On stability and weight of Lindelöf *P*-groups

Mikhail Tkachenko¹

mich@xanum.uam.mx

If every G_{δ} -set in a space X is open, we say that it is a *P*-space. Similarly, a topological group is a *P*-group if it is a *P*-space. The class of Lindelöf *P*-groups, which is similar to the class of compact topological groups in terms of permanence properties, is the focus of our presentation.

First, we consider the question of whether every Lindelöf P-group is τ -stable, for a given infinite cardinal τ . It is well known that the answer is affirmative for $\tau = \aleph_0$ and $\tau = \aleph_1$. We extend this conclusion to a proper class of cardinals τ , including those satisfying the equality $\tau^{\omega} = \tau$. We deduce, for example, that every Lindelöf P-group is \aleph_n -stable, for each $n \in \omega$.

Second, we look at the problem of estimating a gap between the weight and *i*-weight of a Lindelöf *P*-group *G*. If the cardinal $\tau = iw(G)$ is either \aleph_n for some $n \in \omega$ or fulfills $\tau^{\omega} = \tau$, it is not difficult to demonstrate that the two cardinal functions coincide. In general, however, a gap can be quite big. According to our best knowledge, if $iw(G) = \aleph_{\omega}$, then $w(G) < \aleph_{\omega_4}$ and $w(G) \leq (\tau_{\omega})^{\omega}$.

Our entire analysis is based on the family $[\tau]^{\omega}$ of countable subsets of an uncountable cardinal τ partially ordered by inclusion.

 $^{^1\}mathrm{The}$ author was partially supported by the CONACyT of Mexico, grant FORDECYT-PRONACES/64356/2020.

