Compact spaces associated to Banach lattices

Antonio Avilés Universidad de Murcia

joint work with G. Martínez Cervantes, A. Rueda Zoca, P. Tradacete

イロン 不同 とくほど 不同 とう

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and

・ロト ・回 ト ・ヨト ・ヨト ・ヨ

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \le x', y \le y', r, s \ge 0 \implies rx + sy \le rx' + sy'$

A lattice is a partially ordered set (L, \leq) such that every two elements x and y have a supremum $x \lor y$ and an infimum $x \land y$.

Definition

A vector lattice is a (real) vector space L that is also a lattice and $x \le x', y \le y', r, s \ge 0 \implies rx + sy \le rx' + sy'$

Definition

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

 $|x| = x \vee -x$

A Banach lattice is a vector lattice L that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

イロト イロト イヨト イヨト ヨー わへの

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

• C(K), $L^{p}(\mu)$ with $f \leq g$ iff $f(x) \leq g(x)$ for (almost) all x.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

A Banach lattice is a vector lattice *L* that is also a Banach space and for all $x, y \in L$, $|x| \le |y| \Rightarrow ||x|| \le ||y||$

- C(K), $L^{p}(\mu)$ with $f \leq g$ iff $f(x) \leq g(x)$ for (almost) all x.
- Spaces with unconditional basis with coordinatewise order: $\ell_2, \ \ell_p....$

イロト イヨト イヨト イヨト ヨー わらの

- $Y \subset E$ is a (nonclosed) ideal if
 - Y is a vector subspace,
 - If $f \in Y$ and $|g| \leq |f|$, then $g \in Y$.

- $Y \subset E$ is a (nonclosed) ideal if
 - Y is a vector subspace,
 - If $f \in Y$ and $|g| \leq |f|$, then $g \in Y$.

Principal ideal generated by x:

$$E_{x} = \{f : \exists \lambda > 0 \ |f| \le \lambda |x|\}$$

Example: $L_1[0,1]_1 = L_{\infty}[0,1]$.

 $Y \subset E$ is a (nonclosed) ideal if

- Y is a vector subspace,
- If $f \in Y$ and $|g| \leq |f|$, then $g \in Y$.

Principal ideal generated by x:

$$E_x = \{f : \exists \lambda > 0 \ |f| \le \lambda |x|\}$$

Example: $L_1[0,1]_1 = L_{\infty}[0,1]$.

Theorem (Lotz 1969, Schaefer, Kakutani)

 E_x is always vector lattice isomorphic to a unique C(K).

 E_x is always vector lattice isomorphic to a unique C(K).

・ロト ・四ト ・ヨト ・ヨト 三日

 E_x is always vector lattice isomorphic to a unique C(K).

 $K := K_x(E)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 E_x is always vector lattice isomorphic to a unique C(K).

 $K := K_x(E)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

When $\overline{E_x} = E$, K = K(E).

 E_x is always vector lattice isomorphic to a unique C(K).

 $K := K_x(E)$

イロト イロト イヨト イヨト ヨー わへの

When $\overline{E_x} = E$, K = K(E). All K are of the form K(E); Take E = C(K).

 E_x is always vector lattice isomorphic to a unique C(K).

 $K := K_x(E)$

When
$$\overline{E_x} = E$$
, $K = K(E)$.
All K are of the form $K(E)$; Take $E = C(K)$.

Definition

A sick compactum is $K_x(E)$ for E a separable Banach lattice.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 E_x is always vector lattice isomorphic to a unique C(K).

 $K := K_x(E)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

When
$$\overline{E_x} = E$$
, $K = K(E)$.
All K are of the form $K(E)$; Take $E = C(K)$.

Definition

A sick compactum is $K_x(E)$ for E a separable Banach lattice.

• What compact spaces are sick?

 E_x is always vector lattice isomorphic to a unique C(K).

 $K := K_x(E)$

When
$$\overline{E_x} = E$$
, $K = K(E)$.
All K are of the form $K(E)$; Take $E = C(K)$.

Definition

A sick compactum is $K_x(E)$ for E a separable Banach lattice.

- What compact spaces are sick?
- = How do separable Banach lattices look like as vector lattices?

C(K)₁ = C(K).
 So metrizable K are sick.

- C(K)₁ = C(K).
 So metrizable K are sick.
- $C(K)_f = \{g : |g| \le nf\}$

イロト イロト イヨト イヨト ヨー わへの

- C(K)₁ = C(K).
 So metrizable K are sick.
- $C(K)_f = \{g : |g| \le nf\} = \{f \cdot h : h \in C_b(f \ne 0)\}$

イロト イロト イヨト イヨト ヨー わへの

- C(K)₁ = C(K).
 So metrizable K are sick.
- $C(K)_f = \{g : |g| \le nf\} = \{f \cdot h : h \in C_b(f \ne 0)\} \sim C(\beta \{f \ne 0\}).$

- C(K)₁ = C(K).
 So metrizable K are sick.
- $C(K)_f = \{g : |g| \le nf\} = \{f \cdot h : h \in C_b(f \ne 0)\} \sim C(\beta \{f \ne 0\}).$ So βW with W open in metrizable compact are sick.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- C(K)₁ = C(K).
 So metrizable K are sick.
- C(K)_f = {g: |g| ≤ nf} = {f ⋅ h : h ∈ C_b(f ≠ 0)} ~ C(β{f ≠ 0}).
 So βW with W open in metrizable compact are sick.
 In particular βN is sick.

イロト イヨト イヨト イヨト ヨー わらの

- C(K)₁ = C(K).
 So metrizable K are sick.
- C(K)_f = {g: |g| ≤ nf} = {f ⋅ h : h ∈ C_b(f ≠ 0)} ~ C(β{f ≠ 0}).
 So βW with W open in metrizable compact are sick.
 In particular βN is sick.
- $L_1[0,1]_1 = L_{\infty}[0,1].$

The Stone space of the Lebesgue measure algebra is sick.

イロト イヨト イヨト イヨト ヨー わらの

- C(K)₁ = C(K).
 So metrizable K are sick.
- C(K)_f = {g: |g| ≤ nf} = {f ⋅ h : h ∈ C_b(f ≠ 0)} ~ C(β{f ≠ 0}).
 So βW with W open in metrizable compact are sick.
 In particular βN is sick.
- $L_1[0,1]_1 = L_{\infty}[0,1].$

The Stone space of the Lebesgue measure algebra is sick.

• $E \hookrightarrow F \Rightarrow K(F) \twoheadrightarrow K(E)$, and $E \twoheadrightarrow F \Rightarrow K(E) \hookrightarrow K(F)$.

- C(K)₁ = C(K).
 So metrizable K are sick.
- C(K)_f = {g: |g| ≤ nf} = {f ⋅ h : h ∈ C_b(f ≠ 0)} ~ C(β{f ≠ 0}).
 So βW with W open in metrizable compact are sick.
 In particular βN is sick.
- $L_1[0,1]_1 = L_{\infty}[0,1].$

The Stone space of the Lebesgue measure algebra is sick.

• $E \hookrightarrow F \Rightarrow K(F) \twoheadrightarrow K(E)$, and $E \twoheadrightarrow F \Rightarrow K(E) \hookrightarrow K(F)$. $E = C(2^{\mathbb{N}}, L_1[0, 1]) \longrightarrow$ surjective universal sick compactum $E = Free(\mathbb{N}) \longrightarrow$ injective universal sick compactum

Theorem

Every sick K admits strictly positive measure of countable type.

Theorem

Every sick K admits strictly positive measure of countable type. $C(K) \hookrightarrow L_1(\mu) =$ Polish space.

イロン イロン イヨン イヨン 三日

Theorem

Every sick K admits strictly positive measure of countable type. $C(K) \hookrightarrow L_1(\mu) =$ Polish space. Moreover C(K) is analytic subset of $L_1(\mu)$.

Theorem

Every sick K admits strictly positive measure of countable type. $C(K) \hookrightarrow L_1(\mu) = \text{Polish space.}$ Moreover C(K) is analytic subset of $L_1(\mu)$.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

"Analytic" nature of sick compacta shows in different ways

Theorem

Every sick K admits strictly positive measure of countable type. $C(K) \hookrightarrow L_1(\mu) = \text{Polish space.}$ Moreover C(K) is analytic subset of $L_1(\mu)$.

"Analytic" nature of sick compacta shows in different ways

Theorem

If $\{z_n\}$ are G_{δ} -points, then $\{(f(z_n))_n : f \in C(K)\}$ is an analytic subset of $\mathbb{R}^{\mathbb{N}}$.

Theorem

Every sick K admits strictly positive measure of countable type. $C(K) \hookrightarrow L_1(\mu) = \text{Polish space.}$ Moreover C(K) is analytic subset of $L_1(\mu)$.

"Analytic" nature of sick compacta shows in different ways

Theorem If $\{z_n\}$ are G_{δ} -points, then $\{(f(z_n))_n : f \in C(K)\}$ is an analytic subset of $\mathbb{R}^{\mathbb{N}}$.

True for Rosenthal compacta and any points (Godefroy)

(Bourgain/Todorcevic/Marciszewski,Sobota-Plebanek).

Theorem

Every sick K admits strictly positive measure of countable type. $C(K) \hookrightarrow L_1(\mu) = \text{Polish space.}$ Moreover C(K) is analytic subset of $L_1(\mu)$.

"Analytic" nature of sick compacta shows in different ways

Theorem

If $\{z_n\}$ are G_{δ} -points, then $\{(f(z_n))_n : f \in C(K)\}$ is an analytic subset of $\mathbb{R}^{\mathbb{N}}$.

True for Rosenthal compacta and any points (Godefroy)

Theorem

Every measure in a Rosenthal compactum is of countable type and analytic. Converse true if K is separable .

(Bourgain/Todorcevic/Marciszewski,Sobota-Plebanek).

A lot of $\beta\mathbb{N}$

Theorem

If K is sick, then $\exists M_1 \subseteq M_2 \subseteq \cdots K$ closed metrizable, such that if $x_i \notin M_i$ discrete, then $\overline{\{x_n\}} = \beta \mathbb{N}$.

イロト イヨト イヨト イヨト 二日

If K is sick, then $\exists M_1 \subseteq M_2 \subseteq \cdots K$ closed metrizable, such that if $x_i \notin M_i$ discrete, then $\overline{\{x_n\}} = \beta \mathbb{N}$.

Proof: $T: C(K) \hookrightarrow E$,

 $M_n = \{t \in K : ||Tf|| \ge 2^{-n} \text{ for } |f| \le 1, f(t) = 1\}$

イロト イロト イヨト イヨト ヨー わへの

If K is sick, then $\exists M_1 \subseteq M_2 \subseteq \cdots K$ closed metrizable, such that if $x_i \notin M_i$ discrete, then $\overline{\{x_n\}} = \beta \mathbb{N}$.

Proof: $T: C(K) \hookrightarrow E$,

$$M_n = \{t \in K : ||Tf|| \ge 2^{-n} \text{ for } |f| \le 1, f(t) = 1\}$$

Corollary

If K is sick and $L \subseteq K$ is closed, then either L is metrizable or L contains $\beta \mathbb{N}$.

イロト イヨト イヨト イヨト ヨー わへの

If K is sick, then $\exists M_1 \subseteq M_2 \subseteq \cdots K$ closed metrizable, such that if $x_i \notin M_i$ discrete, then $\overline{\{x_n\}} = \beta \mathbb{N}$.

Proof: $T: C(K) \hookrightarrow E$,

$$M_n = \{t \in K : ||Tf|| \ge 2^{-n} \text{ for } |f| \le 1, f(t) = 1\}$$

Corollary

If K is sick and $L \subseteq K$ is closed, then either L is metrizable or L contains $\beta \mathbb{N}$.

Corollary

 $\beta \mathbb{N} \times \beta \mathbb{N}$ is not sick.

Clopen algebras as algebras of suprema

Theorem

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

イロト イヨト イヨト イヨト 三日

Clopen algebras as algebras of suprema

Theorem

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

 \bigcirc *B* is the algebra of clopens of a sick compactum

イロト イヨト イヨト イヨト 三日

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

- \bigcirc *B* is the algebra of clopens of a sick compactum
- **2** There are disjoint $\{x_n\}$ in a separable Banach lattice such that

$$B = \left\{ A \subseteq \mathbb{N} : \exists \sup_{n \in A} x_n \right\}$$

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

- \bigcirc *B* is the algebra of clopens of a sick compactum
- 2 There are disjoint $\{x_n\}$ in a separable Banach lattice such that

$$B = \left\{ A \subseteq \mathbb{N} : \exists \sup_{n \in A} x_n \right\}$$

• If $\sum_{n \in A} ||x_n|| < +\infty$, then A is hereditarily in B.

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

- \bigcirc *B* is the algebra of clopens of a sick compactum
- 2 There are disjoint $\{x_n\}$ in a separable Banach lattice such that

$$B = \left\{ A \subseteq \mathbb{N} : \exists \sup_{n \in A} x_n \right\}$$

• If $\sum_{n \in A} ||x_n|| < +\infty$, then A is hereditarily in B.

• A is (hereditarily in B)^{\perp} iff $0 \notin \overline{\{||x_n|| : n \in A\}}$.

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

- \bigcirc *B* is the algebra of clopens of a sick compactum
- 2 There are disjoint $\{x_n\}$ in a separable Banach lattice such that

$$B = \left\{ A \subseteq \mathbb{N} : \exists \sup_{n \in A} x_n \right\}$$

- If $\sum_{n\in A} ||x_n|| < +\infty$, then A is hereditarily in B.
- A is (hereditarily in B)^{\perp} iff $0 \notin \overline{\{||x_n|| : n \in A\}}$.
- (hereditarily in $B)^{\perp}$ is a countably generated ideal.

For an algebra $B \subseteq \mathscr{P}(\mathbb{N})$ that contains *fin*, TFAE.

- \bigcirc *B* is the algebra of clopens of a sick compactum
- 2 There are disjoint $\{x_n\}$ in a separable Banach lattice such that

$$B = \left\{ A \subseteq \mathbb{N} : \exists \sup_{n \in A} x_n \right\}$$

- If $\sum_{n \in A} ||x_n|| < +\infty$, then A is hereditarily in B.
- A is (hereditarily in B)^{\perp} iff $0 \notin \overline{\{||x_n|| : n \in A\}}$.
- (hereditarily in $B)^{\perp}$ is a countably generated ideal.
- $\beta \mathbb{N} \times 2^{\mathbb{N}}$ is not sick.

These are ideals of the form

$$\mathscr{I} = \left\{ A \subseteq \mathbb{N} : \limsup_{m} \sup_{c \in C} \sum_{n \in A, n \ge m} c_n = 0 \right\} \text{ for } C \subset c_{00} \cap \ell_1^+$$

・ロト・日本・ヨト・ヨー シック

These are ideals of the form

$$\mathscr{I} = \left\{ A \subseteq \mathbb{N} : \limsup_{m} \sup_{c \in C} \sum_{n \in A, n \ge m} c_n = 0 \right\} \text{ for } C \subset c_{00} \cap \ell_1^+$$

• Summable ideals. If $\lim_{n \to \infty} \lambda_n = 0$,

$$\mathscr{I} = \left\{ A \subset \mathbb{N} : \sum_{n \in A} \lambda_n < +\infty \right\}$$

・ロト・日本・ヨト・ヨー シック

These are ideals of the form

$$\mathscr{I} = \left\{ A \subseteq \mathbb{N} : \limsup_{m} \sup_{c \in C} \sum_{n \in A, n \ge m} c_n = 0 \right\} \text{ for } C \subset c_{00} \cap \ell_1^+$$

• Summable ideals. If $\lim_{n \to \infty} \lambda_n = 0$,

$$\mathscr{I} = \left\{ A \subset \mathbb{N} : \sum_{n \in A} \lambda_n < +\infty \right\}$$

• Density 0 ideal.

$$\mathscr{I} = \left\{ A \subset \mathbb{N} : \lim_{n} \frac{|A \cap \{1, \dots, n\}|}{n} = 0 \right\}$$

・ロト・日本・ヨト・ヨー シック

Theorem

If \mathscr{I} is a non-pathological analytic *P*-ideal, then the Stone space of $\mathscr{I} \cup \mathscr{F}$ is a sick compactum.

イロン イロン イヨン イヨン 三日

Theorem

If \mathscr{I} is a non-pathological analytic *P*-ideal, then the Stone space of $\mathscr{I} \cup \mathscr{F}$ is a sick compactum.

Theorem (Borodulin-Nadzieja, Farkas + Plebanek)

 \mathscr{J} is a non-pathological P-ideal iff there is an unconditional basis $\{e_n\}$ such that

$$\mathscr{I} = \left\{ A \subset \mathscr{P}(\mathbb{N}) : \exists \sum_{n \in A} e_n \right\}$$

Theorem

If \mathscr{I} is a non-pathological analytic *P*-ideal, then the Stone space of $\mathscr{I} \cup \mathscr{F}$ is a sick compactum.

Theorem (Borodulin-Nadzieja, Farkas + Plebanek)

 \mathscr{J} is a non-pathological *P*-ideal iff there is an unconditional basis $\{e_n\}$ such that

$$\mathscr{I} = \left\{ A \subset \mathscr{P}(\mathbb{N}) : \exists \sum_{n \in A} e_n \right\}$$

We add $e = \sup e_n$ to their space, similarly as one does with c_0 to obtain c.

$$(t_1, t_2, \ldots) = \sup\{\sum c_i | t_i | : c \in C\}, \quad E = \langle e_n, (1, 1, 1, \ldots) \rangle$$