(Borel)$, with $\kappa = \mathrm{cf}(\lambda) < \lambda$. Pick $\mu_{\gamma} \ge \kappa$, and fix a partition \mathcal{P} of ω^{ω} into μ_{γ} Borel sets. Without loss of generality, assume all members of this partition are uncountable. Fix κ sets $\langle B_{\alpha} : \alpha < \kappa \rangle$ in this partition. Each B_{α} contains an

uncountable Polish space K_{α} .

イロト イヨト イヨト イヨト

• $\mathfrak{sp}(Borel)$ is closed under singular limits

The fourth item on our list is also a necessary feature of $\mathfrak{sp}(\operatorname{Borel})$:

Proposition

 $\mathfrak{sp}(Borel)$ is closed under singular limits.

Proof.

Suppose λ is a limit of cardinals $\langle \mu_{\alpha} : \alpha < \kappa \rangle$ in $\mathfrak{sp}(Borel)$, with $\kappa = \mathrm{cf}(\lambda) < \lambda$. Pick $\mu_{\gamma} \ge \kappa$, and fix a partition \mathcal{P} of ω^{ω} into μ_{γ} Borel sets. Without loss of generality, assume all members of this partition are uncountable.

Fix κ sets $\langle B_{\alpha} : \alpha < \kappa \rangle$ in this partition. Each B_{α} contains an uncountable Polish space K_{α} . Partition K_{α} into μ_{α} Borel sets, and then replace each B_{α} in \mathcal{P} with these μ_{α} sets and $B_{\alpha} \setminus K_{\alpha}$.

・ロト ・日ト ・ヨト ・ヨト

A few results on partition spectra Limitations on the Borel spectrum

Successors of singular cardinals

5 if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$

イロン イヨン イヨン イヨン

• if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$ The last item on our list seems a bit more subtle. The following result provides a partial answer to the question of whether this represents a necessary feature of $\mathfrak{sp}(Borel)$:

• if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$ The last item on our list seems a bit more subtle. The following result provides a partial answer to the question of whether this represents a necessary feature of $\mathfrak{sp}(Borel)$:

Theorem (B.)

Suppose that 0^{\dagger} does not exist. If λ is a singular cardinal with $cf(\lambda) = \omega$ and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$.

• if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$ The last item on our list seems a bit more subtle. The following result provides a partial answer to the question of whether this represents a necessary feature of $\mathfrak{sp}(Borel)$:

Theorem (B.)

Suppose that 0^{\dagger} does not exist. If λ is a singular cardinal with $cf(\lambda) = \omega$ and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$.

Open question:

Is it consistent (relative to some large cardinal hypothesis) that there is a singular cardinal λ with $\lambda \in \mathfrak{sp}(Borel)$ but $\lambda^+ \notin \mathfrak{sp}(Borel)$?

・ロト ・日ト ・ヨト ・ヨト

э

• if λ is singular and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$ The last item on our list seems a bit more subtle. The following result provides a partial answer to the question of whether this represents a necessary feature of $\mathfrak{sp}(Borel)$:

Theorem (B.)

Suppose that 0^{\dagger} does not exist. If λ is a singular cardinal with $cf(\lambda) = \omega$ and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$.

Open question:

Is it consistent (relative to some large cardinal hypothesis) that there is a singular cardinal λ with $\lambda \in \mathfrak{sp}(Borel)$ but $\lambda^+ \notin \mathfrak{sp}(Borel)$? In particular, is it consistent to have a partition of \mathbb{R} into \aleph_{ω} Borel sets, but not $\aleph_{\omega+1}$?

・ロト ・日ト ・ヨト ・ヨト

э

For any space X, define

 $\mathfrak{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$

イロト イヨト イヨト イヨト

For any space X, define

 $\mathfrak{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$

Note that pat(X) is well defined and $\leq |X|$ for every X, because we may partition X into singletons (which are Polish).

イロト イポト イヨト イヨト

For any space X, define

 $\mathfrak{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$

Note that par(X) is well defined and $\leq |X|$ for every X, because we may partition X into singletons (which are Polish).

To prove the partial result on the previous slide, we will be particularly interested in par(X) for spaces of the form $X = D^{\omega}$, where D is discrete.

For any space X, define

 $\mathfrak{par}(X) = \min\{|\mathcal{P}| : \mathcal{P} \text{ is a partition of } X \text{ into Polish spaces}\}.$

Note that pat(X) is well defined and $\leq |X|$ for every X, because we may partition X into singletons (which are Polish).

To prove the partial result on the previous slide, we will be particularly interested in par(X) for spaces of the form $X = D^{\omega}$, where D is discrete.

For the remainder of the talk, all ordinals are considered to carry the discrete topology.

A few results on partition spectra Limitations on the Borel spectrum

What happens below \aleph_{ω}

Lemma (B. & Miller, 2015)

If $0 < n < \omega$, then $par(\omega_n^{\omega}) = \aleph_n$.

イロン イヨン イヨン イヨン

æ

Lemma (B. & Miller, 2015)

If $0 < n < \omega$, then $par(\omega_n^{\omega}) = \aleph_n$.

Proof sketch.

We will just show one direction: that $\mathfrak{par}(\omega_n^{\omega}) \leq \aleph_n$.

・ロト ・四ト ・ヨト ・ヨト

Lemma (B. & Miller, 2015)

If $0 < n < \omega$, then $par(\omega_n^{\omega}) = \aleph_n$.

Proof sketch.

We will just show one direction: that $pat(\omega_n^{\omega}) \leq \aleph_n$. The proof is by induction on *n*.

・ロト ・四ト ・ヨト

Lemma (B. & Miller, 2015)

If
$$0 < n < \omega$$
 , then $\mathfrak{par}(\omega^\omega_n) = leph_n$.

Proof sketch.

We will just show one direction: that $pat(\omega_n^{\omega}) \leq \aleph_n$. The proof is by induction on *n*. Assume this holds for some particular *n*. Let

$$X_{\beta} = \beta^n \setminus \bigcup_{\alpha < \beta} \alpha^n$$

for all ordinals $\omega_n \leq \beta < \omega_{n+1}$.

Lemma (B. & Miller, 2015)

If
$$0 < n < \omega$$
 , then $\mathfrak{par}(\omega^\omega_n) = leph_n$.

Proof sketch.

We will just show one direction: that $pat(\omega_n^{\omega}) \leq \aleph_n$. The proof is by induction on *n*. Assume this holds for some particular *n*. Let

$$X_{\beta} = \beta^n \setminus \bigcup_{\alpha < \beta} \alpha^n$$

for all ordinals $\omega_n \leq \beta < \omega_{n+1}$. If $cf(\beta) > \omega$ then $X_{\beta} = \emptyset$

Lemma (B. & Miller, 2015)

If
$$0 < n < \omega$$
 , then $\mathfrak{par}(\omega^\omega_n) = leph_n$.

Proof sketch.

We will just show one direction: that $pat(\omega_n^{\omega}) \leq \aleph_n$. The proof is by induction on *n*. Assume this holds for some particular *n*. Let

$$X_{\beta} = \beta^n \setminus \bigcup_{\alpha < \beta} \alpha^n$$

for all ordinals $\omega_n \leq \beta < \omega_{n+1}$. If $cf(\beta) > \omega$ then $X_\beta = \emptyset$, and if $cf(\beta) \leq \omega$ then it is not too difficult to see that X_β is a G_δ set (hence completely metrizable), and is in fact homeomorphic to ω_n^{ω} .

Lemma (B. & Miller, 2015)

If
$$0 < n < \omega$$
 , then $\mathfrak{par}(\omega^\omega_n) = leph_n$.

Proof sketch.

We will just show one direction: that $pat(\omega_n^{\omega}) \leq \aleph_n$. The proof is by induction on *n*. Assume this holds for some particular *n*. Let

$$X_{\beta} = \beta^n \setminus \bigcup_{\alpha < \beta} \alpha^n$$

for all ordinals $\omega_n \leq \beta < \omega_{n+1}$. If $\operatorname{cf}(\beta) > \omega$ then $X_{\beta} = \emptyset$, and if $\operatorname{cf}(\beta) \leq \omega$ then it is not too difficult to see that X_{β} is a G_{δ} set (hence completely metrizable), and is in fact homeomorphic to ω_n^{ω} . Thus ω_{n+1}^{ω} can be partitioned into \aleph_{n+1} copies of ω_n^{ω} , and applying the induction hypothesis, we can obtain a partition of ω_{n+1}^{ω} into \aleph_{n+1} Polish spaces.

イロト イヨト イヨト イヨン

Theorem (B. & Miller, 2015)

Let $0 < n < \omega$. Then there is a continuous bijection $\omega_n^{\omega} \to \omega^{\omega}$ if and only if $\aleph_n \in \mathfrak{sp}(Borel)$.

イロト イヨト イヨト イヨト

Theorem (B. & Miller, 2015)

Let $0 < n < \omega$. Then there is a continuous bijection $\omega_n^{\omega} \to \omega^{\omega}$ if and only if $\aleph_n \in \mathfrak{sp}(Borel)$.

Proof sketch.

 $\Leftarrow: \text{Suppose } \mathcal{P} \text{ is a partition of } \omega^{\omega} \text{ into } \aleph_n \text{ Borel sets.}$

- (日) (日) (日)

Theorem (B. & Miller, 2015)

Let $0 < n < \omega$. Then there is a continuous bijection $\omega_n^{\omega} \to \omega^{\omega}$ if and only if $\aleph_n \in \mathfrak{sp}(Borel)$.

Proof sketch.

 $\Leftarrow: \text{Suppose } \mathcal{P} \text{ is a partition of } \omega^{\omega} \text{ into } \aleph_n \text{ Borel sets. This implies that there is a continuous bijection } f : \omega_n \times \omega^{\omega} \to \omega^{\omega}.$

- - A 同 ト - A 目 ト

Theorem (B. & Miller, 2015)

Let $0 < n < \omega$. Then there is a continuous bijection $\omega_n^{\omega} \to \omega^{\omega}$ if and only if $\aleph_n \in \mathfrak{sp}(Borel)$.

Proof sketch.

 \Leftarrow : Suppose \mathcal{P} is a partition of ω^{ω} into \aleph_n Borel sets. This implies that there is a continuous bijection $f : \omega_n \times \omega^{\omega} \to \omega^{\omega}$. But then the map f^{ω} (which acts like f on every coordinate) is a continuous bijection from $(\omega_n \times \omega^{\omega})^{\omega} \approx \omega_n^{\omega}$ onto $(\omega^{\omega})^{\omega} \approx \omega^{\omega}$.

 \Rightarrow : Let \mathcal{P} be a partition of ω_n^{ω} into \aleph_n Polish spaces, and suppose $f: \omega_n^{\omega} \to \omega^{\omega}$ is a continuous bijection.

イロト イヨト イヨト イヨト

Theorem (B. & Miller, 2015)

Let $0 < n < \omega$. Then there is a continuous bijection $\omega_n^{\omega} \to \omega^{\omega}$ if and only if $\aleph_n \in \mathfrak{sp}(Borel)$.

Proof sketch.

 $\Leftarrow: \text{Suppose } \mathcal{P} \text{ is a partition of } \omega^{\omega} \text{ into } \aleph_n \text{ Borel sets. This implies that there is a continuous bijection } f: \omega_n \times \omega^{\omega} \to \omega^{\omega}. \text{ But then the map } f^{\omega} \text{ (which acts like } f \text{ on every coordinate) is a continuous bijection from } (\omega_n \times \omega^{\omega})^{\omega} \approx \omega_n^{\omega} \text{ onto } (\omega^{\omega})^{\omega} \approx \omega^{\omega}.$

⇒: Let \mathcal{P} be a partition of ω_n^{ω} into \aleph_n Polish spaces, and suppose $f: \omega_n^{\omega} \to \omega^{\omega}$ is a continuous bijection. Then $\{f[X] : X \in \mathcal{P}\}$ is a partition of ω^{ω} into \aleph_n Borel sets.

Lemma (B., 2022)

If κ is an uncountable cardinal, then $par(\kappa^{\omega}) \ge cf([\kappa]^{\omega}, \subseteq)$. In particular, $par(\omega_{\omega}^{\omega}) \ge \aleph_{\omega+1}$.

・ロト ・日ト ・ヨト ・ヨト

Lemma (B., 2022)

If κ is an uncountable cardinal, then $par(\kappa^{\omega}) \ge cf([\kappa]^{\omega}, \subseteq)$. In particular, $par(\omega_{\omega}^{\omega}) \ge \aleph_{\omega+1}$. If 0^{\dagger} does not exist, then $par(\kappa^{\omega}) = cf([\kappa]^{\omega}, \subseteq) = \kappa^{+}$ for every $\kappa > \aleph_{0}$ with $cf(\kappa) = \omega$.

(4月) (4日) (4日)

Lemma (B., 2022)

If κ is an uncountable cardinal, then $par(\kappa^{\omega}) \ge cf([\kappa]^{\omega}, \subseteq)$. In particular, $par(\omega_{\omega}^{\omega}) \ge \aleph_{\omega+1}$. If 0^{\dagger} does not exist, then $par(\kappa^{\omega}) = cf([\kappa]^{\omega}, \subseteq) = \kappa^{+}$ for every $\kappa > \aleph_{0}$ with $cf(\kappa) = \omega$. In particular, if 0^{\dagger} does not exist then $par(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$.

(4月) (4日) (4日)

Lemma (B., 2022)

If κ is an uncountable cardinal, then $\mathfrak{par}(\kappa^{\omega}) \geq \mathrm{cf}([\kappa]^{\omega}, \subseteq)$. In particular, $\mathfrak{par}(\omega_{\omega}^{\omega}) \geq \aleph_{\omega+1}$. If 0^{\dagger} does not exist, then $\mathfrak{par}(\kappa^{\omega}) = \mathrm{cf}([\kappa]^{\omega}, \subseteq) = \kappa^{+}$ for every $\kappa > \aleph_{0}$ with $\mathrm{cf}(\kappa) = \omega$. In particular, if 0^{\dagger} does not exist then $\mathfrak{par}(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$.

The proof essentially uses "L-like" combinatorial principles to push the inductive arguments for the ω_n 's past singular cardinals.

(4月) (4日) (4日)

Lemma (B., 2022)

If κ is an uncountable cardinal, then $\mathfrak{par}(\kappa^{\omega}) \geq \mathrm{cf}([\kappa]^{\omega}, \subseteq)$. In particular, $\mathfrak{par}(\omega_{\omega}^{\omega}) \geq \aleph_{\omega+1}$. If 0^{\dagger} does not exist, then $\mathfrak{par}(\kappa^{\omega}) = \mathrm{cf}([\kappa]^{\omega}, \subseteq) = \kappa^{+}$ for every $\kappa > \aleph_{0}$ with $\mathrm{cf}(\kappa) = \omega$. In particular, if 0^{\dagger} does not exist then $\mathfrak{par}(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$.

The proof essentially uses "L-like" combinatorial principles to push the inductive arguments for the ω_n 's past singular cardinals.

Theorem (B.)

Suppose that 0^{\dagger} does not exist. If λ is a singular cardinal with $cf(\lambda) = \omega$ and $\lambda \in \mathfrak{sp}(Borel)$, then $\lambda^+ \in \mathfrak{sp}(Borel)$.

・ロト ・日ト ・ヨト ・ヨト

A few results on partition spectra Limitations on the Borel spectrum

What happens at \aleph_{ω} ?

Theorem (B.)

Suppose 0^{\dagger} does not exist. If $\aleph_{\omega} \in \mathfrak{sp}(Borel)$ then $\aleph_{\omega+1} \in \mathfrak{sp}(Borel)$.

Will Brian Partitioning the real line into Borel sets

イロト イヨト イヨト イヨト

Theorem (B.)

Suppose 0^{\dagger} does not exist. If $\aleph_{\omega} \in \mathfrak{sp}(Borel)$ then $\aleph_{\omega+1} \in \mathfrak{sp}(Borel)$.

Proof sketch.

Suppose \mathcal{P} is a partition of ω^{ω} into \aleph_{ω} Borel sets.

Theorem (B.)

Suppose 0^{\dagger} does not exist. If $\aleph_{\omega} \in \mathfrak{sp}(Borel)$ then $\aleph_{\omega+1} \in \mathfrak{sp}(Borel)$.

Proof sketch.

Suppose \mathcal{P} is a partition of ω^{ω} into \aleph_{ω} Borel sets. This implies that there is a continuous bijection $f: \omega_{\omega} \times \omega^{\omega} \to \omega^{\omega}$.

Theorem (B.)

Suppose 0^{\dagger} does not exist. If $\aleph_{\omega} \in \mathfrak{sp}(Borel)$ then $\aleph_{\omega+1} \in \mathfrak{sp}(Borel)$.

Proof sketch.

Suppose \mathcal{P} is a partition of ω^{ω} into \aleph_{ω} Borel sets. This implies that there is a continuous bijection $f : \omega_{\omega} \times \omega^{\omega} \to \omega^{\omega}$. But then, as before, the map f^{ω} is a continuous bijection from $(\omega_{\omega} \times \omega^{\omega})^{\omega} \approx \omega_{\omega}^{\omega}$ onto $(\omega^{\omega})^{\omega} \approx \omega^{\omega}$.

A (10) × (10) × (10) ×

Theorem (B.)

Suppose 0^{\dagger} does not exist. If $\aleph_{\omega} \in \mathfrak{sp}(Borel)$ then $\aleph_{\omega+1} \in \mathfrak{sp}(Borel)$.

Proof sketch.

Suppose \mathcal{P} is a partition of ω^{ω} into \aleph_{ω} Borel sets. This implies that there is a continuous bijection $f: \omega_{\omega} \times \omega^{\omega} \to \omega^{\omega}$. But then, as before, the map f^{ω} is a continuous bijection from $(\omega_{\omega} \times \omega^{\omega})^{\omega} \approx \omega_{\omega}^{\omega}$ onto $(\omega^{\omega})^{\omega} \approx \omega^{\omega}$.

By the lemma on the previous slide, if 0^{\dagger} does not exist then there is a partition Q of ω_{ω}^{ω} into $\aleph_{\omega+1}$ Polish spaces.

Theorem (B.)

Suppose 0^{\dagger} does not exist. If $\aleph_{\omega} \in \mathfrak{sp}(Borel)$ then $\aleph_{\omega+1} \in \mathfrak{sp}(Borel)$.

Proof sketch.

Suppose \mathcal{P} is a partition of ω^{ω} into \aleph_{ω} Borel sets. This implies that there is a continuous bijection $f: \omega_{\omega} \times \omega^{\omega} \to \omega^{\omega}$. But then, as before, the map f^{ω} is a continuous bijection from $(\omega_{\omega} \times \omega^{\omega})^{\omega} \approx \omega_{\omega}^{\omega}$ onto $(\omega^{\omega})^{\omega} \approx \omega^{\omega}$.

By the lemma on the previous slide, if 0^{\dagger} does not exist then there is a partition Q of ω_{ω}^{ω} into $\aleph_{\omega+1}$ Polish spaces. But then, because f^{ω} is a continuous bijection, $\{f^{\omega}[X] : X \in Q\}$ is a partition of ω^{ω} into $\aleph_{\omega+1}$ Borel sets.

・ロト ・日ト ・ヨト ・ヨト

Note that the argument on the previous slide really just uses "0[†] does not exist" to ensure that $par(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$.

Note that the argument on the previous slide really just uses "0[†] does not exist" to ensure that $par(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$. It is consistent, in two different ways, for this equality to fail:

Note that the argument on the previous slide really just uses "0[†] does not exist" to ensure that $pat(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$. It is consistent, in two different ways, for this equality to fail:

Recall from a previous slide that pat(ω_ω^ω) ≥ cf([ω_ω]^ω, ⊆). By work of Gitik, it is consistent relative to a measurable cardinal κ of Mitchell order κ⁺⁺ that cf([ω_ω]^ω, ⊆) > ℵ_{ω+1}.

イロト イポト イヨト イヨト

Note that the argument on the previous slide really just uses "0[†] does not exist" to ensure that $par(\omega_{\omega}^{\omega}) = \aleph_{\omega+1}$. It is consistent, in two different ways, for this equality to fail:

- Recall from a previous slide that $\mathfrak{pat}(\omega_{\omega}^{\omega}) \geq \mathrm{cf}([\omega_{\omega}]^{\omega}, \subseteq)$. By work of Gitik, it is consistent relative to a measurable cardinal κ of Mitchell order κ^{++} that $\mathrm{cf}([\omega_{\omega}]^{\omega}, \subseteq) > \aleph_{\omega+1}$.
- Beginning with GCH plus the generalized Chang Conjecture
 (ℵ_{ω+1}, ℵ_ω) → (ℵ₁, ℵ₀), which is consistent relative to a huge
 cardinal, and then adding >ℵ_{ω+1} Cohen reals results in a
 model in which cf([ω_ω]^ω, ⊆) = ℵ_{ω+1} < par(ω_ω^ω).

Open question:

Is it consistent that $\aleph_2 \in \mathfrak{sp}(Borel)$ but $\aleph_2 \notin \mathfrak{sp}(closed)$?

イロン イヨン イヨン イヨン

æ

Open question:

Is it consistent that $\aleph_2 \in \mathfrak{sp}(Borel)$ but $\aleph_2 \notin \mathfrak{sp}(closed)$?

Open question:

Is it consistent that $\mathfrak{sp}(Borel) \neq \mathfrak{sp}(OD(\mathbb{R}))$?

イロン イヨン イヨン イヨン

Open question:

Is it consistent that $\aleph_2 \in \mathfrak{sp}(Borel)$ but $\aleph_2 \notin \mathfrak{sp}(closed)$?

Open question:

Is it consistent that $\mathfrak{sp}(Borel) \neq \mathfrak{sp}(OD(\mathbb{R}))$?

Open question:

Given some α with $0 < \alpha < \omega_1$, is it consistent that $\mathfrak{sp}(\Pi^0_{\alpha}) \neq \mathfrak{sp}(\Pi^0_{\alpha+1})$?

Currently we know the answer only for $\alpha=1$ and 2, and the answer is yes in both cases.

Open question:

Is it consistent that $\aleph_2 \in \mathfrak{sp}(Borel)$ but $\aleph_2 \notin \mathfrak{sp}(closed)$?

Open question:

Is it consistent that $\mathfrak{sp}(Borel) \neq \mathfrak{sp}(OD(\mathbb{R}))$?

Open question:

Given some α with $0 < \alpha < \omega_1$, is it consistent that $\mathfrak{sp}(\Pi^0_{\alpha}) \neq \mathfrak{sp}(\Pi^0_{\alpha+1})$?

Currently we know the answer only for $\alpha = 1$ and 2, and the answer is yes in both cases.

Open question:

Is $\mathfrak{sp}(Borel)$ closed under regular limits?

A few results on partition spectra Limitations on the Borel spectrum

Thank you for listening

Will Brian Partitioning the real line into Borel sets

・ロト ・日ト ・ヨト ・ヨト