HYPERSPACES OF COMPACT CONVEX SETS AND THEIR ORBIT SPACES

Sergey A. Antonyan
National University of Mexico

TOPOSYM 2022

Prague, Czech Republic
July 28, 2022
(1) Motivation
(2) Affine group action on $c b\left(\mathbb{R}^{n}\right)$
(3) Global Slices

44 The John ellipsoid
(5) Hiperspaces of \mathbb{B}^{n}

Some Motivation

For every $n \geq 1$, let us denote:

- $c c\left(\mathbb{R}^{n}\right)$ the hyperspace of all compact convex subsets of \mathbb{R}^{n},
- $c b\left(\mathbb{R}^{n}\right)$ the hyperspace of all compact convex bodies of \mathbb{R}^{n},
equipped with the Hausdorff metric topology:

$$
d_{H}(A, B)=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\}
$$

where d is the Euclidean metric and $d(b, A)=\inf \{d(b, a) \mid a \in A\}$.

Theorem (Nadler, Quinn, and Stavrakas (1979))
(1) For $n \geq 2$, cc $\left(\mathbb{R}^{n}\right)$ is homeomorphic to $Q \backslash\{p t\}$, where $Q=[0,1]^{\aleph_{0}}$, the Hilbert cube,
(2) For $n \geq 2, c c\left(\mathbb{B}^{n}\right)$ is homeomorphic to the Hilbert cube Q, where \mathbb{B}^{n} stands for the closed unit ball of \mathbb{R}^{n}.

Theorem (Nadler, Quinn, and Stavrakas (1979))
(1) For $n \geq 2$, cc $\left(\mathbb{R}^{n}\right)$ is homeomorphic to $Q \backslash\{p t\}$, where $Q=[0,1]^{\aleph_{0}}$, the Hilbert cube,
(2) For $n \geq 2, c c\left(\mathbb{B}^{n}\right)$ is homeomorphic to the Hilbert cube Q, where \mathbb{B}^{n} stands for the closed unit ball of \mathbb{R}^{n}.

Question

(1) What is the topological structure of $c b\left(\mathbb{R}^{n}\right), n \geq 2$?
(2) What is the topological structure of $c b\left(\mathbb{B}^{n}\right), n \geq 2$?

Theorem (Nadler, Quinn, and Stavrakas (1979))
(1) For $n \geq 2$, cc $\left(\mathbb{R}^{n}\right)$ is homeomorphic to $Q \backslash\{p t\}$, where $Q=[0,1]^{\aleph_{0}}$, the Hilbert cube,
(2) For $n \geq 2, c c\left(\mathbb{B}^{n}\right)$ is homeomorphic to the Hilbert cube Q, where \mathbb{B}^{n} stands for the closed unit ball of \mathbb{R}^{n}.

Question

(1) What is the topological structure of $c b\left(\mathbb{R}^{n}\right), n \geq 2$?
(2) What is the topological structure of $c b\left(\mathbb{B}^{n}\right), n \geq 2$?

Theorem (S. Antonyan and N. Jonard-PÃ@rez (2013)) $c b\left(\mathbb{R}^{n}\right)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3) / 2}$.

Affine group action on $c b\left(\mathbb{R}^{n}\right)$

Question: Why is important to study $c b\left(\mathbb{R}^{n}\right)$ and its orbit spaces?
Answer: $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n) \cong B M(n)$ - the Banach-Mazur compactum.
Lets recall $B M(n)$.
In his 1932 book Théorie des Opérations Linéaires, S. Banach introduced the space of isometry classes [X], of n-dimensional Banach spaces X equipped with the well-known Banach-Mazur metric:

$$
d([X],[Y])=\log \inf \left\{\|T\| \cdot\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { a linear isomorphism }\right\}
$$

$$
B M(n)=\{[X] \mid \operatorname{dim} X=n\}
$$

the Banach-Mazur compactum.

- It is a challenging open problem whether $B M(n) \cong Q, n \geq 3$?
- It is known that $B M(2) \not \equiv Q$ (Ant., Fund Math. 2002)

Our approach is largely based on the study of the natural affine group action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.
$\operatorname{Aff}(n)$ is the group of all non-singular affine transformations of \mathbb{R}^{n}.
$g \in \operatorname{Aff}(n)$ iff $g(x)=v+\sigma(x)$ for every $x \in \mathbb{R}^{n}$, where $\sigma \in G L(n)$ and v is a fixed vector.

Definition
For a topological group G and a space X, an action $G \curvearrowright X$ is a continuous map

- It is a challenging open problem whether $B M(n) \cong Q, n \geq 3$?
- It is known that $B M(2) \not \equiv Q$ (Ant., Fund Math. 2002)

Our approach is largely based on the study of the natural affine group action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.
$\operatorname{Aff}(n)$ is the group of all non-singular affine transformations of \mathbb{R}^{n}.
$g \in \operatorname{Aff}(n)$ iff $g(x)=v+\sigma(x)$ for every $x \in \mathbb{R}^{n}$, where $\sigma \in G L(n)$ and v is a fixed vector.

Definition

For a topological group G and a space X, an action $G \curvearrowright X$ is a continuous map

$$
G \times X \rightarrow X, \quad(g, x) \mapsto g x
$$

such that

- $(g \cdot h) x=g(h x)$
- ex=x
for all $g, h \in G, e-$ the identity of G, and $x \in X$.

For $x \in X$, the orbit is $G(x)=\{g x \mid g \in G\}$.

$$
X / G=\{G(x) \mid x \in X\}
$$

denotes the orbit set.
$p: X \rightarrow X / G, p: x \mapsto G(x)$, is the orbit map.
X / G, equipped with the quotient topology, is called orbit space.
$\operatorname{Aff}(n)$ acts on $c b\left(\mathbb{R}^{n}\right)$ by the following rule:

$$
\begin{gathered}
\operatorname{Aff}(n) \times c b\left(\mathbb{R}^{n}\right) \rightarrow c b\left(\mathbb{R}^{n}\right) \\
(g, A) \mapsto g A=\{g(a) \mid a \in A\}
\end{gathered}
$$

For $x \in X$, the orbit is $G(x)=\{g x \mid g \in G\}$.

$$
X / G=\{G(x) \mid x \in X\}
$$

denotes the orbit set.
$p: X \rightarrow X / G, p: x \mapsto G(x)$, is the orbit map.
X / G, equipped with the quotient topology, is called orbit space.
$\operatorname{Aff}(n)$ acts on $c b\left(\mathbb{R}^{n}\right)$ by the following rule:

$$
\begin{gathered}
\operatorname{Aff}(n) \times c b\left(\mathbb{R}^{n}\right) \rightarrow c b\left(\mathbb{R}^{n}\right) \\
(g, A) \mapsto g A=\{g(a) \mid a \in A\}
\end{gathered}
$$

Theorem

The action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper.

Definition (Palais, 1961)
 An action of a locally compact Hausdorff group G on a Tychonoff space X is proper if every point $x \in X$ has a neighborhood V_{x} such that for any point $y \in X$ there is a neighborhood V_{y} with the property that the transporter from V_{x} to V_{y}

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

has compact closure in G.

Theorem

The action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper.

Definition (Palais, 1961)

An action of a locally compact Hausdorff group G on a Tychonoff space X is proper if every point $x \in X$ has a neighborhood V_{x} such that for any point $y \in X$ there is a neighborhood V_{y} with the property that the transporter from V_{x} to V_{y}

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

has compact closure in G.

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

$$
\left\langle V_{x}, V_{y}\right\rangle=\left\{g \in G \mid g V_{x} \cap V_{y} \neq \emptyset\right\}
$$

Theorem

(1) The action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper.
(2) There exists a global $O(n)$-slice S for $c b\left(\mathbb{R}^{n}\right)$.
(3) $c b\left(\mathbb{R}^{n}\right) \cong S \times \operatorname{Aff}(n) / O(n)$.

Where comes the number $n(n+3) / 2$ from? in the above mentioned result:

$$
c b\left(\mathbb{R}^{n}\right) \cong Q \times \mathbb{R}^{n(n+3) / 2}
$$

Answer:

\square

Theorem

(1) The action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper.
(2) There exists a global $O(n)$-slice S for $c b\left(\mathbb{R}^{n}\right)$.
(3) $c b\left(\mathbb{R}^{n}\right) \cong S \times \operatorname{Aff}(n) / O(n)$.

Where comes the number $n(n+3) / 2$ from? in the above mentioned result:

$$
c b\left(\mathbb{R}^{n}\right) \cong Q \times \mathbb{R}^{n(n+3) / 2}
$$

Answer:

$\operatorname{Aff}(n) / O(n) \cong \mathbb{R}^{n(n+3) / 2}$.

Theorem

(1) The action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper.
(2) There exists a global $O(n)$-slice S for $c b\left(\mathbb{R}^{n}\right)$.
(3) $c b\left(\mathbb{R}^{n}\right) \cong S \times \operatorname{Aff}(n) / O(n)$.

Where comes the number $n(n+3) / 2$ from? in the above mentioned result:

$$
c b\left(\mathbb{R}^{n}\right) \cong Q \times \mathbb{R}^{n(n+3) / 2}
$$

Answer:

$$
\operatorname{Aff}(n) / O(n) \cong \mathbb{R}^{n(n+3) / 2}
$$

To obtain the final result

$$
c b\left(\mathbb{R}^{n}\right) \cong Q \times \mathbb{R}^{n(n+3) / 2}
$$

it remains to find
a convenient $O(n)$-slice S for $\operatorname{cb}\left(\mathbb{R}^{n}\right)$ such that $S \cong Q$.

Global Slices

Definition

Let $G:=\operatorname{Aff}(n), H:=O(n)$ and $X:=c b\left(\mathbb{R}^{n}\right)$.
A subset $S \subset X$ is called a global H-slice, if the following conditions hold:

- $G(S)=X$, where $G(S)=\bigcup_{g \in G} g S$.
- S is closed in $G(S)$.
- S is H -invariant.

Global Slices

Definition

Let $G:=\operatorname{Aff}(n), H:=O(n)$ and $X:=c b\left(\mathbb{R}^{n}\right)$.
A subset $S \subset X$ is called a global H-slice, if the following conditions hold:

- $G(S)=X$, where $G(S)=\bigcup_{g \in G} g S$.
- S is closed in $G(S)$.
- S is H -invariant.
- $g S \cap S=\emptyset$ for all $g \in G \backslash H$.

Global Slices

Definition

Let $G:=\operatorname{Aff}(n), H:=O(n)$ and $X:=c b\left(\mathbb{R}^{n}\right)$.
A subset $S \subset X$ is called a global H-slice, if the following conditions hold:

- $G(S)=X$, where $G(S)=\bigcup_{g \in G} g S$.
- S is closed in $G(S)$.
- S is H-invariant.
- $g S \cap S=\emptyset$ for all $g \in G \backslash H$.

Global Slices

Definition

Let $G:=\operatorname{Aff}(n), H:=O(n)$ and $X:=c b\left(\mathbb{R}^{n}\right)$.
A subset $S \subset X$ is called a global H-slice, if the following conditions hold:

- $G(S)=X$, where $G(S)=\bigcup_{g \in G} g S$.
- S is closed in $G(S)$.
- S is H -invariant.

Global Slices

Definition

Let $G:=\operatorname{Aff}(n), H:=O(n)$ and $X:=c b\left(\mathbb{R}^{n}\right)$.
A subset $S \subset X$ is called a global H-slice, if the following conditions hold:

- $G(S)=X$, where $G(S)=\bigcup_{g \in G} g S$.
- S is closed in $G(S)$.
- S is H -invariant.
- $g S \cap S=\emptyset$ for all $g \in G \backslash H$.

The John ellipsoid

For every compact convex body $A \in c b\left(\mathbb{R}^{n}\right)$ there exists a unique minimal volume ellipsoid $j(A)$ containing A. The ellipsoid $j(A)$ is called the John (sometimes also the Löwner) ellipsoid of A.

The John ellipsoid

For every compact convex body $A \in c b\left(\mathbb{R}^{n}\right)$ there exists a unique minimal volume ellipsoid $j(A)$ containing A. The ellipsoid $j(A)$ is called the John (sometimes also the Löwner) ellipsoid of A.

For every $n \geq 2$, lets denote by $J(n)$ the following set:

$$
J(n)=\left\{A \in c b\left(\mathbb{R}^{n}\right) \mid j(A)=\mathbb{B}^{n}\right\}
$$

For every $n \geq 2$, lets denote by $J(n)$ the following set:

$$
J(n)=\left\{A \in c b\left(\mathbb{R}^{n}\right) \mid j(A)=\mathbb{B}^{n}\right\}
$$

For every $n \geq 2$, lets denote by $J(n)$ the following set:

$$
J(n)=\left\{A \in c b\left(\mathbb{R}^{n}\right) \mid j(A)=\mathbb{B}^{n}\right\}
$$

For every $n \geq 2$, lets denote by $J(n)$ the following set:

$$
J(n)=\left\{A \in c b\left(\mathbb{R}^{n}\right) \mid j(A)=\mathbb{B}^{n}\right\}
$$

Theorem

$J(n)$ is a global $O(n)$-slice for the action $\operatorname{Aff}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.
Hence,

$$
c b\left(\mathbb{R}^{n}\right) \cong J(n) \times \mathbb{R}^{n(n+3) / 2}
$$

Theorem
 $J(n) \cong Q$.

Hiperspaces of \mathbb{B}^{n}

For every $n \geq 2$, we denote:

- $c c\left(\mathbb{B}^{n}\right)$ - the hyperspace of all compact convex subsets of \mathbb{B}^{n},
- $c b\left(\mathbb{B}^{n}\right)$ - the hyperspace of all compact convex bodies of \mathbb{B}^{n}.

It is known that $\operatorname{cc}\left(\mathbb{B}^{n}\right) \cong Q$ (Nadler et al).

But
What is $c b\left(\mathbb{B}^{n}\right)$?

Hiperspaces of \mathbb{B}^{n}

For every $n \geq 2$, we denote:

- $c c\left(\mathbb{B}^{n}\right)$ - the hyperspace of all compact convex subsets of \mathbb{B}^{n},
- $c b\left(\mathbb{B}^{n}\right)$ - the hyperspace of all compact convex bodies of \mathbb{B}^{n}.

It is known that $\operatorname{cc}\left(\mathbb{B}^{n}\right) \cong Q$ (Nadler et al).

But
What is $c b\left(\mathbb{B}^{n}\right)$?
Theorem

- $c b\left(\mathbb{B}^{n}\right) \cong Q \backslash\{*\}$.
- Moreover, for any closed subgroup $K<O(n)$ that acts non-transitively on the unit sphere \mathbb{S}^{n-1}, the orbit space $\operatorname{cb}\left(\mathbb{B}^{n}\right) / K \cong Q \backslash\{*\}$.

While the topological structure of the orbit space $c b\left(\mathbb{B}^{n}\right) / O(n)$ remains unknown, for the orbit space $c c\left(\mathbb{B}^{n}\right) / O(n)$ we have the following

Theorem (Ant, Jonard-Pérez)

$$
c c\left(\mathbb{B}^{n}\right) / O(n) \cong \operatorname{Cone}(B M(n))
$$

While the topological structure of the orbit space $c b\left(\mathbb{B}^{n}\right) / O(n)$ remains unknown, for the orbit space $c c\left(\mathbb{B}^{n}\right) / O(n)$ we have the following

Theorem (Ant, Jonard-Pérez)

$$
c c\left(\mathbb{B}^{n}\right) / O(n) \cong \operatorname{Cone}(B M(n))
$$

Conjecture

$$
c c\left(\mathbb{B}^{n}\right) / O(n) \neq Q .
$$

Another interesting geometrically defined hyperspaces are related to the Čebyshev ball. Recall that for any compact subset $A \subset \mathbb{R}^{n}$, there exists a unique ball $\check{C}(A)$ of minimum radius that contains A. It is called Čebyshev ball or circumball of A.

Another interesting geometrically defined hyperspaces are related to the Čebyshev ball. Recall that for any compact subset $A \subset \mathbb{R}^{n}$, there exists a unique ball $\check{C}(A)$ of minimum radius that contains A. It is called Čebyshev ball or circumball of A.

$$
\begin{aligned}
\check{c}\left(\mathbb{B}^{n}\right) & :=\left\{A \in c c\left(\mathbb{B}^{n}\right) \mid \check{C}(A)=\mathbb{B}^{n}\right\} . \\
\check{c} b\left(\mathbb{B}^{n}\right) & :=\left\{A \in c b\left(\mathbb{B}^{n}\right) \mid \check{C}(A)=\mathbb{B}^{n}\right\} .
\end{aligned}
$$

Another interesting geometrically defined hyperspaces are related to the Čebyshev ball. Recall that for any compact subset $A \subset \mathbb{R}^{n}$, there exists a unique ball $\check{C}(A)$ of minimum radius that contains A. It is called Čebyshev ball or circumball of A.

$$
\begin{aligned}
\check{c}\left(\mathbb{B}^{n}\right) & :=\left\{A \in c c\left(\mathbb{B}^{n}\right) \mid \check{C}(A)=\mathbb{B}^{n}\right\} . \\
\check{c} b\left(\mathbb{B}^{n}\right) & :=\left\{A \in c b\left(\mathbb{B}^{n}\right) \mid \check{C}(A)=\mathbb{B}^{n}\right\} .
\end{aligned}
$$

Another interesting geometrically defined hyperspaces are related to the Čebyshev ball. Recall that for any compact subset $A \subset \mathbb{R}^{n}$, there exists a unique ball $\check{C}(A)$ of minimum radius that contains A. It is called Čebyshev ball or circumball of A.

$$
\begin{gathered}
\check{c}\left(\mathbb{B}^{n}\right):=\left\{A \in c c\left(\mathbb{B}^{n}\right) \mid \check{C}(A)=\mathbb{B}^{n}\right\} . \\
\check{c} b\left(\mathbb{B}^{n}\right):=\left\{A \in c b\left(\mathbb{B}^{n}\right) \mid \check{C}(A)=\mathbb{B}^{n}\right\} .
\end{gathered}
$$

Where they come from?

Again consider the hyperspace $c b\left(\mathbb{R}^{n}\right)$. Now consider the natural action of the similarity group $\operatorname{Sim}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.

Here $\operatorname{Sim}(n)<\operatorname{Aff}(n)$ and every $g \in \operatorname{Sim}(n)$ is defined as

$$
g(x)=u+t \sigma(x) \quad u \in \mathbb{R}^{n}, \quad \sigma \in O(n), \quad t>0 .
$$

Since the action $\operatorname{Sim}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper, we have

heorem

(1) čb $\left(\mathbb{B}^{n}\right)$ is a global $O(n)$-slice for the action $\operatorname{Sim}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.
(2) $c b\left(\mathbb{R}^{n}\right) \cong c ̌ b\left(\mathbb{B}^{n}\right) \times \operatorname{Sim}(n) / O(n)$.

Where they come from?

Again consider the hyperspace $c b\left(\mathbb{R}^{n}\right)$. Now consider the natural action of the similarity group $\operatorname{Sim}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.

Here $\operatorname{Sim}(n)<\operatorname{Aff}(n)$ and every $g \in \operatorname{Sim}(n)$ is defined as

$$
g(x)=u+t \sigma(x) u \in \mathbb{R}^{n}, \quad \sigma \in O(n), \quad t>0
$$

Since the action $\operatorname{Sim}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$ is proper, we have

Theorem

(1) čb($\left.\mathbb{B}^{n}\right)$ is a global $O(n)$-slice for the action $\operatorname{Sim}(n) \curvearrowright c b\left(\mathbb{R}^{n}\right)$.
(2) $c b\left(\mathbb{R}^{n}\right) \cong c ̌ b\left(\mathbb{B}^{n}\right) \times \operatorname{Sim}(n) / O(n)$.

Since $\operatorname{Sim}(n) / O(n) \cong \mathbb{R}^{n+1}$, we get

$$
c b\left(\mathbb{R}^{n}\right) \cong c ̌ b\left(\mathbb{B}^{n}\right) \times \mathbb{R}^{n+1}
$$

From the other hand,

$$
c b\left(\mathbb{R}^{n}\right) \cong J(n) \times \mathbb{R}^{n(n+3) / 2}
$$

Hence,

$$
c ̌ b\left(\mathbb{B}^{n}\right) \times \mathbb{R}^{n+1} \cong J(n) \times \mathbb{R}^{n(n+3) / 2} \cong Q \times \mathbb{R}^{n(n+3) / 2}
$$

This makes me believe this

Conjecture

$$
\check{c} b\left(\mathbb{B}^{n}\right) \cong Q \times \mathbb{R}^{(n+2)(n-1) / 2} .
$$

Theorem

($\check{c}\left(\mathbb{B}^{n}\right) \cong Q$,
(2) čb $\left(\mathbb{B}^{n}\right)$ is an open $O(n)$-invariant subset of the Hilbert cube $\check{c}\left(\mathbb{B}^{n}\right)$,
(0) The complement $\check{c}\left(\mathbb{B}^{n}\right) \backslash \check{c} b\left(\mathbb{B}^{n}\right)$ is a Z-subset and

$$
\check{c}\left(\mathbb{B}^{n}\right) \backslash \check{c} b\left(\mathbb{B}^{n}\right) \cong \mathbb{R}^{n-1}
$$

Recall that a Z-set here means that for every $\varepsilon>0$, there exists a continuous map

$$
f: \check{c}\left(\mathbb{B}^{n}\right) \rightarrow \check{c} b\left(\mathbb{B}^{n}\right) \text { such that } d(f(A), A)<\varepsilon, \quad \forall A \in \check{c}\left(\mathbb{B}^{n}\right) \text {. }
$$

Theorem

(c) $\check{c}\left(\mathbb{B}^{n}\right) \cong Q$,
(2) čb $\left(\mathbb{B}^{n}\right)$ is an open $O(n)$-invariant subset of the Hilbert cube $\check{c}\left(\mathbb{B}^{n}\right)$,
(0) The complement $\check{c}\left(\mathbb{B}^{n}\right) \backslash \check{c} b\left(\mathbb{B}^{n}\right)$ is a Z-subset and

$$
\check{c}\left(\mathbb{B}^{n}\right) \backslash \check{c} b\left(\mathbb{B}^{n}\right) \cong \mathbb{R} \mathbb{P}^{n-1}
$$

Recall that a Z-set here means that for every $\varepsilon>0$, there exists a continuous map
$f: \check{c}\left(\mathbb{B}^{n}\right) \rightarrow \check{c} b\left(\mathbb{B}^{n}\right)$ such that $d(f(A), A)<\varepsilon, \forall A \in \check{c}\left(\mathbb{B}^{n}\right)$.

As to the orbit spaces, we have the following
Theorem
For any closed subgroup $K<O(n)$ that acts non-transitively on the unit sphere \mathbb{S}^{n-1},
(1) $\check{c}\left(\mathbb{B}^{n}\right) / K \cong Q$,
(2) čb $\left(\mathbb{B}^{n}\right) / K$ is an open $O(n)$-invariant subset of the Hilbert cube $\check{c}\left(\mathbb{B}^{n}\right) / K$ whose complement $\check{c}\left(\mathbb{B}^{n}\right) \backslash \check{c} b\left(\mathbb{B}^{n}\right)$ is a Z-subset.
(3) $\check{c}\left(\mathbb{B}^{n}\right) / O(n) \cong B M(n)$,

The End

Thank you very much!

The End

Thank you very much!

