Hereditarily indecomposable continua as Fraïssé limits

Adam Bartoš bartos@math.cas.cz

Institute of Mathematics, Czech Academy of Sciences

TOPOSYM 2022, Prague, 25–29 July

Joint work with Wiesław Kubiś, part of the EXPRO project 20-31529X: Abstract Convergence Schemes And Their Complexities

• A continuum is a compact connected space.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have $C \subseteq D$ or $D \subseteq C$ or $C \cap D = \emptyset$.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have $C \subseteq D$ or $D \subseteq C$ or $C \cap D = \emptyset$.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have $C \subseteq D$ or $D \subseteq C$ or $C \cap D = \emptyset$.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.
- By a theorem of Bing (1951), there is a unique arc-like hereditarily indecomposable continuum – the pseudo-arc P.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have $C \subseteq D$ or $D \subseteq C$ or $C \cap D = \emptyset$.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.
- By a theorem of Bing (1951), there is a unique arc-like hereditarily indecomposable continuum – the pseudo-arc P.
- In a metric space, $x \approx_{\varepsilon} y$ means $d(x,y) < \varepsilon$. For maps $f,g \colon X \to Y$, $f \approx_{\varepsilon} g$ means $\sup_{x \in X} d(f(x),g(x)) < \varepsilon$.

- A continuum is a compact connected space.
- A compact space is hereditarily indecomposable if for every subcontinua C, D we have $C \subseteq D$ or $D \subseteq C$ or $C \cap D = \emptyset$.
- A continuum is arc-like if it is the limit of an inverse sequence of continuous surjections on the unit interval I.
- By a theorem of Bing (1951), there is a unique arc-like hereditarily indecomposable continuum – the pseudo-arc P.
- In a metric space, $x \approx_{\varepsilon} y$ means $d(x,y) < \varepsilon$. For maps $f,g \colon X \to Y$, $f \approx_{\varepsilon} g$ means $\sup_{x \in X} d(f(x),g(x)) < \varepsilon$.
- Let $\mathcal I$ denote the category of all continuous surjections on $\mathbb I$, let $\sigma \mathcal I$ denote the category of all arc-like continua and continuous surjections.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

• For every $\varepsilon > 0$ there is an ε -crooked surjection $\mathbb{I} \to \mathbb{I}$.

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

• For every $\varepsilon > 0$ there is an ε -crooked surjection $\mathbb{I} \to \mathbb{I}$.

• There is a general notion of ε -crooked map between metric compacta, based on ideas of Krasinkiewicz–Minc (1976) and Maćkowiak (1985), that simplifies to the definition above for \mathbb{I} .

Definition

A continuous map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

• For every $\varepsilon > 0$ there is an ε -crooked surjection $\mathbb{I} \to \mathbb{I}$.

- There is a general notion of ε -crooked map between metric compacta, based on ideas of Krasinkiewicz–Minc (1976) and Maćkowiak (1985), that simplifies to the definition above for \mathbb{I} .
- A space X is crooked iff id_X is crooked, where crooked means ε -crooked for every $\varepsilon > 0$.

• If f is ε -crooked, so is $f \circ g$.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

Let $\langle X_*, f_* \rangle$ be a sequence of metric compact spaces with limit $\langle X_\infty, f_{*,\infty} \rangle$. The following conditions are equivalent:

 $\mathbf{1}$ X_{∞} is hereditarily indecomposable.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- **1** X_{∞} is hereditarily indecomposable.
- $\mathbf{Z} X_{\infty}$ is crooked.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- ${f 1}{f 1}$ X_{∞} is hereditarily indecomposable.
- $\mathbf{Z} X_{\infty}$ is crooked.
- **3** Every map $f_{n,\infty}$, $n \in \omega$, is crooked.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

- **11** X_{∞} is hereditarily indecomposable.
- 2 X_{∞} is crooked.
- **3** Every map $f_{n,\infty}$, $n \in \omega$, is crooked.
- **4** f_* is a crooked sequence, i.e. for every $n \in \omega$ and $\varepsilon > 0$ there is $m \ge n$ such that $f_{n,m}$ is ε -crooked.

- If f is ε -crooked, so is $f \circ g$.
- If g is δ -crooked and f is $\langle \varepsilon, \delta \rangle$ -continuous, then $f \circ g$ is ε -crooked.
- If f is ε -crooked and $f \approx_{\delta} g$, then g is $(\varepsilon + 2\delta)$ -crooked.

Theorem

Let $\langle X_*, f_* \rangle$ be a sequence of metric compact spaces with limit $\langle X_{\infty}, f_{*,\infty} \rangle$. The following conditions are equivalent:

- **11** X_{∞} is hereditarily indecomposable.
- 2 X_{∞} is crooked.
- **3** Every map $f_{n,\infty}$, $n \in \omega$, is crooked.
- **4** f_* is a crooked sequence, i.e. for every $n \in \omega$ and $\varepsilon > 0$ there is $m \ge n$ such that $f_{n,m}$ is ε -crooked.

So to obtain a hereditarily indecomposable continuum, it is enough to build a crooked sequence.

• Irwin and Solecki (2006) introduced projective Fraïssé theory.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_{Δ} of connected finite linear graphs and quotient maps.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_{Δ} of connected finite linear graphs and quotient maps.
- \mathcal{I}_{Δ} has a Fraïssé limit \mathbb{P}_{Δ} the Cantor space endowed with a special closed equivalence \sim relation such that \mathbb{P}_{Δ}/\sim is the pseudo-arc \mathbb{P} .

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_{Δ} of connected finite linear graphs and quotient maps.
- \mathcal{I}_{Δ} has a Fraïssé limit \mathbb{P}_{Δ} the Cantor space endowed with a special closed equivalence \sim relation such that \mathbb{P}_{Δ}/\sim is the pseudo-arc \mathbb{P} .
- They characterized $\mathbb P$ as the unique arc-like continuum such that for every continuous surjections $f,g\colon \mathbb P\to Y$ onto an arc-like continuum Y and $\varepsilon>0$, there is a homeomorphism $h\colon \mathbb P\to \mathbb P$ such that $f\approx_\varepsilon g\circ h$.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_{Δ} of connected finite linear graphs and quotient maps.
- \mathcal{I}_{Δ} has a Fraïssé limit \mathbb{P}_{Δ} the Cantor space endowed with a special closed equivalence \sim relation such that \mathbb{P}_{Δ}/\sim is the pseudo-arc \mathbb{P} .
- They characterized $\mathbb P$ as the unique arc-like continuum such that for every continuous surjections $f,g\colon \mathbb P\to Y$ onto an arc-like continuum Y and $\varepsilon>0$, there is a homeomorphism $h\colon \mathbb P\to \mathbb P$ such that $f\approx_\varepsilon g\circ h$.
- It follows that $\mathbb P$ maps onto every arc-like continuum as well as that every continuous surjection $\mathbb P\to\mathbb P$ is arbitrarily close to a homeomorphism.

- Irwin and Solecki (2006) introduced projective Fraïssé theory.
- They considered the category \mathcal{I}_{Δ} of connected finite linear graphs and quotient maps.
- \mathcal{I}_{Δ} has a Fraïssé limit \mathbb{P}_{Δ} the Cantor space endowed with a special closed equivalence \sim relation such that \mathbb{P}_{Δ}/\sim is the pseudo-arc \mathbb{P} .
- They characterized $\mathbb P$ as the unique arc-like continuum such that for every continuous surjections $f,g:\mathbb P\to Y$ onto an arc-like continuum Y and $\varepsilon>0$, there is a homeomorphism $h\colon\mathbb P\to\mathbb P$ such that $f\approx_\varepsilon g\circ h$.
- It follows that $\mathbb P$ maps onto every arc-like continuum as well as that every continuous surjection $\mathbb P\to\mathbb P$ is arbitrarily close to a homeomorphism.
- The characterization condition above looks like an approximate version of projective homogeneity.

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$).

Definition

Let $\mathcal{K}\subseteq\mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object \mathcal{U} is

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$). We say that an \mathcal{L} -object \mathcal{U} is

• cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$).

We say that an \mathcal{L} -object U is

- cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,
- homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -maps $f, g \colon U \to X$ to a \mathcal{K} -object and $\varepsilon > 0$ there is an automorphism $h \colon U \to U$ such that $f \approx_{\varepsilon} g \circ h$,

Definition

Let $\mathcal{K}\subseteq\mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$).

We say that an \mathcal{L} -object U is

- cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,
- homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -maps $f, g \colon U \to X$ to a \mathcal{K} -object and $\varepsilon > 0$ there is an automorphism $h \colon U \to U$ such that $f \approx_{\varepsilon} g \circ h$,
- projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -map $g \colon Y \to X$, \mathcal{L} -map $f \colon U \to Y$, and $\varepsilon > 0$ there is an \mathcal{L} -map $h \colon U \to X$ such that $f \approx_{\varepsilon} g \circ h$.

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be MU-categories (categories where the hom-sets are metric spaces, subject to some coherence axioms; generalizes metric-enriched category; imagine $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ as $\langle \mathcal{K}, \mathcal{L} \rangle$).

We say that an \mathcal{L} -object U is

- cofinal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object X there is an \mathcal{L} -map $U \to X$,
- homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -maps $f, g \colon U \to X$ to a \mathcal{K} -object and $\varepsilon > 0$ there is an automorphism $h \colon U \to U$ such that $f \approx_{\varepsilon} g \circ h$,
- projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -map $g \colon Y \to X$, \mathcal{L} -map $f \colon U \to Y$, and $\varepsilon > 0$ there is an \mathcal{L} -map $h \colon U \to X$ such that $f \approx_{\varepsilon} g \circ h$.

The pair $\langle \mathcal{K}, \mathcal{L} \rangle$ is a free completion if it satisfies certain conditions (L1), (L2), (F1), (F2), (C) assuring that \mathcal{L} arised essentially by freely and continuously adding all limits of sequences to \mathcal{K} .

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

1 *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- 2 U is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- 2 U is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- 2 U is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- ${f 3}$ U is cofinal and homogeneous in ${\cal L}$ (meaning in $\langle {\cal L}, {\cal L} \rangle$).
- 4 U is cofinal and projective in \mathcal{L} .

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- 2 U is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
- U is cofinal and projective in \mathcal{L} .
- 5 U is an \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- 1 U is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- 2 U is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
- 4 U is cofinal and projective in \mathcal{L} .
- 5 U is an \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Such object U is unique up to isomorphism and is called the Fraïssé limit.

Theorem

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion. The following conditions are equivalent for an \mathcal{L} -object U.

- **1** U is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **2** *U* is cofinal and projective in $\langle \mathcal{K}, \mathcal{L} \rangle$.
- **3** U is cofinal and homogeneous in \mathcal{L} (meaning in $\langle \mathcal{L}, \mathcal{L} \rangle$).
- 4 U is cofinal and projective in \mathcal{L} .
- 5 U is an \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Such object U is unique up to isomorphism and is called the Fraïssé limit.

Moreover, a Fraïssé sequence in $\mathcal K$ exists, and so the Fraïssé limit exists, if and only if $\mathcal K$ is directed, dominated by a countable subcategory, and has the amalgamation property (for every $f,g\in\mathcal K$ and $\varepsilon>0$ there are $f',g'\in\mathcal K$ with $f'\circ f\approx_\varepsilon g'\circ g$).

 (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory $\mathcal{K} \subseteq \mathbf{MCont_s}$ we define $\sigma \mathcal{K} \subseteq \mathbf{MCont_s}$, the closure of \mathcal{K} under limits of \mathcal{K} -sequences, limit-factorizing maps, and local closure.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory $\mathcal{K} \subseteq \mathbf{MCont_s}$ we define $\sigma \mathcal{K} \subseteq \mathbf{MCont_s}$, the closure of \mathcal{K} under limits of \mathcal{K} -sequences, limit-factorizing maps, and local closure.
- For every full $\mathcal{P} \subseteq \mathbf{CPol_s}$, $\sigma \mathcal{P}$ is the full subcategory consisting of all \mathcal{P} -like continua, $\langle \mathcal{P}, \sigma \mathcal{P} \rangle$ is a free completion, and \mathcal{P} is a Fraïssé category, and so the Fraïssé limit exists, if and only if \mathcal{P} has the amalgamation property.

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory $\mathcal{K} \subseteq \mathbf{MCont_s}$ we define $\sigma \mathcal{K} \subseteq \mathbf{MCont_s}$, the closure of \mathcal{K} under limits of \mathcal{K} -sequences, limit-factorizing maps, and local closure.
- For every full $\mathcal{P} \subseteq \mathbf{CPol_s}$, $\sigma \mathcal{P}$ is the full subcategory consisting of all \mathcal{P} -like continua, $\langle \mathcal{P}, \sigma \mathcal{P} \rangle$ is a free completion, and \mathcal{P} is a Fraïssé category, and so the Fraïssé limit exists, if and only if \mathcal{P} has the amalgamation property.
- By a result of Russo (1979) there is no cofinal object in $\sigma \mathcal{P}$ unless $\mathcal{P} \subseteq \{*, \mathbb{I}, \mathbb{S}\}.$

- (CPol_s, MCont_s) (connected polyhedra and metrizable continua, with continuous surjections) is a free completion.
- For every MU-subcategory $\mathcal{K} \subseteq \mathbf{MCont_s}$ we define $\sigma \mathcal{K} \subseteq \mathbf{MCont_s}$, the closure of \mathcal{K} under limits of \mathcal{K} -sequences, limit-factorizing maps, and local closure.
- For every full $\mathcal{P} \subseteq \mathbf{CPol_s}$, $\sigma \mathcal{P}$ is the full subcategory consisting of all \mathcal{P} -like continua, $\langle \mathcal{P}, \sigma \mathcal{P} \rangle$ is a free completion, and \mathcal{P} is a Fraïssé category, and so the Fraïssé limit exists, if and only if \mathcal{P} has the amalgamation property.
- By a result of Russo (1979) there is no cofinal object in $\sigma \mathcal{P}$ unless $\mathcal{P} \subseteq \{*, \mathbb{I}, \mathbb{S}\}.$
- It turns out $\sigma \mathcal{P}$ has a Fraïssé limit if and only if $\mathcal{P} \subseteq \{*, \mathbb{I}\}$ (and the limit is \mathbb{P} or *), and it has a cofinal object if and only if $\mathcal{P} \subseteq \{*, \mathbb{I}, \mathbb{S}\}$ (and the cofinal object is the universal pseudo-solenoid \mathbb{P}_{Π} if $\mathbb{S} \in \mathcal{P}$).

• $\mathcal I$ has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal I, \sigma \mathcal I \rangle$.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.
- Hence, the Fraïssé limit is a hereditarily indecomposable arc-like continuum, and so \mathbb{P} by Bing's theorem.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *I*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.
- Hence, the Fraı̈ssé limit is a hereditarily indecomposable arc-like continuum, and so $\mathbb P$ by Bing's theorem.

Theorem (somewhat folklore)

For every \mathcal{I} -map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ -crooked $f \in \mathcal{I}$ there is $h \in \mathcal{I}$ with $f \approx_{\varepsilon} g \circ h$.

- \mathcal{I} has AP (mountain-climbing theorem), and so there is a Fraïssé limit of $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.
- Since there are arbitrarily crooked *T*-maps, and a Fraïssé sequence absorbs them, every Fraïssé sequence is a crooked sequence.
- Hence, the Fraı̈ssé limit is a hereditarily indecomposable arc-like continuum, and so $\mathbb P$ by Bing's theorem.

Theorem (somewhat folklore)

For every \mathcal{I} -map g and every $\varepsilon>0$ there is $\delta>0$ such that for every δ -crooked $f\in\mathcal{I}$ there is $h\in\mathcal{I}$ with $f\approx_{\varepsilon}g\circ h$.

 So on the other hand, every crooked *I*-sequence is Fraïssé, every hereditarily indecomposable arc-like continuum is a Fraïssé limit, and Bing's theorem follows by uniqueness of Fraïssé limits.

Together, we obtain:

Theorem

The pseudo-arc \mathbb{P} is characterized (up to a homeomorphism) by any of the following conditions.

Together, we obtain:

Theorem

The pseudo-arc $\mathbb P$ is characterized (up to a homeomorphism) by any of the following conditions.

 \blacksquare P is a hereditarily indecomposable arc-like continuum.

Together, we obtain:

Theorem

The pseudo-arc \mathbb{P} is characterized (up to a homeomorphism) by any of the following conditions.

- \blacksquare is a hereditarily indecomposable arc-like continuum.
- **2** \mathbb{P} is a homogeneous object in $\sigma \mathcal{I}$, i.e. for every continuous surjections $f,g:\mathbb{P}\to Y$ onto an arc-like continuum and $\varepsilon>0$ there is a homeomorphism $h\colon\mathbb{P}\to\mathbb{P}$ such that $f\approx_{\varepsilon}g\circ h$.

Together, we obtain:

Theorem

The pseudo-arc $\mathbb P$ is characterized (up to a homeomorphism) by any of the following conditions.

- \blacksquare is a hereditarily indecomposable arc-like continuum.
- **2** \mathbb{P} is a homogeneous object in $\sigma \mathcal{I}$, i.e. for every continuous surjections $f,g:\mathbb{P}\to Y$ onto an arc-like continuum and $\varepsilon>0$ there is a homeomorphism $h\colon\mathbb{P}\to\mathbb{P}$ such that $f\approx_\varepsilon g\circ h$.
- \blacksquare is a homogeneous object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $Y = \mathbb{I}$).

Together, we obtain:

Theorem

The pseudo-arc \mathbb{P} is characterized (up to a homeomorphism) by any of the following conditions.

- \blacksquare is a hereditarily indecomposable arc-like continuum.
- 2 $\mathbb P$ is a homogeneous object in $\sigma \mathcal I$, i.e. for every continuous surjections $f,g\colon \mathbb P\to Y$ onto an arc-like continuum and $\varepsilon>0$ there is a homeomorphism $h\colon \mathbb P\to \mathbb P$ such that $f\approx_\varepsilon g\circ h$.
- \blacksquare P is a homogeneous object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $Y = \mathbb{I}$).
- **4** $\mathbb P$ is a projective object in $\sigma\mathcal I$, i.e. for every continuous surjections $f:\mathbb P\to Y$ and $g\colon Y\to X$ between arc-like continua and $\varepsilon>0$ there is a continuous surjection $h\colon\mathbb P\to X$ such that $f\approx_\varepsilon g\circ h$.

Together, we obtain:

Theorem

The pseudo-arc \mathbb{P} is characterized (up to a homeomorphism) by any of the following conditions.

- \blacksquare is a hereditarily indecomposable arc-like continuum.
- **2** \mathbb{P} is a homogeneous object in $\sigma \mathcal{I}$, i.e. for every continuous surjections $f,g\colon \mathbb{P}\to Y$ onto an arc-like continuum and $\varepsilon>0$ there is a homeomorphism $h\colon \mathbb{P}\to \mathbb{P}$ such that $f\approx_\varepsilon g\circ h$.
- \blacksquare P is a homogeneous object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $Y = \mathbb{I}$).
- **4** $\mathbb P$ is a projective object in $\sigma\mathcal I$, i.e. for every continuous surjections $f:\mathbb P\to Y$ and $g\colon Y\to X$ between arc-like continua and $\varepsilon>0$ there is a continuous surjection $h\colon\mathbb P\to X$ such that $f\approx_\varepsilon g\circ h$.
- **5** \mathbb{P} is a projective object in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ (as above with $X = Y = \mathbb{I}$).

• Let $\mathcal S$ denote the MU-category of all continuous surjections on the unit circle $\mathbb S$. Then $\sigma \mathcal S$ is the MU-category of all circle-like continua, and $\langle \mathcal S, \sigma \mathcal S \rangle$ is a free completion.

- Let \mathcal{S} denote the MU-category of all continuous surjections on the unit circle \mathbb{S} . Then $\sigma\mathcal{S}$ is the MU-category of all circle-like continua, and $\langle \mathcal{S}, \sigma\mathcal{S} \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraïssé limit.

- Let \mathcal{S} denote the MU-category of all continuous surjections on the unit circle \mathbb{S} . Then $\sigma\mathcal{S}$ is the MU-category of all circle-like continua, and $\langle \mathcal{S}, \sigma\mathcal{S} \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraı̈ssé limit.
- Recall that every continuous map $f: \mathbb{S} \to \mathbb{S}$ has a degree $\deg(f) \in \mathbb{Z}$ and that $\deg: \mathcal{S} \to \mathbb{Z}$ is a functor.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraı̈ssé limit.
- Recall that every continuous map $f: \mathbb{S} \to \mathbb{S}$ has a degree $\deg(f) \in \mathbb{Z}$ and that $\deg: \mathcal{S} \to \mathbb{Z}$ is a functor.
- Let Π denote the set of all primes, let $P \subseteq \Pi$, and let $\mathcal{S}_P \subseteq \mathcal{S}$ consist of maps f with $\deg(f) \neq 0$ whose all prime divisors are in P.

- Let \mathcal{S} denote the MU-category of all continuous surjections on the unit circle \mathbb{S} . Then $\sigma\mathcal{S}$ is the MU-category of all circle-like continua, and $\langle \mathcal{S}, \sigma\mathcal{S} \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraïssé limit.
- Recall that every continuous map $f: \mathbb{S} \to \mathbb{S}$ has a degree $\deg(f) \in \mathbb{Z}$ and that $\deg: \mathcal{S} \to \mathbb{Z}$ is a functor.
- Let Π denote the set of all primes, let $P \subseteq \Pi$, and let $\mathcal{S}_P \subseteq \mathcal{S}$ consist of maps f with $\deg(f) \neq 0$ whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.

- Let $\mathcal S$ denote the MU-category of all continuous surjections on the unit circle $\mathbb S$. Then $\sigma \mathcal S$ is the MU-category of all circle-like continua, and $\langle \mathcal S, \sigma \mathcal S \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraı̈ssé limit.
- Recall that every continuous map $f: \mathbb{S} \to \mathbb{S}$ has a degree $\deg(f) \in \mathbb{Z}$ and that $\deg: \mathcal{S} \to \mathbb{Z}$ is a functor.
- Let Π denote the set of all primes, let $P \subseteq \Pi$, and let $\mathcal{S}_P \subseteq \mathcal{S}$ consist of maps f with $\deg(f) \neq 0$ whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.
- We have proved that $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ is a free completion.

- Let S denote the MU-category of all continuous surjections on the unit circle S. Then σS is the MU-category of all circle-like continua, and $\langle S, \sigma S \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraı̈ssé limit.
- Recall that every continuous map $f: \mathbb{S} \to \mathbb{S}$ has a degree $\deg(f) \in \mathbb{Z}$ and that $\deg: \mathcal{S} \to \mathbb{Z}$ is a functor.
- Let Π denote the set of all primes, let $P \subseteq \Pi$, and let $\mathcal{S}_P \subseteq \mathcal{S}$ consist of maps f with $\deg(f) \neq 0$ whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.
- We have proved that $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ is a free completion.
- Hence, every $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ has a Fraïssé limit \mathbb{P}_P .

- Let $\mathcal S$ denote the MU-category of all continuous surjections on the unit circle $\mathbb S$. Then $\sigma \mathcal S$ is the MU-category of all circle-like continua, and $\langle \mathcal S, \sigma \mathcal S \rangle$ is a free completion.
- However, it is known that ${\cal S}$ does not have AP, and so there is no Fraı̈ssé limit.
- Recall that every continuous map $f: \mathbb{S} \to \mathbb{S}$ has a degree $\deg(f) \in \mathbb{Z}$ and that $\deg: \mathcal{S} \to \mathbb{Z}$ is a functor.
- Let Π denote the set of all primes, let $P \subseteq \Pi$, and let $\mathcal{S}_P \subseteq \mathcal{S}$ consist of maps f with $\deg(f) \neq 0$ whose all prime divisors are in P.
- It follows from results by Rogers (1970) that every S_P has AP.
- We have proved that $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ is a free completion.
- Hence, every $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ has a Fraïssé limit \mathbb{P}_P .
- But what is \mathbb{P}_P and what is σS_P (it is not full in σS)?

• Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/{\sim}$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let $\mathcal T$ denote the category of types and $\mathcal T$ -maps. There is a contravariant type functor $\mathcal T\colon\sigma\mathcal S\to\mathcal T$ extending the degree.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let $\mathcal T$ denote the category of types and $\mathcal T$ -maps. There is a contravariant type functor $\mathcal T\colon\sigma\mathcal S\to\mathcal T$ extending the degree.
- By Fearnley (1972) there is exactly one hereditarily indecomposable circle-like continuum of each type S, the S-adic pseudo-solenoid.

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let $\mathcal T$ denote the category of types and $\mathcal T$ -maps. There is a contravariant type functor $\mathcal T\colon\sigma\mathcal S\to\mathcal T$ extending the degree.
- By Fearnley (1972) there is exactly one hereditarily indecomposable circle-like continuum of each type S, the S-adic pseudo-solenoid.
- These include the pseudo-arc (type 0), the pseudo-circle (type 1), the universal pseudo-solenoid (type Π^{∞}), and more generally P-adic pseudo-solenoids (type P^{∞} for $P \subseteq \Pi$).

- Let $\overline{\mathbb{N}}$ denote the monoid of supernatural numbers $s \colon \Pi \to \mathbb{N} \cup \{\infty\}$ (representing $\prod_{p \in \Pi} p^{s(p)}$) together with 0.
- We put $s \sim s'$ if $\{p \in \Pi : s(p) \neq s(p')\}$ is finite and $s^{-1}(\infty) = (s')^{-1}(\infty)$. We call members of $\overline{\mathbb{N}}/\sim$ types.
- For $S, S' \in \overline{\mathbb{N}}/\sim$, a \mathcal{T} -map $S \to S'$ is a function $S \cup \{0\} \to S' \cup \{0\}$ that is the multiplication by some $t \in \overline{\mathbb{N}}$.
- Let \mathcal{T} denote the category of types and \mathcal{T} -maps. There is a contravariant type functor $\mathcal{T}: \sigma\mathcal{S} \to \mathcal{T}$ extending the degree.
- By Fearnley (1972) there is exactly one hereditarily indecomposable circle-like continuum of each type S, the S-adic pseudo-solenoid.
- These include the pseudo-arc (type 0), the pseudo-circle (type 1), the universal pseudo-solenoid (type Π^{∞}), and more generally P-adic pseudo-solenoids (type P^{∞} for $P \subseteq \Pi$).
- A circle-like continuum X is an σS_P -object iff $T(X) \leq P^{\infty}$. A continuous surjection $f: X \to Y$ between σS_P -objects is a σS_P -map iff T(f) is a multiplication by $t \leq P^{\infty}$.

• By absorption, the Fraïssé sequence in S_P is of type P^{∞} and is crooked since there are arbitrarily crooked continuous surjections $\mathbb{S} \to \mathbb{S}$ of any degree.

- By absorption, the Fraïssé sequence in S_P is of type P^{∞} and is crooked since there are arbitrarily crooked continuous surjections $\mathbb{S} \to \mathbb{S}$ of any degree.
- Hence, the Fraïssé limit \mathbb{P}_P of $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ is the P-adic pseudo-solenoid by the uniqueness result by Fearnley (1972).

- By absorption, the Fraïssé sequence in \mathcal{S}_P is of type P^∞ and is crooked since there are arbitrarily crooked continuous surjections $\mathbb{S} \to \mathbb{S}$ of any degree.
- Hence, the Fraïssé limit \mathbb{P}_P of $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ is the P-adic pseudo-solenoid by the uniqueness result by Fearnley (1972).
- On the other hand, it follows from a theorem by Kawamura (1989) that an S_P -sequence of type P^{∞} is crooked if and only if it is Fraïssé in S_P .

- By absorption, the Fraïssé sequence in S_P is of type P^{∞} and is crooked since there are arbitrarily crooked continuous surjections $\mathbb{S} \to \mathbb{S}$ of any degree.
- Hence, the Fraïssé limit \mathbb{P}_P of $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$ is the P-adic pseudo-solenoid by the uniqueness result by Fearnley (1972).
- On the other hand, it follows from a theorem by Kawamura (1989) that an S_P -sequence of type P^{∞} is crooked if and only if it is Fraïssé in S_P .
- Hence, the uniqueness of the P-adic pseudo-solenoid follows from the uniqueness of the Fraïssé limit.

Together, we obtain:

Theorem

Together, we obtain:

Theorem

The P-adic pseudo-solenoid \mathbb{P}_P is characterized by any of the following conditions.

 ${
m I\!\!I}$ ${
m I\!\!P}_P$ is a hereditarily indecomposable circle-like continuum of type P^∞ .

Together, we obtain:

Theorem 1

- **1** \mathbb{P}_P is a hereditarily indecomposable circle-like continuum of type P^{∞} .
- \mathbb{P}_P is a homogeneous object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).

Together, we obtain:

Theorem

- ${
 m I\!\!I}$ ${
 m I\!\!P}_P$ is a hereditarily indecomposable circle-like continuum of type P^∞ .
- \mathbb{P}_P is a homogeneous object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).

Together, we obtain:

Theorem

- **1** \mathbb{P}_P is a hereditarily indecomposable circle-like continuum of type P^{∞} .
- **2** \mathbb{P}_P is a homogeneous object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- **3** \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- Every σS -map $\mathbb{P}_{\Pi} \to Y$ onto a non-planar circle-like continuum is a σS_{Π} -map, and so homogeneity applies.

Together, we obtain:

Theorem

- **1** \mathbb{P}_P is a hereditarily indecomposable circle-like continuum of type P^{∞} .
- **2** \mathbb{P}_P is a homogeneous object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- **3** \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- Every σS -map $\mathbb{P}_{\Pi} \to Y$ onto a non-planar circle-like continuum is a σS_{Π} -map, and so homogeneity applies.
- As a by-product we easily obtain the known facts that \mathbb{P}_Π continuously maps onto every circle-like continuum and that every continuous surjection $\mathbb{P}_\Pi \to \mathbb{P}_\Pi$ is a near-homeomorphism.

Together, we obtain:

Theorem

The P-adic pseudo-solenoid \mathbb{P}_P is characterized by any of the following conditions.

- **1** \mathbb{P}_P is a hereditarily indecomposable circle-like continuum of type P^{∞} .
- **2** \mathbb{P}_P is a homogeneous object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- \mathbb{P}_P is a projective object in $\sigma \mathcal{S}_P$ (or $\langle \mathcal{S}_P, \sigma \mathcal{S}_P \rangle$).
- Every σS -map $\mathbb{P}_{\Pi} \to Y$ onto a non-planar circle-like continuum is a σS_{Π} -map, and so homogeneity applies.
- As a by-product we easily obtain the known facts that \mathbb{P}_Π continuously maps onto every circle-like continuum and that every continuous surjection $\mathbb{P}_\Pi \to \mathbb{P}_\Pi$ is a near-homeomorphism.

Thank you.