Čech and Katětov covering dimensions and more or less related questions concerning F-groups

Olga Sipacheva

ovsipa@gmail.com

There are two covering dimensions, dim in the sense of Čech (dim $X \leq n$ if any finite open cover of X has a finite open refinement of order $\leq n$) and dim₀ in the sense of Katětov (dim₀ $X \leq n$ if any finite cozero cover of X has a finite cozero refinement of order $\leq n$). It is proved that the covering dimension of the Sorgenfrey plane $S \times S$ is infinite, while, as is well known, dim₀ $S^{\kappa} = 0$ for any cardinal κ . Examples of topological groups with similar properties are constructed, including a separable precompact Boolean group G with linear topology (generated by open subgroups) with dim₀ $G^{\kappa} = 0$ and dim $G = \infty$.

The open problem of the existence in ZFC of topological groups whose underlying space is an *F*-space (i.e., a space in which any two disjoint cozero sets are functionally separated) not being *P*-spaces is touched on. It is proved that the existence of an Abelian *F*-group *G* such that $\dim_0 G < \infty$ and $\psi(G) \leq \omega$ is equivalent to the existence of a Boolean group with the same properties and that the existence of an Abelian *F'*-group (or of an extremally disconnected group) *G* with linear topology which is not a *P*-space implies the existence of a group of cardinality $\leq 2^{\omega}$ with the same properties.

Question. Is it true that $\dim_0 X \leq \dim X$ for any completely regular space X?

