

Completeness and topologizability of countable semigroups

Serhii Bardyla

Institute of Mathematics, KGRC

Toposym 2022

Serhii Bardyla

Completeness and topologizability of countable semigroups

イロト イポト イヨト イヨト

Ξ

History

University of Vienna

Theorem (Kuratowski-Mrówka)

A topological space X is compact if and only if for every space Y the natural projection $p: X \times Y \to Y$ is a closed map.

Definition (Dikranjan, Uspenskij)

A topological group G is called c-compact if for any topological group H the natural projection $G \times H \rightarrow H$ sends closed subgroups to closed subgroups.

It can be checked that every continuous homomorphic image of a c-compact topological group is Raikov complete.

Problem (Dikranjan, Uspenskij, 1998)

Is any c-compact topological group compact?

There are some positive partial solutions of this problem (by Banakh, Dikranjan, Lukách, Uspenskij and others). However, in general case this problem was solved in negative by Klyachko, Olshanskij and Osing, a soc

Theorem (Kuratowski-Mrówka)

A topological space X is compact if and only if for every space Y the natural projection $p: X \times Y \to Y$ is a closed map.

Definition (Dikranjan, Uspenskij)

A topological group G is called c-compact if for any topological group H the natural projection $G \times H \rightarrow H$ sends closed subgroups to closed subgroups.

It can be checked that every continuous homomorphic image of a c-compact topological group is Raikov complete.

```
Problem (Dikranjan, Uspenskij, 1998)
```

Is any c-compact topological group compact?

There are some positive partial solutions of this problem (by Banakh, Dikranjan, Lukách, Uspenskij and others). However, in general case this problem was solved in negative by Klyachko, Olshanskij and Osing, a 2000

Theorem (Kuratowski-Mrówka)

A topological space X is compact if and only if for every space Y the natural projection $p: X \times Y \to Y$ is a closed map.

Definition (Dikranjan, Uspenskij)

A topological group G is called c-compact if for any topological group H the natural projection $G \times H \rightarrow H$ sends closed subgroups to closed subgroups.

It can be checked that every continuous homomorphic image of a c-compact topological group is Raikov complete.

Problem (Dikranjan, Uspenskij, 1998)

Is any c-compact topological group compact?

There are some positive partial solutions of this problem (by Banakh, Dikranjan, Lukách, Uspenskij and others). However, in general case this problem was solved in negative by Klyachko, Olshanskij and Osing, a 2000

Theorem (Kuratowski-Mrówka)

A topological space X is compact if and only if for every space Y the natural projection $p: X \times Y \to Y$ is a closed map.

Definition (Dikranjan, Uspenskij)

A topological group G is called c-compact if for any topological group H the natural projection $G \times H \rightarrow H$ sends closed subgroups to closed subgroups.

It can be checked that every continuous homomorphic image of a c-compact topological group is Raikov complete.

```
Problem (Dikranjan, Uspenskij, 1998)
```

Is any c-compact topological group compact?

There are some positive partial solutions of this problem (by Banakh, Dikranjan, Lukách, Uspenskij and others). However, in general case this problem was solved in negative by Klyachko, Olshanskij and Osing, a soco

Theorem (Kuratowski-Mrówka)

A topological space X is compact if and only if for every space Y the natural projection $p: X \times Y \to Y$ is a closed map.

Definition (Dikranjan, Uspenskij)

A topological group G is called c-compact if for any topological group H the natural projection $G \times H \rightarrow H$ sends closed subgroups to closed subgroups.

It can be checked that every continuous homomorphic image of a c-compact topological group is Raikov complete.

```
Problem (Dikranjan, Uspenskij, 1998)
```

Is any c-compact topological group compact?

There are some positive partial solutions of this problem (by Banakh, Dikranjan, Lukách, Uspenskij and others). However, in general case this problem was solved in negative by Klyachko, Olshanskij and Osin.

Expectation

The counterexample is constructed using some sophisticated topological techniques. Also, it possesses some strong compact-like property (sequential compactness, countable compactness, etc.)

Reality (Theorem by Klyachko, Olshanskii and Osin, 2013)

There exists a discrete bounded countable c-compact group G.

This example possesses an extremely exotic property. Namely any homomorphic image of any subgroup of G is nontopologizable, i.e., admits only the discrete group topology.

Aim of this talk

To develop a connection between nontopologizability and completeness. In particular, to show that in some sense the mentioned example is natural.

< ロト < 回 > < 三 > < 三 >

Expectation

The counterexample is constructed using some sophisticated topological techniques. Also, it possesses some strong compact-like property (sequential compactness, countable compactness, etc.)

Reality (Theorem by Klyachko, Olshanskii and Osin, 2013)

There exists a discrete bounded countable c-compact group G.

This example possesses an extremely exotic property. Namely any homomorphic image of any subgroup of G is nontopologizable, i.e., admits only the discrete group topology.

Aim of this talk

To develop a connection between nontopologizability and completeness. In particular, to show that in some sense the mentioned example is natural.

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Expectation

The counterexample is constructed using some sophisticated topological techniques. Also, it possesses some strong compact-like property (sequential compactness, countable compactness, etc.)

Reality (Theorem by Klyachko, Olshanskii and Osin, 2013) There exists a discrete bounded countable c-compact group *G*.

This example possesses an extremely exotic property. Namely any homomorphic image of any subgroup of *G* is nontopologizable, i.e., admits only the discrete group topology. Thus, the solution is purely algebraic!

Aim of this talk

To develop a connection between nontopologizability and completeness. In particular, to show that in some sense the mentioned example is natural.

イロト イロト イヨト イヨト

Expectation

The counterexample is constructed using some sophisticated topological techniques. Also, it possesses some strong compact-like property (sequential compactness, countable compactness, etc.)

Reality (Theorem by Klyachko, Olshanskii and Osin, 2013)

There exists a discrete bounded countable c-compact group G.

This example possesses an extremely exotic property. Namely any homomorphic image of any subgroup of G is nontopologizable, i.e., admits only the discrete group topology.

Thus, the solution is purely algebraic!

Aim of this talk

To develop a connection between nontopologizability and completeness. In particular, to show that in some sense the mentioned example is natural.

Expectation

The counterexample is constructed using some sophisticated topological techniques. Also, it possesses some strong compact-like property (sequential compactness, countable compactness, etc.)

Reality (Theorem by Klyachko, Olshanskii and Osin, 2013)

There exists a discrete bounded countable c-compact group G.

This example possesses an extremely exotic property. Namely any homomorphic image of any subgroup of G is nontopologizable, i.e., admits only the discrete group topology.

Thus, the solution is purely algebraic!

Aim of this talk

To develop a connection between nontopologizability and completeness. In particular, to show that in some sense the mentioned example is natural.

Expectation

The counterexample is constructed using some sophisticated topological techniques. Also, it possesses some strong compact-like property (sequential compactness, countable compactness, etc.)

Reality (Theorem by Klyachko, Olshanskii and Osin, 2013)

There exists a discrete bounded countable c-compact group G.

This example possesses an extremely exotic property. Namely any homomorphic image of any subgroup of G is nontopologizable, i.e., admits only the discrete group topology.

Thus, the solution is purely algebraic!

Aim of this talk

To develop a connection between nontopologizability and completeness. In particular, to show that in some sense the mentioned example is natural.

< A >

Definition

Let C be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology *τ* such that (X, *τ*) ∈ C is discrete;
- projetively C-nontopologizable if each homomorphic image of X is C-nontopologizable.

We shall consider the classes:

- TG of Tychonoff topological groups;
- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T₁S of T₁ topological semigroups.

< ロト (同) (三) (三)

Definition

Let C be a class of topological semigroups containing all discrete semigroups. A semigroup X is called

- C-nontopologizable if the only topology *τ* such that (X, *τ*) ∈ C is discrete;
- projetively C-nontopologizable if each homomorphic image of X is
 C-nontopologizable.

We shall consider the classes:

- TG of Tychonoff topological groups;
- T_zS of Tychonoff zero-dimensional topological semigroups;
- T₂S of Hausdorff topological semigroups;
- T_1S of T_1 topological semigroups.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Vienna

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n$.
- A semigroup polynomial on a semigroup X is a function $f: X \to X$ of

the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies.

- group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {f(x) ≠ e_G}, where f is a group polynomial on G. or a semigroup X its
- Zariski topology \Im_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X.
- Zariski T₁-topology 3'_X is the topology on X generated by the subbase consisting of the sets {x ∈ X : f(x) ≠ b} where b ∈ X and f is a semigroup polynomial on X.

University of Vienna

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n$.
- A semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies.

- group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {f(x) ≠ e_G}, where f is a group polynomial on G. or a semigroup X its
- **Zariski** topology \Im_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X.
- Zariski T₁-topology 3'_X is the topology on X generated by the subbase consisting of the sets {x ∈ X : f(x) ≠ b} where b ∈ X and f is a semigroup polynomial on X.

University of Vienna

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n$.
- A semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies.

- group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {f(x) ≠ e_G}, where f is a group polynomial on G. for a semigroup X its
- Zariski topology 3_X is the topology on X generated by the subbase consisting of the sets {x ∈ X : f(x) ≠ b} and {x ∈ X : f(x) ≠ g(x)} where b ∈ X and f, g are semigroup polynomials on X.
- Zariski T₁-topology 3'_X is the topology on X generated by the subbase consisting of the sets {x ∈ X : f(x) ≠ b} where b ∈ X and f is a semigroup polynomial on X.

University of Vienna

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n$.
- A semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies.

- group Zariski topology \mathfrak{Z}_{G}^{\pm} is generated by the subbase consisting of the sets $\{f(x) \neq e_G\}$, where f is a group polynomial on G.
- Zariski topology \Im_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X.
- Zariski T_1 -topology $3'_X$ is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

University of Vienna

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n$.
- A semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies.

- group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {f(x) ≠ e_G}, where f is a group polynomial on G.
 For a semigroup X its
 - Zariski topology \mathcal{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X.
 - Zariski T₁-topology 3'_X is the topology on X generated by the subbase consisting of the sets {x ∈ X : f(x) ≠ b} where b ∈ X and f is a semigroup polynomial on X.

University of Vienna

- A group polynomial on a group G is a function $f: G \to G$ of the form $f(x) = a_0 x^{\epsilon_1} a_1 \cdots x^{\epsilon_n} a_n$ for some elements $a_0, \ldots, a_n \in G$ and $\epsilon_i \in \{-1, 1\}, i \leq n$.
- A semigroup polynomial on a semigroup X is a function $f: X \to X$ of the form $f(x) = a_0 x a_1 \cdots x a_n$ for some elements $a_0, \ldots, a_n \in X^1$.

Nontopologizability of groups and semigroups can be described in terms of corresponding Zariski topologies.

- group Zariski topology 3[±]_G is generated by the subbase consisting of the sets {f(x) ≠ e_G}, where f is a group polynomial on G.
 For a semigroup X its
 - Zariski topology \mathfrak{Z}_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ and $\{x \in X : f(x) \neq g(x)\}$ where $b \in X$ and f, g are semigroup polynomials on X.
 - Zariski T_1 -topology \mathfrak{Z}'_X is the topology on X generated by the subbase consisting of the sets $\{x \in X : f(x) \neq b\}$ where $b \in X$ and f is a semigroup polynomial on X.

The following theorems characterize countable nontopologizable (semi)groups in terms of Zariski topologies.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^{\pm} is discrete.

Theorem (Kotov-Taimanov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

Theorem (Podewski-Taimanov)

A countable semigroup X is T₁S-nontopologizable if and only if the Zariski T_1 -topology \mathfrak{Z}'_X is discrete.

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The following theorems characterize countable nontopologizable (semi)groups in terms of Zariski topologies.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^{\pm} is discrete.

Theorem (Kotov-Taimanov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

Theorem (Podewski-Taimanov)

A countable semigroup X is T₁S-nontopologizable if and only if the Zariski T_1 -topology \mathfrak{Z}'_X is discrete.

The following theorems characterize countable nontopologizable (semi)groups in terms of Zariski topologies.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^{\pm} is discrete.

Theorem (Kotov-Taimanov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

Theorem (Podewski-Taimanov)

A countable semigroup X is T₁S-nontopologizable if and only if the Zariski T_1 -topology \mathfrak{Z}'_X is discrete.

4 D b 4 A b 4 B b

The following theorems characterize countable nontopologizable (semi)groups in terms of Zariski topologies.

Theorem (Markov)

A countable group G is TG-nontopologizable if and only if the group Zariski topology \mathfrak{Z}_G^{\pm} is discrete.

Theorem (Kotov-Taimanov)

A countable semigroup X is T₂S-nontopologizable if and only if the Zariski topology \mathfrak{Z}_X is discrete.

Theorem (Podewski-Taimanov)

A countable semigroup X is T₁S-nontopologizable if and only if the Zariski T_1 -topology \mathfrak{Z}'_X is discrete.

イロト イポト イヨト イ

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example, a metric space X is complete if and only if X is closed in any metric space containing X as a subspace. A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace. A topological group G is Raikov complete if and only if it is closed in any topological group containing G as a subgroup.

This way we can define many completeness properties of discrete semigroups via their closedness in ambient objects.

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example, a metric space X is complete if and only if X is closed in any metric space containing X as a subspace. A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace. A topological group G is Raikov complete if and only if it is closed in any topological group containing G as a subgroup.

This way we can define many completeness properties of discrete semigroups via their closedness in ambient objects.

イロト イポト イヨト イ

In many cases, completeness properties of various objects of General Topology and Topological Algebra can be characterized externally as closedness in ambient objects. For example, a metric space X is complete if and only if X is closed in any metric space containing X as a subspace. A uniform space X is complete if and only if X is closed in any uniform space containing X as a uniform subspace. A topological group G is Raikov complete if and only if it is closed in any topological group containing G as a subgroup.

This way we can define many completeness properties of discrete semigroups via their closedness in ambient objects.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphic topological embedding h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y;
- projectively *C*-closed if any homomorphic image of *X* is *C*-closed;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

Recall that the group constructed by Klyachko, Olshanskii and Osin is absolutely TG-closed. Moreover, we shall see that it is absolutely T_1S -closed.

Let ${\mathcal C}$ be a class of topological semigroups. A discrete semigroup X is called

- C-closed if for any isomorphic topological embedding h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y;
- projectively *C*-closed if any homomorphic image of *X* is *C*-closed;
- injectively C-closed if for any injective homomorphism i: X → Y to a topological semigroup Y ∈ C the image i[X] is closed in Y;
- absolutely C-closed if for any homomorphism h: X → Y to a topological semigroup Y ∈ C the image h[X] is closed in Y.

Recall that the group constructed by Klyachko, Olshanskii and Osin is absolutely TG-closed. Moreover, we shall see that it is absolutely T_1S -closed.

< ロト (同) (三) (三)

Observe that the completeness-like properties from the previous slide depend only on the algebraic structure of a semigroup X.

For any semigroup X the following implications hold:

 $\begin{array}{c} X \text{ is absolutely } \mathcal{C}\text{-closed} \implies X \text{ is injectively } \mathcal{C}\text{-closed} \\ \\ \\ \\ X \text{ is projectively } \mathcal{C}\text{-closed} \implies X \text{ is } \mathcal{C}\text{-closed}. \end{array}$

< ロト (同) (三) (三)

Observe that the completeness-like properties from the previous slide depend only on the algebraic structure of a semigroup X.

For any semigroup X the following implications hold:

$$\begin{array}{c} X \text{ is absolutely } \mathcal{C}\text{-closed} \implies X \text{ is injectively } \mathcal{C}\text{-closed} \\ \\ \\ \\ X \text{ is projectively } \mathcal{C}\text{-closed} \implies X \text{ is } \mathcal{C}\text{-closed}. \end{array}$$

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- G is projectively T₁S-closed;
- G is T₁S-closed;
- G is T_zS-closed;
- G is polybounded.

4 D b 4 A b 4 B b

A semigroup X is called polybounded if $X = \bigcup_{i=1}^{n} \{x \in X : f_i(x) = b_i\}$ for some elements $b_1, \ldots, b_n \in X$ and semigroup polynomials f_1, \ldots, f_n on X.

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- *G* is projectively T₁S-closed;
- G is T₁S-closed;
- G is T_zS-closed;
- *G* is polybounded.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary

Each polybounded cancellative T_1 topological semigroup is a topological group.

4 D b 4 A b 4 B b

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

Theorem (Banakh, B.)

Each polybounded cancellative semigroup is a group.

Corollary Each polybounded cancellative T_1 topological semigroup is a topological group.

イロト イポト イヨト イ

Theorem (Banakh, B.)

Each polybounded T_1 paratopological group is a topological group.

```
Theorem (Banakh, B.)
```

Each polybounded cancellative semigroup is a group.

Corollary

Each polybounded cancellative T_1 topological semigroup is a topological group.

イロト イポト イヨト イヨト

Nontopologizability and completeness

University of Vienna

Theorem (Banakh, B.)

For a semigroup X the following conditions are equivalent:

- X is injectively T₁S-closed;
- X is T₁S-closed and T₁S-nontopologizable.

Theorem (Banakh, B.)

For a semigroup X the following conditions are equivalent:

- X is absolutely T₁S-closed;
- X is projectively T₁S-closed and projectively T₁S-nontopologizable.

Corollary

The group constructed by Klyachko, Olshanskii and Osin, being bounded, is absolutely T_1S -closed.

Nontopologizability and completeness

University of Vienna

Theorem (Banakh, B.)

For a semigroup X the following conditions are equivalent:

- *X* is injectively T₁S-closed;
- X is T₁S-closed and T₁S-nontopologizable.

Theorem (Banakh, B.)

For a semigroup X the following conditions are equivalent:

- X is absolutely T₁S-closed;
- X is projectively T₁S-closed and projectively T₁S-nontopologizable.

Corollary

The group constructed by Klyachko, Olshanskii and Osin, being bounded, is absolutely T_1S -closed.

A B A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Nontopologizability and completeness

University of Vienna

Theorem (Banakh, B.)

For a semigroup X the following conditions are equivalent:

- X is injectively T₁S-closed;
- X is T₁S-closed and T₁S-nontopologizable.

Theorem (Banakh, B.)

For a semigroup X the following conditions are equivalent:

- X is absolutely T₁S-closed;
- X is projectively T₁S-closed and projectively T₁S-nontopologizable.

Corollary

The group constructed by Klyachko, Olshanskii and Osin, being bounded, is absolutely $\mathsf{T}_1\mathsf{S}\text{-closed}.$

イロト イポト イヨト イヨト

Э

Theorem (Banakh, B.)

For a countable group G the following conditions are equivalent:

- *G* is injectively T₁S-closed;
- *G* is absolutely T₁S-closed;
- *G* is T₁S-nontopologizable;
- *G* is projectively T₁S-nontopologizable;
- the T_1 Zariski topology \mathfrak{Z}'_G on G is discrete.

Thank You for attention! Support Ukraine!

Serhii Bardyla

Completeness and topologizability of countable semigroups

Ξ

《曰》 《國》 《臣》 《臣》

Thank You for attention! Support Ukraine!

Serhii Bardyla

Completeness and topologizability of countable semigroups

프 > 프