HYPERSPACES OF COMPACT CONVEX SETS AND THEIR ORBIT SPACES

Sergey A. Antonyan

National University of Mexico

TOPOSYM 2022

Prague, Czech Republic

July 28, 2022

э

- Affine group action on $cb(\mathbb{R}^n)$ 2
- **Global Slices** 3
- The John ellipsoid
- Hiperspaces of \mathbb{B}^n 5

3 + 4 = +

Some Motivation

For every $n \ge 1$, let us denote:

- cc(ℝⁿ) the hyperspace of all compact convex subsets of ℝⁿ,
- $cb(\mathbb{R}^n)$ the hyperspace of all compact convex bodies of \mathbb{R}^n ,

equipped with the Hausdorff metric topology:

$$d_H(A,B) = \max \left\{ \sup_{b \in B} d(b,A), \sup_{a \in A} d(a,B) \right\},$$

where *d* is the Euclidean metric and $d(b, A) = \inf\{d(b, a) \mid a \in A\}$.

< 回 > < 回 > < 回 > -

Theorem (Nadler, Quinn, and Stavrakas (1979))

- For $n \ge 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$, where $Q = [0, 1]^{\aleph_0}$, the Hilbert cube,

Question

- What is the topological structure of $cb(\mathbb{R}^n)$, $n \ge 2$?
- 2 What is the topological structure of $\mathsf{cb}(\mathbb{B}^n)$, $n\geq$ 2 ?

Theorem (S. Antonyan and N. Jonard-Pérez (2013))

 $\mathsf{cb}(\mathbb{R}^n)$ is homeomorphic to $Q imes \mathbb{R}^{n(n+3)/2}$.

Theorem (Nadler, Quinn, and Stavrakas (1979))

- For $n \ge 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$, where $Q = [0, 1]^{\aleph_0}$, the Hilbert cube,
- **②** For *n* ≥ 2, *cc*(\mathbb{B}^n) is homeomorphic to the Hilbert cube Q, where \mathbb{B}^n stands for the closed unit ball of \mathbb{R}^n .

Question

- What is the topological structure of $cb(\mathbb{R}^n)$, $n \ge 2$?
- **2** What is the topological structure of $cb(\mathbb{B}^n)$, $n \ge 2$?

Theorem (S. Antonyan and N. Jonard-PA©rez (2013))

 $cb(\mathbb{R}^n)$ is homeomorphic to $Q imes \mathbb{R}^{n(n+3)/2}.$

Theorem (Nadler, Quinn, and Stavrakas (1979))

- For $n \ge 2$, $cc(\mathbb{R}^n)$ is homeomorphic to $Q \setminus \{pt\}$, where $Q = [0, 1]^{\aleph_0}$, the Hilbert cube,

Question

- **What is the topological structure of cb(\mathbb{R}^n), n \ge 2**?
- **2** What is the topological structure of $cb(\mathbb{B}^n)$, $n \ge 2$?

Theorem (S. Antonyan and N. Jonard-Pérez (2013))

 $cb(\mathbb{R}^n)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3)/2}$.

イロト イポト イヨト イヨト

Affine group action on $cb(\mathbb{R}^n)$

Question: Why is important to study $cb(\mathbb{R}^n)$ and its orbit spaces?

Answer: $cb(\mathbb{R}^n)/Aff(n) \cong BM(n)$ – the Banach-Mazur compactum.

Lets recall BM(n). In his 1932 book *Théorie des Opérations Linéaires*, S. Banach introduced the space of isometry classes [X], of *n*-dimensional Banach spaces X equipped with the well-known Banach-Mazur metric:

$$d([X], [Y]) = \log \inf \left\{ \|T\| \cdot \|T^{-1}\| \mid T : X \to Y \text{ a linear isomorphism} \right\}$$

$$BM(n) = \{[X] \mid \dim X = n\}$$

the Banach-Mazur compactum.

- It is a challenging open problem whether $BM(n) \cong Q$, $n \ge 3$?
- It is known that $BM(2) \ncong Q$ (Ant., Fund Math. 2002)

Our approach is largely based on the study of the natural affine group action $Aff(n) \curvearrowright cb(\mathbb{R}^n)$.

Aff(*n*) is the group of all non-singular affine transformations of \mathbb{R}^n . $g \in Aff(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in GL(n)$ and v

is a fixed vector.

Definition

For a topological group *G* and a space *X*, an action $G \curvearrowright X$ is a continuous map

 $G imes X o X, \quad (g,x)\mapsto gx$

such that

- $(g \cdot h)x = g(hx)$
- ex=x

for all $g, h \in G$, e – the identity of G, and $x \in X$.

- It is a challenging open problem whether $BM(n) \cong Q$, $n \ge 3$?
- It is known that $BM(2) \ncong Q$ (Ant., Fund Math. 2002)

Our approach is largely based on the study of the natural affine group action $Aff(n) \curvearrowright cb(\mathbb{R}^n)$.

Aff(*n*) is the group of all non-singular affine transformations of \mathbb{R}^n .

 $g \in Aff(n)$ iff $g(x) = v + \sigma(x)$ for every $x \in \mathbb{R}^n$, where $\sigma \in GL(n)$ and v is a fixed vector.

Definition

For a topological group *G* and a space *X*, an action $G \frown X$ is a continuous map

$$G imes X o X$$
, $(g, x) \mapsto gx$

such that

- $(g \cdot h)x = g(hx)$
- ex=x

for all $g, h \in G$, e – the identity of G, and $x \in X$.

For $x \in X$, the orbit is $G(x) = \{gx \mid g \in G\}$.

$$X/G = \{G(x) \mid x \in X\}$$

denotes the orbit set.

 $p: X \to X/G$, $p: x \mapsto G(x)$, is the orbit map. X/G, equipped with the quotient topology, is called orbit space.

Aff(*n*) acts on $cb(\mathbb{R}^n)$ by the following rule:

 $Aff(n) \times cb(\mathbb{R}^n) \to cb(\mathbb{R}^n)$ $(g, A) \mapsto gA = \{g(a) \mid a \in A\}.$

A (10) A (10)

э.

For $x \in X$, the orbit is $G(x) = \{gx \mid g \in G\}$.

$$X/G = \{G(x) \mid x \in X\}$$

denotes the orbit set.

 $p: X \to X/G$, $p: x \mapsto G(x)$, is the orbit map. X/G, equipped with the quotient topology, is called orbit space.

Aff(*n*) acts on $cb(\mathbb{R}^n)$ by the following rule:

$$\operatorname{Aff}(n) imes \operatorname{cb}(\mathbb{R}^n) o \operatorname{cb}(\mathbb{R}^n)$$

 $(g, A) \mapsto gA = \{g(a) \mid a \in A\}.$

- 4 週 ト 4 三 ト 4 三 ト -

э

Theorem The action $Aff(n) \frown cb(\mathbb{R}^n)$ is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group *G* on a Tychonoff space *X* is proper if every point $x \in X$ has a neighborhood V_x such that for any point $y \in X$ there is a neighborhood V_y with the property that the *transporter from* V_x to V_y

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

has compact closure in G.

- 4 回 ト 4 回 ト

The action $Aff(n) \frown cb(\mathbb{R}^n)$ is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group *G* on a Tychonoff space *X* is proper if every point $x \in X$ has a neighborhood V_x such that for any point $y \in X$ there is a neighborhood V_y with the property that the *transporter from* V_x to V_y

$$\langle V_x, V_y \rangle = \{ g \in G \mid gV_x \cap V_y \neq \emptyset \}$$

has compact closure in G.

(日)

x

Anton		

liperspace of convex sets

July 27, 2022 9/23

S. Anton	van i	111
S. Anton	yanı	\ IVI)

liperspace of convex sets

July 27, 2022 9/23

イロン イ団 とく ヨン ・ ヨン …

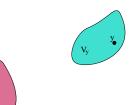
y

S 1	Anton	van l	(EINL	
U. /		yan (-\ivi)

liperspace of convex sets

July 27, 2022 9/23

イロン イ団 とく ヨン ・ ヨン …



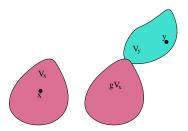
S. Antonyan	(LINIANA)	۱
3. Antonyan i		l

Hiperspace of convex sets

Vx

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 27, 2022 9/23

∃ 990

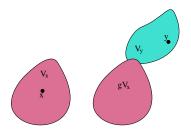


Inton		

liperspace of convex sets

✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷
 July 27, 2022 9/23

= 990

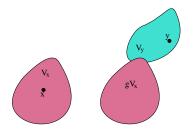


C 1	ntony	van (1 IN	1 1 1 1 1
о. л	nion	yan (UN	(NIVI)

liperspace of convex sets

✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷
 July 27, 2022 9/23

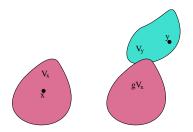
= 990



s /	Anton	van ((LIN	AM)

liperspace of convex sets

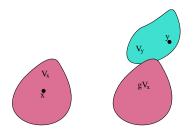
✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 27, 2022 9/23



S. /	Anton	van ('UN/	AM)

Hiperspace of convex sets

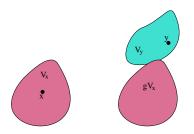
✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 27, 2022 9/23



C An	tonyan	/I II	
5. All	lunyan	(UI	N/N/N/)

Hiperspace of convex sets

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 27, 2022 9/23



Inton		

Hiperspace of convex sets

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 27, 2022 9/23

- The action $Aff(n) \frown cb(\mathbb{R}^n)$ is proper.
- 2 There exists a global O(n)-slice S for $cb(\mathbb{R}^n)$.

Where comes the number n(n+3)/2 from? in the above mentioned result:

$$cb(\mathbb{R}^n)\cong Q imes \mathbb{R}^{n(n+3)/2}.$$

Answer:

 $Aff(n)/O(n) \cong \mathbb{R}^{n(n+3)/2}.$

C 10	tonuon	/11	N17	\ \ /	١
5. Ali	tonyan	(U	144	11/1	J

liperspace of convex sets

July 27, 2022 10/23

- The action $Aff(n) \frown cb(\mathbb{R}^n)$ is proper.
- 2 There exists a global O(n)-slice S for $cb(\mathbb{R}^n)$.

Where comes the number n(n + 3)/2 from? in the above mentioned result:

$$cb(\mathbb{R}^n)\cong Q imes \mathbb{R}^{n(n+3)/2}.$$

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 July 27, 2022 10/23

- The action $Aff(n) \frown cb(\mathbb{R}^n)$ is proper.
- 2 There exists a global O(n)-slice S for $cb(\mathbb{R}^n)$.

Where comes the number n(n + 3)/2 from? in the above mentioned result:

$$cb(\mathbb{R}^n)\cong Q imes \mathbb{R}^{n(n+3)/2}.$$

Answer:

$$Aff(n)/O(n) \cong \mathbb{R}^{n(n+3)/2}.$$

S. Antonyan	(LINIANA)	۱
3. Antonyan i		l

liperspace of convex sets

July 27, 2022 10/23

(日)

To obtain the final result

$$cb(\mathbb{R}^n)\cong Q imes \mathbb{R}^{n(n+3)/2},$$

it remains to find a convenient O(n)-slice *S* for $cb(\mathbb{R}^n)$ such that $S \cong Q$.

æ

Definition

Let G := Aff(n), H := O(n) and $X := cb(\mathbb{R}^n)$.

A subset $S \subset X$ is called a global *H*-slice, if the following conditions hold:

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.

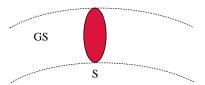
• $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

э

Definition

Let G := Aff(n), H := O(n) and $X := cb(\mathbb{R}^n)$. A subset $S \subset X$ is called a global *H*-slice, if the following conditions hold:

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.
- $gS \cap S = \emptyset$ for all $g \in G \setminus H$.



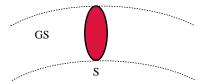
Definition

Let G := Aff(n), H := O(n) and $X := cb(\mathbb{R}^n)$. A subset $S \subset X$ is called a global *H*-slice, if the following conditions hold:

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).

S is H-invariant.

• $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

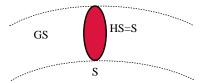


Definition

Let G := Aff(n), H := O(n) and $X := cb(\mathbb{R}^n)$. A subset $S \subset X$ is called a global *H*-slice, if the following conditions hold:

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.

• $gS \cap S = \emptyset$ for all $g \in G \setminus H$.

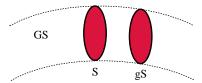


Definition

Let G := Aff(n), H := O(n) and $X := cb(\mathbb{R}^n)$. A subset $S \subset X$ is called a global *H*-slice, if the following conditions hold:

- G(S) = X, where $G(S) = \bigcup_{g \in G} gS$.
- S is closed in G(S).
- S is H-invariant.

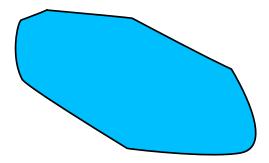
•
$$gS \cap S = \emptyset$$
 for all $g \in G \setminus H$.



크 에 비 크 어 !!

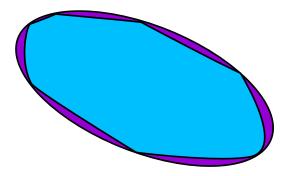
The John ellipsoid

For every compact convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid j(A) containing A. The ellipsoid j(A) is called the John (sometimes also the Löwner) ellipsoid of A.



The John ellipsoid

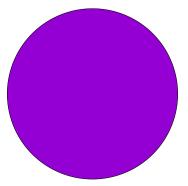
For every compact convex body $A \in cb(\mathbb{R}^n)$ there exists a unique minimal volume ellipsoid j(A) containing A. The ellipsoid j(A) is called the John (sometimes also the Löwner) ellipsoid of A.



(B) ((B))

For every $n \ge 2$, lets denote by J(n) the following set:

$$J(n) = \{A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n\}.$$



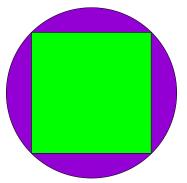
s.	Anton	van ('LIN.	AM)
.		,	· · · ·	,

A 10 July 27, 2022 14/23

A B A A B A

For every $n \ge 2$, lets denote by J(n) the following set:

$$J(n) = \{A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n\}.$$



. /	Anton	van ((UNAM)

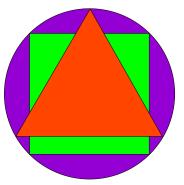
liperspace of convex sets

July 27, 2022 14/23

A B F A B F

For every $n \ge 2$, lets denote by J(n) the following set:

$$J(n) = \{A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n\}.$$



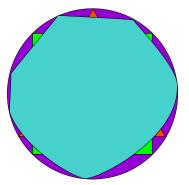
S. /	Antonyan (UNAM)

liperspace of convex sets

July 27, 2022 14/23

For every $n \ge 2$, lets denote by J(n) the following set:

$$J(n) = \{A \in cb(\mathbb{R}^n) \mid j(A) = \mathbb{B}^n\}.$$



S. /	Anton	van (UNAM)

liperspace of convex sets

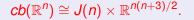
July 27, 2022 14/23

3 + 4 = +

Theorem

J(n) is a global O(n)-slice for the action $Aff(n) \frown cb(\mathbb{R}^n)$.

Hence,



Theorem

 $J(n) \cong Q.$

C 1	ntonyan (
о. л	unionyan i	

liperspace of convex sets

July 27, 2022 15/23

ヘロト ヘアト ヘビト ヘビト

Э.

Hiperspaces of \mathbb{B}^n

For every $n \ge 2$, we denote:

- cc(𝔅ⁿ) the hyperspace of all compact convex subsets of 𝔅ⁿ,
- $cb(\mathbb{B}^n)$ the hyperspace of all compact convex bodies of \mathbb{B}^n .

It is known that $cc(\mathbb{B}^n) \cong Q$ (Nadler et al).

But What is $cb(\mathbb{B}^n)$?

Theorem

• $cb(\mathbb{B}^n) \cong Q \setminus \{*\}.$

 Moreover, for any closed subgroup K < O(n) that acts non-transitively on the unit sphere Sⁿ⁻¹, the orbit space cb(Bⁿ)/K ≅ Q \ {*}.

Hiperspaces of \mathbb{B}^n

For every $n \ge 2$, we denote:

- cc(𝔅ⁿ) the hyperspace of all compact convex subsets of 𝔅ⁿ,
- $cb(\mathbb{B}^n)$ the hyperspace of all compact convex bodies of \mathbb{B}^n .

It is known that $cc(\mathbb{B}^n) \cong Q$ (Nadler et al).

But What is $cb(\mathbb{B}^n)$?

Theorem

• $cb(\mathbb{B}^n) \cong Q \setminus \{*\}.$

 Moreover, for any closed subgroup K < O(n) that acts non-transitively on the unit sphere Sⁿ⁻¹, the orbit space cb(Bⁿ)/K ≅ Q \ {*}. While the topological structure of the orbit space $cb(\mathbb{B}^n)/O(n)$ remains unknown,

for the orbit space $cc(\mathbb{B}^n)/O(n)$ we have the following

Theorem (Ant, Jonard-Pérez)

 $cc(\mathbb{B}^n)/O(n) \cong Cone(BM(n)).$

Conjecture

 $cc(\mathbb{B}^n)/O(n) \ncong Q.$

S. Antonyan (UNAM)

liperspace of convex sets

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 July 27, 2022 17/23

While the topological structure of the orbit space $cb(\mathbb{B}^n)/O(n)$ remains unknown,

for the orbit space $cc(\mathbb{B}^n)/O(n)$ we have the following

Theorem (Ant, Jonard-Pérez)

 $cc(\mathbb{B}^n)/O(n) \cong Cone(BM(n)).$

Conjecture

 $cc(\mathbb{B}^n)/O(n) \ncong Q.$

S. Antonyan (UNAM)

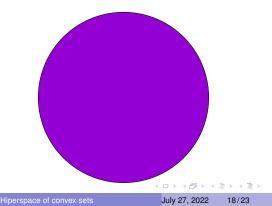
liperspace of convex sets

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 July 27, 2022
 17/23

э.

$\check{c}(\mathbb{B}^n):=\{A\in cc(\mathbb{B}^n)\mid\check{C}(A)=\mathbb{B}^n\}.$

$\check{c}b(\mathbb{B}^n):=\{A\in cb(\mathbb{B}^n)\mid\check{C}(A)=\mathbb{B}^n\}$



$$\check{c}(\mathbb{B}^n) := \{A \in cc(\mathbb{B}^n) \mid \check{C}(A) = \mathbb{B}^n\}.$$

$$\check{c}b(\mathbb{B}^n) := \{A \in cb(\mathbb{B}^n) \mid \check{C}(A) = \mathbb{B}^n\}.$$

S. Antonyan (UNAM)

$$\check{c}(\mathbb{B}^n) := \{A \in cc(\mathbb{B}^n) \mid \check{C}(A) = \mathbb{B}^n\}.$$

$$\check{c}b(\mathbb{B}^n) := \{A \in cb(\mathbb{B}^n) \mid \check{C}(A) = \mathbb{B}^n\}.$$

$$\check{c}(\mathbb{B}^n) := \{A \in cc(\mathbb{B}^n) \mid \check{C}(A) = \mathbb{B}^n\}.$$

$$\check{c}b(\mathbb{B}^n) := \{A \in cb(\mathbb{B}^n) \mid \check{C}(A) = \mathbb{B}^n\}.$$

Where they come from?

Again consider the hyperspace $cb(\mathbb{R}^n)$. Now consider the natural action of the similarity group $Sim(n) \curvearrowright cb(\mathbb{R}^n)$.

Here Sim(n) < Aff(n) and every $g \in Sim(n)$ is defined as

 $g(x) = u + t\sigma(x) \ u \in \mathbb{R}^n, \ \sigma \in O(n), \ t > 0.$

Since the action $Sim(n) \frown cb(\mathbb{R}^n)$ is proper, we have

Theorem

• $\check{c}b(\mathbb{B}^n)$ is a global O(n)-slice for the action $Sim(n) \frown cb(\mathbb{R}^n)$. • $cb(\mathbb{R}^n) \cong \check{c}b(\mathbb{B}^n) \times Sim(n)/O(n)$.

< 回 > < 三 > < 三 >

Where they come from?

Again consider the hyperspace $cb(\mathbb{R}^n)$. Now consider the natural action of the similarity group $Sim(n) \curvearrowright cb(\mathbb{R}^n)$.

Here Sim(n) < Aff(n) and every $g \in Sim(n)$ is defined as

$$g(x) = u + t\sigma(x) \ u \in \mathbb{R}^n, \ \sigma \in O(n), \ t > 0.$$

Since the action $Sim(n) \frown cb(\mathbb{R}^n)$ is proper, we have

Theorem

čb(𝔅ⁿ) is a global O(n)-slice for the action Sim(n) へ cb(𝔅ⁿ).
 cb(𝔅ⁿ) ≃ čb(𝔅ⁿ) × Sim(n)/O(n).

(日)

Since $Sim(n)/O(n) \cong \mathbb{R}^{n+1}$, we get

$$cb(\mathbb{R}^n)\cong \check{c}b(\mathbb{B}^n)\times\mathbb{R}^{n+1}.$$

From the other hand,

$$cb(\mathbb{R}^n)\cong J(n)\times\mathbb{R}^{n(n+3)/2},$$

Hence,

 $\check{c}b(\mathbb{B}^n) imes \mathbb{R}^{n+1}\cong J(n) imes \mathbb{R}^{n(n+3)/2}\cong Q imes \mathbb{R}^{n(n+3)/2}.$

This makes me believe this

Conjecture

$$\check{c}b(\mathbb{B}^n)\cong Q imes \mathbb{R}^{(n+2)(n-1)/2}.$$

liperspace of convex sets

✓ □ ▶ < □ ▶ < □ ▶ < □ ▶
 July 27, 2022 20/23

Э.

Theorem

• $\check{c}(\mathbb{B}^n)\cong Q$,

- \circ $\check{c}b(\mathbb{B}^n)$ is an open O(n)-invariant subset of the Hilbert cube $\check{c}(\mathbb{B}^n)$,
- The complement $\check{c}(\mathbb{B}^n) \setminus \check{c}b(\mathbb{B}^n)$ is a Z-subset and

 $\check{c}(\mathbb{B}^n)\setminus\check{c}b(\mathbb{B}^n)\cong\mathbb{RP}^{n-1}$

Recall that a Z-set here means that for every $\varepsilon > 0$, there exists a continuous map

 $f : \check{c}(\mathbb{B}^n) \to \check{c}b(\mathbb{B}^n)$ such that $d(f(A), A) < \varepsilon, \forall A \in \check{c}(\mathbb{B}^n).$

A (10) A (10)

Theorem

• $\check{c}(\mathbb{B}^n)\cong Q$,

 \circ $\check{c}b(\mathbb{B}^n)$ is an open O(n)-invariant subset of the Hilbert cube $\check{c}(\mathbb{B}^n)$,

• The complement $\check{c}(\mathbb{B}^n) \setminus \check{c}b(\mathbb{B}^n)$ is a Z-subset and

 $\check{c}(\mathbb{B}^n)\setminus\check{c}b(\mathbb{B}^n)\cong\mathbb{RP}^{n-1}$

Recall that a Z-set here means that for every $\varepsilon > 0$, there exists a continuous map

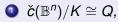
 $f:\check{c}(\mathbb{B}^n)\to\check{c}b(\mathbb{B}^n)$ such that $d(f(A),A)<\varepsilon, \ \forall \ A\in\check{c}(\mathbb{B}^n).$

< 回 > < 回 > < 回 > -

As to the orbit spaces, we have the following

Theorem

For any closed subgroup K < O(n) that acts non-transitively on the unit sphere \mathbb{S}^{n-1} ,



② čb(𝔅ⁿ)/K is an open O(n)-invariant subset of the Hilbert cube č(𝔅ⁿ)/K whose complement č(𝔅ⁿ) \ čb(𝔅ⁿ) is a Z-subset.

$$\circ \check{c}(\mathbb{B}^n)/O(n) \cong BM(n),$$

く 同 ト く ヨ ト く ヨ ト -

The End

Thank you very much!

C Ant	tonyan	(1.1NL	A N A \
о. Am	Uliyan		<u>, ivi</u>

July 27, 2022

・ロト ・ 四ト ・ ヨト ・ ヨト

23/23

æ

The End

Thank you very much!

S. Antonyan (UNAM)

July 27, 2022

23/23

æ