Amenability, optimal transport and abstract ergodic theorems

 $Christian Rosendal^1$

rosendal@umd.edu

Using tools from the theory of optimal transport, four results concerning isometric actions of amenable topological groups with potentially unbounded orbits are established. Specifically, consider an amenable topological group G with no non-trivial homomorphisms to \mathbb{R} . If d is a compatible left-invariant metric on $G, E \subseteq G$ is a finite subset and $\epsilon > 0$, there is a finitely supported probability measure β on G so that

 $\max_{g,h\in E} \mathsf{W}(\beta g,\beta h) < \epsilon,$

where W denotes the Wasserstein or optimal transport distance between probability measures on the metric space (G, d). When d is the word metric on a finitely generated group G, this strengthens a well known theorem of H. Reiter. Furthermore, when G is locally compact second countable, β may be replaced by an appropriate probability density $f \in L^1(G)$.

Also, when $G \curvearrowright X$ is a continuous isometric action on a metric space, the space of Lipschitz functions on the quotient $X/\!\!/ G$ is isometrically isomorphic to a 1-complemented subspace of the Lipschitz functions on X. And finally every continuous affine isometric action of G on a Banach space has a canonical invariant linear subspace. These results generalise previous theorems due to Schneider–Thom and Cúth–Doucha.

¹Research partially supported by NSF award DMS 2204849.

